9 research outputs found

    Performance modelling of network management schemes for mobile wireless networks

    Get PDF

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Distributed mobility management for a flat architecture in 5G mobile networks: solutions, analysis and experimental validation

    Get PDF
    In the last years, the commercial deployment of data services in mobile networks has been evolving quickly, providing enhanced radio access technologies and more efficient network architectures. Nowadays, mobile users enjoy broadband and ubiquitous wireless access through their portable devices, like smartphones and tablets, exploiting the connectivity offered by the modern 4G network. Nevertheless, the technological evolution keeps moving towards the development of next generation networks, or 5G, aiming at further improving the current system in order to cope with the huge data traffic growth foreseen in the future years. One of the possible research guidelines aims at innovating the mobile networks architecture by designing a flat system. Indeed, current systems are built upon a centralized and hierarchical structure, where multiple access networks are connected to a central core hosting crucial network functions, e.g., charging, control and maintenance, as well as mobility management, which is the main topic of this thesis. In such a central mobility management system, users’ traffic is aggregated at some key nodes in the core, called mobility anchors. Thus, an anchor can easily handle user’s mobility by redirecting traffic flows to his/her location, but i) it poses scalability issues, ii) it represents a single point of failure, and iii) the routing path is in general suboptimal. These problems can be overcome moving to a flat architecture, adopting a Distributed Mobility Management (DMM) system, where the centralized anchor is removed. This thesis develops within the DMM framework, presenting the design, analysis, implementation and experimental validation of several DMM protocols. In this work we describe original protocols for client-based and network-based mobility management, as well as a hybrid solution. We study analytically our solutions to evaluate their signaling cost, the packet delivery cost, and the latency introduced to handle a handover event. Finally, we assess the validity of some of our protocols with experiments run over a network prototype built in our lab implementing such solutions.El despliegue comercial de los servicios de datos en las redes móviles ha evolucionado rápidamente en los últimos años, proporcionando tecnologías de acceso radio más avanzadas y arquitecturas de red más eficientes. Los usuarios ya pueden disfrutar de los servicios de banda ancha desde sus dispositivos móviles, como smartphones y tablets, aprovechando la conectividad de las modernas redes 4G. Sin embargo, la evolución tecnológica sigue trazando su camino hasta el desarrollo de las redes de próxima generación, o 5G, en previsión del enorme aumento del tráfico de los años futuros. Una de las innovaciones bajo estudio aborda la arquitectura de las redes móviles, con el objetivo de diseñar un sistema plano. Efectivamente, el sistema actual se basa en una estructura centralizada y jerárquica, en la cual múltiples redes de acceso se conectan al núcleo central, dónde residen funciones cruciales para el control de la red y facturación, así como la gestión de la movilidad, que es el tema central de esta tesis. En un sistema con gestión centralizada de la movilidad, se agregan los flujos de tráfico en algunos nodos claves situados en el núcleo de la red, llamados anclas de movilidad. De este modo, un ancla puede fácilmente redirigir los flujos al lugar donde se halla el usuario, pero i) supone problemas de escalabilidad, ii) representa un punto único de fallo, y iii) el encaminamiento es en general sub-óptimo. Estos problemas se pueden resolver pasando a una arquitectura plana, cambiándose a un sistema de gestión distribuida de la movilidad (Distributed Mobility Management – DMM), donde no hay anclas centralizadas. Esta tesis se desarrolla dentro el marco propuesto por DMM, presentando el diseño, el análisis, la implementación y la validación experimental de varios protocolos de movilidad distribuida. Se describen soluciones basadas en el cliente y en la red, así como una solución híbrida. El funcionamiento de las soluciones ha sido estudiado analíticamente, para evaluar los costes de señalización, el coste del transporte de los paquetes y la latencia para gestionar el traspaso de los usuarios de una red a otra. Finalmente, la validez de los protocolos ha sido demostrada con experimentos sobre un prototipo donde se implementan algunas de las soluciones utilizando el equipamiento de nuestro laboratorio.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Ramón Agüero Calvo.- Vocal: Jouni Korhone

    On the Support of Massive Machine-to-Machine Traffic in Heterogeneous Networks and Fifth-Generation Cellular Networks

    Get PDF
    The widespread availability of many emerging services enabled by the Internet of Things (IoT) paradigm passes through the capability to provide long-range connectivity to a massive number of things, overcoming the well-known issues of ad-hoc, short-range networks. This scenario entails a lot of challenges, ranging from the concerns about the radio access network efficiency to the threats about the security of IoT networks. In this thesis, we will focus on wireless communication standards for long-range IoT as well as on fundamental research outcomes about IoT networks. After investigating how Machine-Type Communication (MTC) is supported nowadays, we will provide innovative solutions that i) satisfy the requirements in terms of scalability and latency, ii) employ a combination of licensed and license-free frequency bands, and iii) assure energy-efficiency and security

    Spectrum Sharing Methods in Coexisting Wireless Networks

    Get PDF
    Radio spectrum, the fundamental basis for wireless communication, is a finite resource. The development of the expanding range of radio based devices and services in recent years makes the spectrum scarce and hence more costly under the paradigm of extensive regulation for licensing. However, with mature technologies and with their continuous improvements it becomes apparent that tight licensing might no longer be required for all wireless services. This is from where the concept of utilizing the unlicensed bands for wireless communication originates. As a promising step to reduce the substantial cost for radio spectrum, different wireless technology based networks are being deployed to operate in the same spectrum bands, particularly in the unlicensed bands, resulting in coexistence. However, uncoordinated coexistence often leads to cases where collocated wireless systems experience heavy mutual interference. Hence, the development of spectrum sharing rules to mitigate the interference among wireless systems is a significant challenge considering the uncoordinated, heterogeneous systems. The requirement of spectrum sharing rules is tremendously increasing on the one hand to fulfill the current and future demand for wireless communication by the users, and on the other hand, to utilize the spectrum efficiently. In this thesis, contributions are provided towards dynamic and cognitive spectrum sharing with focus on the medium access control (MAC) layer, for uncoordinated scenarios of homogeneous and heterogeneous wireless networks, in a micro scale level, highlighting the QoS support for the applications. This thesis proposes a generic and novel spectrum sharing method based on a hypothesis: The regular channel occupation by one system can support other systems to predict the spectrum opportunities reliably. These opportunities then can be utilized efficiently, resulting in a fair spectrum sharing as well as an improving aggregated performance compared to the case without having special treatment. The developed method, denoted as Regular Channel Access (RCA), is modeled for systems specified by the wireless local resp. metropolitan area network standards IEEE 802.11 resp. 802.16. In the modeling, both systems are explored according to their respective centrally controlled channel access mechanisms and the adapted models are evaluated through simulation and results analysis. The conceptual model of spectrum sharing based on the distributed channel access mechanism of the IEEE 802.11 system is provided as well. To make the RCA method adaptive, the following enabling techniques are developed and integrated in the design: a RSS-based (Received Signal Strength based) detection method for measuring the channel occupation, a pattern recognition based algorithm for system identification, statistical knowledge based estimation for traffic demand estimation and an inference engine for reconfiguration of resource allocation as a response to traffic dynamics. The advantage of the RCA method is demonstrated, in which each competing collocated system is configured to have a resource allocation based on the estimated traffic demand of the systems. The simulation and the analysis of the results show a significant improvement in aggregated throughput, mean delay and packet loss ratio, compared to the case where legacy wireless systems coexists. The results from adaptive RCA show its resilience characteristics in case of dynamic traffic. The maximum achievable throughput between collocated IEEE 802.11 systems applying RCA is provided by means of mathematical calculation. The results of this thesis provide the basis for the development of resource allocation methods for future wireless networks particularly emphasized to operate in current unlicensed bands and in future models of the Open Spectrum Alliance

    JTIT

    Get PDF
    kwartalni

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences
    corecore