33,934 research outputs found

    Numerical Investigation of Dynamic Pipe-Soil Interaction on Electrokinetic-Treated Soft Clay Soil

    Get PDF
    © 2019 American Society of Civil Engineers. Researchers have underscored the importance for a pipeline to safeguard against adverse effects resulting from its displacement in the vertical, axial, and lateral directions because of the low shear strength of the soil. The seabed may sometimes consist of soft or very soft clay soil with high water content and low shear strength. Dissipation of the water content from the soil void increases its effective stress, with a resultant increase in the soil shear strength. The electrokinetic (EK) concept has been applied to increase soil bearing capacity with barely any study conducted on its possible application on pipe-soil interaction. The need to explore more options merits further research. The EK process for the pipe-soil interaction consists of two main stages: the electroosmotic consolidation process and dynamic analyses of the pipe-soil interaction. The present study numerically investigated the impact of EK-treated soil on pipe-soil interaction over the non-EK process. The results of dynamic pipe-soil interaction on EK-treated soil when compared with non-EK-treated soil indicate a significant increase in the force required to displace a pipeline

    Variation of tow force with velocity during offshore ploughing in granular materials

    Get PDF
    Pipeline plough behaviour has been investigated by means of reduced scale physical model testing. A testing programme was devised to investigate the influence of permeability, relative density, and plough depth on the associated tow force measured during ploughing over a range of velocities in saturated granular material. An increase in tow force with velocity was found during all of the tests and the results have been compared to previously developed analytical models. A new empirical equation has been developed to describe the change in tow force with velocity for a variety of model siliceous sand conditions. Application of this new approach to full-scale ploughing requires consideration of scaling effects and the use of appropriate input parameters determined to replicate field conditions. </jats:p

    Thermal effects on geologic carbon storage

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.earscirev.2016.12.011One of the most promising ways to significantly reduce greenhouse gases emissions, while carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-isothermal effects play a major role in all stages of CCS. In this paper, we review the literature on thermal effects related to CCS, which is receiving an increasing interest as a result of the awareness that the comprehension of non-isothermal processes is crucial for a successful deployment of CCS projects. We start by reviewing CO2 transport, which connects the regions where CO2 is captured with suitable geostorage sites. The optimal conditions for CO2 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such that CO2 stays in liquid state. To minimize costs, CO2 should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To optimize the injection conditions, coupled wellbore and reservoir simulators that solve the strongly non-linear problem of CO2 pressure, temperature and density within the wellbore and non-isothermal two-phase flow within the storage formation have been developed. CO2 in its way down the injection well heats up due to compression and friction at a lower rate than the geothermal gradient, and thus, reaches the storage formation at a lower temperature than that of the rock. Inside the storage formation, CO2 injection induces temperature changes due to the advection of the cool injected CO2, the Joule-Thomson cooling effect, endothermic water vaporization and exothermic CO2 dissolution. These thermal effects lead to thermo-hydro-mechanical-chemical coupled processes with non-trivial interpretations. These coupled processes also play a relevant role in “Utilization” options that may provide an added value to the injected CO2, such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and geothermal energy extraction combined with CO2 storage. If the injected CO2 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion of CO2 as pressure decreases with depth. Finally, we conclude by identifying research gaps and challenges of thermal effects related to CCS.Peer ReviewedPostprint (author's final draft

    Numerical modelling of erosion and sedimentation around offshore pipelines

    Get PDF
    In this paper a numerical model is presented for the description of the erosion and sedimentation near pipelines on the sea bottom. The model is based on the Navier-Stokes equations and the equation of motion and continuity of sediment.\ud \ud The results of the simulations have been compared with the results of tests in a large-scale facility. The agreement between the results of the simulations and the experimental results is good.\ud \ud The applicability of the method is twofold: firstly, the processes of erosion and sedimentation around bodies on the sea bottom can be simulated; secondly, the method can be used for the design of pipelines, including erosion stimulating elements, such as spoilers

    Constraint-consistent Runge-Kutta methods for one-dimensional incompressible multiphase flow

    Get PDF
    New time integration methods are proposed for simulating incompressible multiphase flow in pipelines described by the one-dimensional two-fluid model. The methodology is based on 'half-explicit' Runge-Kutta methods, being explicit for the mass and momentum equations and implicit for the volume constraint. These half-explicit methods are constraint-consistent, i.e., they satisfy the hidden constraints of the two-fluid model, namely the volumetric flow (incompressibility) constraint and the Poisson equation for the pressure. A novel analysis shows that these hidden constraints are present in the continuous, semi-discrete, and fully discrete equations. Next to constraint-consistency, the new methods are conservative: the original mass and momentum equations are solved, and the proper shock conditions are satisfied; efficient: the implicit constraint is rewritten into a pressure Poisson equation, and the time step for the explicit part is restricted by a CFL condition based on the convective wave speeds; and accurate: achieving high order temporal accuracy for all solution components (masses, velocities, and pressure). High-order accuracy is obtained by constructing a new third order Runge-Kutta method that satisfies the additional order conditions arising from the presence of the constraint in combination with time-dependent boundary conditions. Two test cases (Kelvin-Helmholtz instabilities in a pipeline and liquid sloshing in a cylindrical tank) show that for time-independent boundary conditions the half-explicit formulation with a classic fourth-order Runge-Kutta method accurately integrates the two-fluid model equations in time while preserving all constraints. A third test case (ramp-up of gas production in a multiphase pipeline) shows that our new third order method is preferred for cases featuring time-dependent boundary conditions
    • …
    corecore