1,232 research outputs found

    Energy and Spectral Efficient Wireless Communications

    Get PDF
    Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems. First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs. Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput. Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Adaptive modulation techniques for passive optical networks

    Get PDF
    Smart use of fiber networks to increase capacity to the hom

    Optimization and Applications of Modern Wireless Networks and Symmetry

    Get PDF
    Due to the future demands of wireless communications, this book focuses on channel coding, multi-access, network protocol, and the related techniques for IoT/5G. Channel coding is widely used to enhance reliability and spectral efficiency. In particular, low-density parity check (LDPC) codes and polar codes are optimized for next wireless standard. Moreover, advanced network protocol is developed to improve wireless throughput. This invokes a great deal of attention on modern communications

    Distinguishing codes from noise : fundamental limits and applications to sparse communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 99-100).This thesis investigates the problem of distinguishing codes from noise. We develop a slotted channel model where in each time slot, the channel input is either a codeword or a noise sequence. In this model, successful communication requires both correctly detecting the presence of a codeword and decoding it to the correct message. While the decoding problem has been extensively studied, the problem of distinguishing codes from noise is relatively new, and we ask the following question regarding the "distinguishability" of a channel code: given a noisy channel and a code with a certain rate, what are the fundamental limits of distinguishing this code from noise at the output of the channel? The problem of distinguishing codes from noise involves both detection and decoding. In our analysis, we first extend the classical channel coding problem to incorporate the requirement of detection, which admits both miss and false alarm errors. Then we investigate the fundamental limits of code distinguishing in terms of the error exponents of miss and false alarm error probabilities. In a scenario that miss probability is required to vanish asymptotically but not necessarily exponentially, we characterize the maximum false alarm error exponent at each rate, and show that an i.i.d. codebook with typicality decoding is sufficient to achieve the maximum exponent. In another scenario that requires certain miss error exponent, we show that for DMC channels, the i.i.d. codebook is suboptimal and the constant composition codebook achieves the best known performance. For AWGN channels, we develop a clustered spherical codebook that achieves the best known performance in all operating regimes. This code distinguishability problem is strongly motivated by the synchronization problem in sparse communication, a new communication paradigm where transmissions take place intermittently and each transmission consists of a small amount of data. Our results show that, in sparse communication, the traditional approach of conducting synchronization and coding separately is suboptimal, and our approach of designing codes for joint synchronization and information transmission achieves better performance, especially at high rates. Therefore, for systems with sparse transmissions such as sensor networks, it is beneficial to adopt the joint sync-coding architecture instead of the traditional separate sync-coding architecture.by Da Wang.S.M

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Security enhancement in passive optical networks through wavelength hopping and sequences cycling technique

    Get PDF
    Growth in the telecommunication industry continues to expand with requirements evolving around increased bandwidth and security. Advances in networking technologies have introduced low cost optical components that has made passive optical networks (PON) the choice for providing huge bandwidth to end users. PON are covered by established standards such as IEEE 802.3ah and ITU-T G.983.1/984.1, with star topology of broadcast and select (B&S) on shared fiber links that poses security vulnerability in terms of confidentiality and privacy;Research and reports in the literature focus around increasing cardinality via coding schemes that lack in addressing security, which was left for implementation in application layers via cryptography. This dissertation presents an approach on security in PON at the network level using slow wavelength hopping techniques and diffusion of data packets among dense wave division multiplex (DWDM). Orthogonal wavelength sequences are generated by mapping an ITU-T G694.1 based wavelength grid matrix and code matrices. The arrangement of wavelengths in the wavelength grid matrix, which can be changed frequently (i.e, hourly) serves as the first key of secure operation. Allocation of generated wavelength sequences distributed in multiple quantities to nodes based on their security level serve as second individual keys for the nodes. In addition, an improved level of security provided via the cycling order of those allocated wavelength sequences to nodes is the third key between the central office (CO) and a node. The proposed approach to PON security provides three new keys available outside the world of cryptography;Various coding techniques are used, and results show that even time spreading/wavelength hopping based on symmetric prime numbers provided the least wavelength sequences; however, it provided excellent correlation properties and level of security. A PON simulation model was implemented to investigate channel impairments in DWDM with 64 channels spaced at 25GHz carried over a 25 km ITU-T G.655 compliant shared fiber cable. Security performance evaluation included analytical studies in classical probabilities to capture the correct order of wavelength hopping sequence using exhaustive searching and reverse construction of matrices from monitored channels. Encouraging results obtained support the feasibility of this proposed technical approach for security

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity
    corecore