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Abstract

This thesis investigates the problem of distinguishing codes from noise. We develop a slotted
channel model where in each time slot, the channel input is either a codeword or a noise se-
quence. In this model, successful communication requires both correctly detecting the presence
of a codeword and decoding it to the correct message. While the decoding problem has been ex-
tensively studied, the problem of distinguishing codes from noise is relatively new, and we ask
the following question regarding the “distinguishability” of a channel code: given a noisy channel
and a code with a certain rate, what are the fundamental limits of distinguishing this code from
noise at the output of the channel?

The problem of distinguishing codes from noise involves both detection and decoding. In our
analysis, we first extend the classical channel coding problem to incorporate the requirement of
detection, which admits both miss and false alarm errors. Then we investigate the fundamental
limits of code distinguishing in terms of the error exponents of miss and false alarm error proba-
bilities. In a scenario that miss probability is required to vanish asymptotically but not necessarily
exponentially, we characterize the maximum false alarm error exponent at each rate, and show
that an i.i.d. codebook with typicality decoding is sufficient to achieve the maximum exponent.
In another scenario that requires certain miss error exponent, we show that for DMC channels,
the i.i.d. codebook is suboptimal and the constant composition codebook achieves the best known
performance. For AWGN channels, we develop a clustered spherical codebook that achieves the
best known performance in all operating regimes.

This code distinguishability problem is strongly motivated by the synchronization problem in
sparse communication, a new communication paradigm where transmissions take place intermit-
tently and each transmission consists of a small amount of data. Our results show that, in sparse
communication, the traditional approach of conducting synchronization and coding separately is
suboptimal, and our approach of designing codes for joint synchronization and information trans-
mission achieves better performance, especially at high rates. Therefore, for systems with sparse
transmissions such as sensor networks, it is beneficial to adopt the joint sync–coding architecture
instead of the traditional separate sync–coding architecture.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Synchronization has long been recognized as a fundamental aspect of communication (e.g., [1, 2]).

More specifically, to establish communication, a transmitter sends a codeword based on an input

message, and a receiver must detect the presence of the codeword, locate its starting position,

and then determine which message it corresponds to. The process of detecting and locating a

codeword is usually called initial/one-shot frame synchronization [3], and we simply refer to it as

“synchronization” in this thesis.

The traditional solution to the problem of synchronization is training, where a specific pattern

of symbols, known as sync word, is used to identify the start of transmitted data (or codeword).

This approach separates the communication problem into two sub-problems, synchronization and

coding. Separate sync–coding provides great engineering convenience in terms of both design and

analysis. It is appropriate when communication is dense and hence the cost of synchronization can

be “amortized”, since many codewords are transmitted after synchronization is established (Fig-

ure 1-1). Indeed, many studies on synchronization adopt this separation approach and focus on

designing good sync words and/or detection rules to improve synchronization performance (e.g.,

[4, 5, 6]).

However, as pointed out in [7], the above separation approach becomes difficult to justify

for certain emerging applications such as the sensor network, where transmissions take place

intermittently, with each transmission consisting of a small amount of data. We term this new

type of communication paradigm sparse communication (Figure 1-2).

t
sync cw cw · · · cw sync cw cw · · · cw

Figure 1-1: Dense communication: many codewords are transmitted after each synchronization.

t
sync cw sync cw sync cw

Figure 1-2: Sparse communication: each transmission consists a small amount of data.
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CHAPTER 1. INTRODUCTION

t
? ? ? ? ?· · · · · · · · ·c1 cn c1 cn

codeword 1 codeword 2

X1 Xt1 Xt2

t· · · · · · · · ·Y1 Yt1 Yt2

Figure 1-3: Asynchronous channel inputs (X1, X2, · · · ) and outputs (Y1, Y2, · · · ).

In [7], the authors analyze the synchronization and information transmission aspects of com-

munication jointly and develop an asynchronous channel model to capture not only the trans-

mission from transmitter to receiver but also the channel condition when the transmitter is silent.

Specifically, a special ? symbol is introduced as a pseudo-input to the channel when nothing is

sent from the transmitter. In this channel, both idle and transmission activities of the transmitter

induce a sequence of channel inputs X1, X2, · · · , where codewords with length n are sent only

at time t1, t2, · · · . Accordingly, the receiver observes a sequence of channel outputs Y1, Y2, · · · , as

shown in Figure 1-3.

In this thesis, we adopt the above channel model with a key simplification, where by we re-

quire the communication to be slotted, as shown in Figure 1-4. This simplification allows us to

use a set of performance metrics and analysis techniques that are different from those in [7], while

maintaining the essence of the synchronization problem.

Remark:

The slotted channel model introduces certain amount of synchrony between the transmitter and

the receiver, and reduces the problem of synchronization from both detecting and locating the

codeword to detecting the codeword only. However, as shown in [8], using a prefix with sub-

linear length is sufficient to locate the codeword, once we know a codeword is indeed present.

Therefore, there is no essential performance difference between the slotted and unslotted model

t

?n ?n ?n c(i) ?n ?n c(j) ?n

Figure 1-4: Slotted asynchronous channel, with each time slot containing either a codeword or a
noise sequence with length n.
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in terms of error exponents, which are the performance metric we adopt in this thesis, as discussed

later.

In the slotted asynchronous channel, the channel output in each time slot is induced by either

a codeword cn(i) or a noise sequence ?n. In this model, successful communication requires both

correctly detecting the presence of a codeword and decoding it to the correct message. To ac-

commodate the analysis of both detection and decoding, we extend the classical coding problem

defined in [9] to incorporate the requirement of detection, and ask the following central question

regarding the “distinguishability” of a channel code:

Given a noisy channel and a code with rate R, what are the fundamental limits of

distinguishing this code from noise at the output of the channel?

Intuitively, we want the channel outputs corresponding to codewords be as “different” from

the channel outputs of noise as possible, and answering this central question tells us how different

they can be. In addition, the analysis process can uncover some useful insights on designing codes

that are easy to distinguish from noise.

Fundamentally, distinguishing codes from noise, or detecting codewords with respect to noise,

like decoding, is a hypothesis testing problem. Therefore, the problem of joint detection and de-

coding admits three types of errors: 1) miss (where we detect a codeword as noise), 2) false alarm

(where we detect noise as a codeword), and 3) decoding error (where after correctly detecting the

presence of the codeword, we decode it to an incorrect message). We denote the probabilities of

these three events by Pm, Pf and Pe respectively.

In most applications, we are interested in the regime that Pm, Pf and Pe can be made arbitrarily

small by increasing the codeword block length n. Then we can define the error exponents Em, Ef

and Ed for these three probabilities, which tell us asymptotically how fast these error probabili-

ties decay as the codeword block length increases. As shown later, in most regimes of practical

interest, these error probabilities indeed decrease exponentially and hence error exponents are

useful measures of the system performance. Furthermore, given certain error probability require-

ments, error exponents are useful in obtaining a coarse estimate of the required codeword block

length [10], an important system design parameter.

In general, there are trade-offs between the three exponents Em, Ef and Ed, and we study these

exponents and their trade-offs in several scenarios of practical interest.

17
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First, we consider the case that communication is very sparse, i.e., we send very few messages

over a large time interval. In this scenario, false alarm is the dominant error event, because the

majority of the slots have input ?n, which can only cause false alarm errors. Therefore, we may be

interested in maximizing the false alarm error exponent Ef, while keeping Pm and Pe small. This

is our focus of Chapter 3.

In addition, the above scenario of sparse communication can also be viewed as an extension

of pulse position modulation (PPM), if we assume there is a predefined communication window

between the transmitter and the receiver. In this setting, our results have an indication on the

maximum throughput we can achieve when communicating by both timing and codeword, which

is elaborated on in Section 3.6.

Second, we consider the above problem in another scenario, where users may have require-

ments on the error exponent of miss Pm. For example, in a fire alarm system or an enemy detection

system, messages are so critical that one may want the probability of miss to decay with exponent

at least Em. This is analogous to the Neyman-Pearson test, but here the efficient frontier is charac-

terized via the trade-off between the error exponents Em and Ef, rather than the probabilities Pm

and Pf. This problem, characterizing the optimal false alarm exponent Ef subject to Em constraint,

is investigated in both Chapter 4 (for the DMC) and Chapter 5 (for the AWGN channel).

It is worth pointing out that the above characterization of Ef given Em constraint is equivalent

to characterizing the achievable region of the (Em, Ef) pairs. This actually provides us with a

fundamental limit on sparse communication, when we require the total miss probability, total

false alarm probability, and the average decoding error probability to be vanishing asymptotically.

Specifically, if given Em ≥ β, the optimal Ef is α, then we can at most transmit enβ messages over

enβ + enα many time slots, otherwise either the total miss probability or total false alarm probability

is not vanishing asymptotically 1.

Based on our analysis, we compare the detection performance of joint sync–coding with sepa-

rate sync–coding (training). This problem has been investigated in [11], where training is shown

to be suboptimal at high rate. In our work, we show training is suboptimal at almost all rates and

give a more precise quantification on the performance loss due to training.

Finally, we present a summary on the performance of different schemes in various regimes of

interest in Chapter 6. This helps system designers to choose the proper scheme based on the sys-

1If we want the total decoding error probability to be vanishing as well, we need to impose the constraint that the
decoding error exponent Ed is larger than β, and we need to analyze the achievable region of the triplet (Em, Ef, Ed).
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tem operating regime and performance requirements. In addition, we mention a few related open

problems that extend and connect the problem of distinguishing codes from noise to a broader

context.
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Chapter 2

Background

This chapter introduces the mathematical notations, definitions and models used in this thesis.

� 2.1 Notations

We use lower case letters (e.g. x) to denote a particular value of the corresponding random variable

denoted in capital letters (e.g. X). We use P (X ) to denote all the probability distributions on the

alphabet X .

Below assumes that we have distributions P(·), Q(·) ∈ P (X ) and conditional distributions

W(·|·) : X → Y , V(·|·) : X → Y , and define

[P ·Q](x, y) , P(x)Q(y) (2.1)

[P ·W](x, y) ,W (y| x) P(x) (2.2)

[P ·W]Y(y) ,∑
x

W (y| x) P(x). (2.3)

We define the shell of a probability distribution as

[P]δ ,
{

P′ ∈ P (X ) : ‖P− P′‖∞ < δ
}

, (2.4)

where ‖P(·)‖∞ , maxx∈X P(x) is the infinity norm.

We denote the support of a distribution P on X by

Support(P) , {x ∈ X : P(x) > 0} , (2.5)

and extend this definition to a set of distributions P :

Support(P) ,
⋃

P∈P
Support(P). (2.6)

And we would use Support(P1, P2, · · · , Pn) as a shorthand for Support({P1, P2, · · · , Pn}).

For a collection of disjoint sets {Ai}, we denote their union by
⊔Ai, where “

⊔
” is used to

emphasize that the union is over disjoint sets.
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� 2.1.1 Probability distributions

This thesis refers to a few probability distributions, and we use N(·, ·) to denote the Gaussian

distribution 1 , Bern (·) the Bernoulli distribution, and Binom(·, ·) the Binomial distribution.

� 2.2 Synchronous DMC and Block Codes

In this section we define the conventional (synchronous) discrete memoryless channel (DMC)

W : X → Y , with input alphabet X = {1, 2, . . . , |X |} and output alphabet Y = {1, 2, . . . , |Y|}.
The conditional distribution of output letter Y when the channel input letter X equals x ∈ X is

denoted by WY|X(·|x):

P [Y = y|X = x] = WY|X(y|x) ∀ x ∈ X , ∀ y ∈ Y .

When the input and output alphabets are clear from context, W is used instead of WY|X.

A length n block code for the synchronous channel with input alphabet X , output alphabet Y
and some finite message setM fn = {1, 2, . . . ,

∣∣M fn

∣∣} is composed of a pair of mappings, encoder

mapping fn :M fn → X n and decoder mapping gn : Yn →M fn . We denote ( fn, gn) by C(n).

Given a message m, which is chosen fromM fn according to the uniform distribution, the en-

coder maps it to a sequence xn(m) ∈ X n 2 and transmits this sequence through the channel, where

we call xn(m) the codeword for message m and the entire set of codewords {xn(m)} a codebook. The

decoder receives a sequence yn ∈ Yn and maps it to a message m̂. The decoding error probability

for message m is

Pe(m) , ∑
m̂ 6=m

Wn
(

g−1
n (m̂)| fn(m)

)
= 1−Wn

(
g−1

n (m)| fn(m)
)

. (2.7)

The maximal decoding error probability Pe and rate R of the code C(n) is given by

Pe

(
C(n)

)
, max

m
Pe(m) and R(C(n)) ,

log
∣∣M fn

∣∣
n

.

For derivations in this thesis, we also use the concept of average error probability, where the

average is over all possible codewords and/or codebooks, depending on the context. We use an

overline to denote the averaging operation, for example, Pe.

1Also known as Normal distribution.
2We use xj

i(i ≤ j) to represent the sequence xi, xi+1, . . . , xj, and further use xn to represent the sequence xn
1 .
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� 2.2.1 Subcode and extension

A code Ĉ(n) = ( f̂n, ĝn) is called a subcode of C(n) = ( fn, gn) ifM f̂n
⊂ M fn and f̂n(m) = fn(m) for

any m ∈ M f̂n
. Also, we call C(n) an extension of Ĉ(n).

Note that there is no restriction on the relationship between ĝn and gn in the above definitions.

� 2.2.2 Code sequences

A sequence of codes Q =
{
C(n), n ∈N

}
indexed by their block-lengths n is called reliable if

lim
n→∞

Pe

(
C(n)

)
= 0.

For any reliable code-sequence Q, the rate RQ is given by

RQ , lim inf
n→∞

R
(
C(n)

)
.

� 2.3 Asynchronous DMC and Block Codes

In this section we extend the formal definition of (synchronous) DMC to asynchronous channels

to accommodate the potential timing uncertainty in the communication.

Definition 2.1 (Asynchronous discrete memoryless channel [7]). An asynchronous discrete

memoryless channel (Figure 2-1) (X , ?, W,Y) is a DMC with input alphabetX , output alphabet

Y , and transition probabilities W(y|x), where the special symbol ? ∈ X is used to represent the

channel input when the transmitter is silent.

WY|X(·|·)

X Y

?

Figure 2-1: An asynchronous channel model with input alphabet X , output alphabet Y , special
symbol ? and transition probabilities W(·|·).
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For a length n block code for the slotted asynchronous channel, we have gn : An → M fn ,

where An ⊂ Yn is the acceptance region for codewords, i.e., if yn ∈ An, we consider the channel

input as a certain codeword xn(m), m ∈ M fn , otherwise we consider the channel input as ?n. We

also use Bn = Ac
n to denote the rejection region for codewords.

Remark:

Note that in the asynchronous DMC (X , ?, W,Y), the domain of gn is An rather than Yn, which is

the domain of gn in the synchronous DMC.

Furthermore, when the channel input is the noise symbol ?, we denote the output marginal

distribution as QY, i.e.,

QY(·) ,W (·|?) . (2.8)

For asynchronous channels, in addition to Pe

(
C(n)

)
, we have two error metrics corresponding

to the detection problem, the probability of miss and the probability of false alarm, which depend

on the acceptance region An of a code:

Pm(m) ,Wn (An
c| xn(m))

Pm

(
C(n)

)
, max

m
Pm(m)

Pf

(
C(n)

)
,Wn (An| ?n) .

Note that by definition, An = tm∈M fn
g−1

n (m), and

Pm(m) = Wn (An
c| xn(m)) ≤Wn

(
g−1

n (m)
c
∣∣∣ xn(m)

)
= Pe(m). (2.9)

Thus

Pm

(
C(n)

)
≤ Pe

(
C(n)

)
. (2.10)
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2.3. ASYNCHRONOUS DMC AND BLOCK CODES

Moreover, we denote Pe

(
C(n)

)
, Pm

(
C(n)

)
and Pf

(
C(n)

)
by P(n)

e , P(n)
m and P(n)

f when the code

sequence is clear from context. Furthermore, we use the following shorthands

Pe , lim inf
n→∞

P(n)
e (2.11)

Pm , lim inf
n→∞

P(n)
m (2.12)

Pf , lim inf
n→∞

P(n)
f , (2.13)

where the infimum is over all possible codes.

In this thesis, without loss of generality, we assume that for every y ∈ Y , ∃ x such that

W (x| y) > 0. Furthermore, we only consider the case Support(W (·|?)) = Y , which has the

most interesting trade-off between the false alarm probability and the miss probability.

Remark:

When Support(W (·|?)) is a proper subset of Y , if we only require Pm → 0, it is not hard to see

that we can achieve Pf = 0 by designing the codebook and the detection rule properly. In this

case, there is not much trade-off between the false alarm probability and the miss probability.

If we require the miss probability to decay exponentially, certain trade-off exists but its analysis

essentially reduces to the case that Support(W (·|?)) = Y .

� 2.3.1 Error exponents for asynchronous DMC

In many regimes of interest, the error probabilities defined above decrease exponentially with the

codeword block length n, and the corresponding exponents provide us with finer characteriza-

tions of the error performance. This motivates us to define the relevant error exponents for the

asynchronous DMC.

Definition 2.2 (Achievable miss, false alarm, and decoding error exponents). A number em ≥ 0

is called an achievable miss error exponent for an asynchronous DMC (X , ?, W,Y) at rate RQ if for

any ε > 0, δ > 0 and λ > 0, there exists a code C(n) such that R
(
C(n)

)
≥ RQ − δ,

P(n)
m ≤ ε and P(n)

m ≤ e−n(em−λ),

when n sufficiently large.
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Similarly, we can define the achievable false alarm error exponent ef and achievable decoding error

exponent ed in terms of Pf and Pe.

Remark:

When em > 0, P(n)
m ≤ e−n(em−λ) implies P(n)

m ≤ ε, and hence the first condition is needed only when

em = 0.

In addition, since P(n)
e ≥ P(n)

m , we have ed ≤ em.

Definition 2.3 (Achievable error exponent triplet). A triplet of numbers (ed, em, ef) is called

achievable for an asynchronous DMC (X , ?, W,Y) at rate RQ if they can be achieved simultane-

ously for this channel at rate RQ.

We denote the set of achievable error exponent triplets at rate RQ by E(RQ), i.e.,

E(RQ) , {(em, ef, ed) : (em, ef, ed) achievable at rate RQ} . (2.14)

Definition 2.4 (Reliability functions). For an asynchronous DMC (X , ?, W,Y), given rate RQ,

we define the false alarm reliability function as

Ef(RQ, em, ed) , sup
(em,ef,ed)∈E(RQ)

ef (2.15)

and similarly, the miss reliability function as

Em(RQ, ef, ed) , sup
(em,ef,ed)∈E(RQ)

em (2.16)

and the decoding error reliability function as

Ed(RQ, em, ef) , sup
(em,ef,ed)∈E(RQ)

ed. (2.17)

In this thesis, we analyze the optimal achievable em and ef pairs without any constraints on ed.

It is not hard to see that ed = 0 gives us the best trade-off between em and ef, so we let ed = 0, and
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adopt the following notations:

Ef(RQ, em) , Ef(RQ, em, ed = 0) (2.18)

Em(RQ, ef) , Em(RQ, ef, ed = 0). (2.19)

The reliability functions in (2.18) and (2.19) provide us with the general trade-off between

miss and false alarm exponents. As mentioned in Chapter 1, we may also be interested in the case

of maximizing the false alarm exponent, without any constraint for em. In this case, again it is

not hard to see that setting em = 0 allows us to achieve the maximum false alarm exponent. The

objective of maximizing Ef(RQ, em) necessitates the following definition.

Definition 2.5. For an asynchronous DMC (X , ?, W,Y), given rate RQ, the maximum false alarm

reliability function is

Ef(RQ) , Ef(RQ, em = 0) (2.20)

and similarly, the maximum miss reliability function is

Em(RQ) , Em(RQ, ef = 0). (2.21)

Remark:

In this thesis, we characterize Ef(RQ) exactly in Chapter 3 but not Em(RQ), as we only have par-

tial results regarding Em(RQ), which can be obtained as a special case of the partial results in

Chapter 4.

Sometimes it is useful to characterize a reliability function via its lower and upper bounds,

where we use Ef(RQ, ·) and Ef(RQ, ·) to denote the lower bound and upper bound of the false alarm

reliability function Ef(RQ, ·). Similarly, we denote the lower and upper bounds of the miss relia-

bility function by Em(RQ, ·) and Em(RQ, ·).

Remark:

Definitions in this section can be generalized to channels with continuous input and output alpha-

bets, such as the AWGN channel introduced in Section 2.4.2.
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1

0

1

1− ε
0

ε

ε

?

1− u
u

Figure 2-2: An asynchronous BSC with crossover probability ε and ? output distribution Bern (u).

� 2.4 Important Asynchronous Channels

In this section we define the asynchronous versions of two useful channels in information theory:

the binary symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel.

� 2.4.1 Binary symmetric channel

We define an asynchronous binary symmetric channel via its cross over probability ε and the ?

symbol output distribution Bern (u), as shown in Figure 2-2. Without loss of generality, we assume

ε < 1/2 and u ≤ 1/2.

A BSC with input distribution Bern (p) has output distribution Bern (s), where

s = p ∗ ε (2.22)

, p(1− ε) + (1− p)ε (2.23)

and ∗ is called the “binary convolution”.

� 2.4.2 Additive white Gaussian noise channel

We define a discrete-time additive white Gaussian noise (AWGN) channel with input Xi, output

Yi and noise Zi as follows:

Yi = Xi + Zi, Zi
i.i.d.∼ N (0, 1) , (2.24)

where each codeword xn transmitted over the channel satisfies the average power constraint:

‖xn‖2 ≤ nP . (2.25)

In addition, we have QY(·) = W (·|?) = N (0, 1), i.e., when the ? symbol is sent, the channel

output distribution is the additive white Gaussian noise distribution.
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Remark:

In this thesis, we normalize the noise power to 1, as in (2.24); hence P essentially denotes the SNR

of the AWGN channel.

� 2.5 Exponential Approximation

Since we are mainly concerned with error exponents in our performance evaluations, we define

equality in the exponential sense, i.e., for a sequence an,

an
.= enF ⇔ F = lim

n→∞

1
n

log an, (2.26)

where the .= sign denotes exponential equality, and where it is assumed that the limit in (2.26)

exists.

� 2.5.1 Algebras for exponential approximations

From the algebra of limits, we have for an
.= enL1 and bn

.= enL2 ,

lim
n→∞

(an + bn)
.= en min{L1,L2} (2.27)

lim
n→∞

(anbn)
.= en(L1+L2). (2.28)

These rules are also valid for infinite limits using the rule

q + ∞ = ∞ if q 6= −∞.

� 2.5.2 Exponential inequalities

We extend the notion of exponential equalities to inequalities. If an
.= enL and A ≤ L ≤ B, we say

an
.
≥ enA

an
.
≤ enB.
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� 2.6 Quantities in Information Theory

We use the following notation for entropy, conditional entropy and mutual information:

H(P) = ∑
x∈X

P(x) log
1

P(x)

H(W|P) = ∑
x∈X

P(x)H(W(·|x))

I (P, W) = ∑
x∈X ,y∈Y

P(x)W(y|x) log
W(y|x)

∑x∈X W(y|x)P(x)
.

For a Bernoulli distribution Bern (p), we use Hb (p) to denote its entropy, where Hb (·) is called

binary entropy function.

We denote the information divergence 3 between two distributions P and Q as D (P‖Q), where

D (P‖Q) = ∑
x∈X

P(x) log
P(x)
Q(x)

.

Also, for the information divergence between two Bernoulli distributions Bern (p) and Bern (q),

we denote D (Bern (p)‖Bern (q)) by D (p‖ q) for simplicity.

Similarly, the expectation of the conditional information divergence between V(·|·) and W(·|·)
under P(·) is defined as

D (V‖W|P) = EP [D (V (·|P)‖W (·|P))]

= ∑
x∈X

P(x)D (V (·|x)‖W (·|x)) .

Remark:

The above quantities can be generalized to continuous random variables by replacing summations

with integrals.

� 2.7 Method of Types

We use the method of types [12, 13] and the standard definitions of type, type set, typical shell,

etc., following those in [13]. In addition, we use Pn (X ) to denote the set of possible types of

sequences in X n and adapt the following definition from [12].

3Also known as the Kullback-Leibler (KL) divergence.
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Definition 2.6 (η-image and image size). The η-image of a setA ⊂ X n over channel W : X → Y
is the collection of sets

ImgW (A, η) , {B ⊂ Yn : Wn (B| xn) ≥ η, ∀ xn ∈ A} . (2.29)

We define the size of this image by the size of the element that has the minimum cardinality,

i.e.,

|ImgW (A, η)| , min
B∈ImgW(A,η)

|B| . (2.30)

We also adopt the “Delta convention” in [12], where the δn in typical set T n
[P]δn

is a sequence

{δn}∞
n=1 such that

δn → 0,
√

nδn → ∞ as n→ ∞. (2.31)

For simplicity, we frequently use T n
[P]δ

or T n
[P] to denote the above sequence of typical sets.

� 2.8 Important Codebooks

In this thesis, two types of codebooks are frequently used and they play important roles in our

analysis.

The first one is the independent and identically-distributed (i.i.d.) codebook, where the symbols in

each codeword of the codebook are generated independently according to the same probability

distribution. We also call the corresponding code i.i.d. random code.

Remark:

Strictly speaking, the above codebook generation process corresponds to an ensemble of code-

books rather than one codebook. In this thesis, when we say an i.i.d. codebook achieves certain

error probability or error exponent, we are referring to the ensemble average performance of these

codebooks under detection/decoding rules that do not take the realizations of the random code-

book generation process into account.

In addition, we call a codebook constant composition codebook if all codewords in this codebook

have the same type. Also, we call the corresponding code constant composition code.
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Chapter 3

Maximum False Alarm Exponent for DMC

As introduced in Chapter 1, this chapter investigates the codebook detection problem for sparse

communication. This is equivalent to the characterization of the maximum false alarm reliability

function Ef(RQ), which is formally defined in Chapter 2. In this chapter, we provide a complete

characterization of the maximum false alarm reliability function in Section 3.1, and prove the

achievability and converse parts in Section 3.2 and Section 3.3 respectively. Our proofs show

that an i.i.d. codebook is sufficient to achieve the maximum false alarm error exponent, and there

is certain flexibility in decoder design, as discussed in Section 3.2.3. Based on these results, we

calculate the maximum false alarm reliability function for various BSC and AWGN channels in

Section 3.4. Furthermore, we compare the joint sync–coding approach to training in Section 3.5,

and show that for most channel conditions, the joint sync–coding approach achieves significantly

better detection performance at high rates, as shown in Figures 3-5 and 3-6. Finally, we discuss

the implication of distinguishing codes from noise on the problem of communication via both

codeword and timing in Section 3.6.

� 3.1 Main Results

The main result of this chapter characterizes the maximum false alarm reliability function, as

shown in Theorem 3.1.

Theorem 3.1 (Maximum false alarm reliability function). An asynchronous DMC (X , ?, W,Y)

has maximum false alarm reliability function

Ef(RQ) = max
PX :I(PX ,W)=RQ

D (PY‖QY) ,

where PX ∈ P(X ) and PY(·) = [PX ·W]Y = ∑x W (·|x) PX(x).

This theorem indicates that the maximum false alarm exponent is the divergence between

the channel output distribution of a codeword and that of the noise sequence. As discussed in
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Section 3.2, it is sufficient to use an i.i.d. codebook with distribution PX such that I (PX, W) =

R, though other codebook designs, combined with the proper decoding rule, may achieve the

optimal performance as well.

The proof of the above theorem is established via the following key proposition.

Proposition 3.2. For an asynchronous DMC (X , ?, W,Y),

Ef(RQ) = max
PX :I(PX ,W)≥RQ

D (PY‖QY) + I(PX, W)− RQ, (3.1)

where PX ∈ P(X ) and PY(·) = [PX ·W]Y = ∑x W (·|x) PX(x).

We delay the proof of Proposition 3.2 to Section 3.2 and Section 3.3, and first show that the

maximization problem in (3.1) leads to Theorem 3.1.

Proof for Proposition 3.2 implies Theorem 3.1. Let PRQ , {PX : I (PX, W) ≥ RQ}, then since I (P, W)

is concave in P for any fixed W, it follows that PRQ is a convex set. In addition, it is not hard to

check that PRQ is compact.

Furthermore, note

D (PY‖QY) + I (PX, W) =

[
−H(PY)− ∑

y∈Y
PY(y) log QY(y)

]
+ [H(PY)− H(W|PX)] (3.2)

= − ∑
y∈Y

PY(y) log QY(y)− H(W|PX), (3.3)

where both PY(·) = ∑x∈X PX(x)W (·|x) and H(W|PX) = ∑x∈X H(W (·|x))PX(x) are linear in PX.

Therefore, D (PY‖QY) + I (PX, W) is linear in PX and hence convex in PX.

Then the function g : PRQ → R such that

g(PX) , D (PY‖QY) + I (PX, W)− RQ (3.4)

is convex in PX and has a convex and compact domain. Hence its maximum over PRQ can always

be attained at a boundary point of its domain. Therefore,

max
PX∈PRQ

g(PX) = max
PX :I(PX ,W)=RQ

D (PY‖QY) + I(PX, W)− RQ (3.5)

= max
PX :I(PX ,W)=RQ

D (PY‖QY) . (3.6)

�
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Furthermore, we show a useful property about Ef(RQ).

Corollary 3.3. Ef(RQ) is concave in RQ.

Proof. We show that for any R1, R2, Rλ = λR1 + (1− λ)R2,

Ef(Rλ) ≥ λEf(R1) + (1− λ)Ef(R2). (3.7)

Given R1 and R2, let P1 and P2 satisfy

P1 ∈ arg max
PX :I(PX ,W)=R1

D (PY‖QY) = arg max
PX :I(PX ,W)=R1

g(PX) (3.8)

P2 ∈ arg max
PX :I(PX ,W)=R2

D (PY‖QY) = arg max
PX :I(PX ,W)=R2

g(PX) (3.9)

where g : P(X ) → R is defined in (3.4). Now define Pλ = λP1 + (1− λ)P2, then by the property

of mutual information,

I (Pλ, W) ≥ λI (P1, W) + (1− λ)I (P2, W) (3.10)

= λR1 + (1− λ)R2 = Rλ. (3.11)

Therefore, Pλ ∈ PRλ
and thus

Ef(Rλ) ≥ g(Pλ) (3.12)

= λg(P1) + (1− λ)g(P2) (3.13)

= λEf(R1) + (1− λ)Ef(R2), (3.14)

where (3.13) uses the property that g(P) is linear in P. �

� 3.2 Achievability

This section shows that an i.i.d. random code with typicality decoder achieves the performance in

Proposition 3.2, when the random codes are generated by a distribution PX such that I (PX, W) ≥
RQ. Since both detection and decoding are carried out in the single operation of typicality check-

ing, we call this an “one-stage” decoder. This result is summarized in Theorem 3.4.
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Theorem 3.4. For an asynchronous DMC (X , ?, W,Y) and a rate RQ, given a distribution PX

satisfying I(PX, W) ≥ RQ, for any λ > 0, ε ∈ (0, 1), there exists a code C(n) such that

P(n)
e ≤ ε,

P(n)
m ≤ ε,

P(n)
f ≤ exp {−n [Ea(PX, RQ)− λ]} ,

where

Ea(PX, RQ) , D (PY‖QY) + I(PX, W)− RQ, (3.15)

PX ∈ P(X ) and PY(·) = [PX ·W]Y = ∑x W (·|x) PX(x).

Furthermore, we demonstrate that the optimal performance can also be achieved by using a

two-stage decoder for an i.i.d. codebook, where we first detect whether a codeword is sent based

on the empirical channel output distribution, then decode based on the regular channel decoding

procedure. However, in this case, we require the codebook be generated by distribution PX such

that I (PX, W) = RQ to achieve the optimal performance, as discussed in Section 3.2.3.

The following two sections provide a proof for Theorem 3.4 by describing an encoding proce-

dure and analyzing the corresponding decoding performance.

� 3.2.1 Encoding

The standard random codebook generation is used, where we generate enRQ codewords1 ran-

domly according to distribution PX(·). Specifically, we independently generate codewords {xn(m),

m = 1, 2, · · · , M = enR} according to the distribution ∏n
i=1 PX(xi).

� 3.2.2 Typicality (one-stage) decoding

We prove Theorem 3.4 by analyzing the performance of typicality decoding. The intuition behind

using a typicality decoder is relatively straightforward: since we only require the miss and decod-

ing error probability to vanish asymptotically, we can simply use a regular (synchronous) channel

code, and take the union of all the typical shell of each codeword as the detection regionAn, which

achieves false alarm probability Pf = QY(An).

1Strictly speaking, we should use denRQe rather than enRQ . But When n is large, the difference between the two is
inconsequential, and we use enRQ to simplify notation.
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More formally, the typicality decoder declares a message m if there exist only one m such that

(xn(m), yn) ∈ T n
[PXY ]δ

, where PXY = PX ·W. If there are more than one codeword that is jointly

typical with the received vector yn, it declares a decoding error, otherwise the noise sequence ?n.

Therefore, the acceptance region is

An =
⊔
Dm, (3.16)

where Dm ⊂ Yn is the typicality decoding region for message m, i.e., Dm = g−1
n (m). This leads to

the following the average (over codebook C and message m) error probability expressions:

Pe = Pm (3.17)

= ∑
C

P [C] 1
M

M

∑
m=1

P
[
(xn(m), Wn (·|xn(m))) /∈ T n

[PXY ]δ |C
]

(3.18)

Pf = ∑
C

P [C]
M

∑
m=1

P
[
(xn(m), Wn (·|?n)) ∈ T n

[PXY ]δ |C
]

. (3.19)

By the “symmetry” of the codebook,

Pm =
1
M

M

∑
m=1

∑
C

P [C] P
[
(xn(m), Wn (·|xn(m))) /∈ T n

[PXY ]δ |C
]

(3.20)

= P
[
(Xn(m), Wn (·|Xn(m))) ∈ T n

[PXY ]δ , Xn(m) i.i.d.∼ PX

]
. (3.21)

Based on the properties of strongly typical sets, when the δ in T n
[PXY ]δ

satisfies the “Delta con-

vention” and n sufficiently large,

Pe = Pm ≤ ε. (3.22)

Similarly,

Pf =
M

∑
m=1

∑
C

P [C] P
[
(xn(m), Wn (·|?n)) ∈ T n

[PXY ]δ |C
]

(3.23)

= M ·P
[
(Xn(m), Wn (·|?n)) ∈ T n

[PXY ]δ , Xn(m) i.i.d.∼ PX

]
. (3.24)

Here (Xn(m), Wn (·|?n)) i.i.d.∼ [PX ·QY], and hence

Pf = enRQ [PX ·QY]n(T n
[PXY ]δ) (3.25)

.= enRQ |T n
[PXY ]δ | exp [−n(H(PXY) + D (PXY‖ [PX ·QY]))] (Lemma A.2) (3.26)

.= exp {−n [I(PX; PY) + D (PY‖QY)− RQ]} , (Fact A.1) (3.27)
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where we also use the standard fact that |T n
[PXY ]δ
| .= exp [n (H(PXY))] (Lemma 1.2.13 in [12]).

Hence, there exists at least one reliable sequence of codes Q with rate RQ such that

P(n)
f

.
≤ exp {−n [I(PX; PY) + D (PY‖QY)− RQ]} . (3.28)

Therefore, for any λ > 0, when n sufficiently large,

P(n)
f ≤ exp {−n [I(PX; PY) + D (PY‖QY)− RQ − λ]} , (3.29)

which proves Theorem 3.4.

� 3.2.3 Two-stage decoding

We now investigate a decoder with two stages of operations. In the first stage the decoder detects

the presence of a codeword based on the channel output distribution. If a codeword is detected,

then it is decoded via the regular channel decoding procedure in the second stage. We show that

two-stage decoding is optimal, which is somewhat surprising as the first detection stage does not

take the codebook structure into account.

Note that the channel output distribution is either PY (when we use the i.i.d. codebook with

input distribution PX and thus PY = [PX ·W]Y) or QY (when the ? symbol is the channel input).

Therefore we have a simple binary hypothesis testing problem between distribution PY and QY.

Stein’s Lemma [14] indicates, for the detection step, given any input distribution PX,

Pf
.= exp [−nD (PY‖QY)] . (3.30)

And to achieve rate R, we need I (PX, W) ≥ RQ. Therefore, by choosing a proper PX and following

the standard random coding argument, we can achieve the following false alarm error exponent

at rate RQ,

Ef2(RQ) = max
PX :I(PX ,W)≥RQ

D (PY‖QY) (3.31)

= max
PX :I(PX ,W)=RQ

D (PY‖QY) (3.32)
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Comparison of one-stage and two-stage decoding

The above analysis shows the false alarm reliability functions for both one-stage and two-stage

decoding satisfy

Ef1(RQ) = Ef2(RQ) = max
PX :I(PX ,W)=RQ

D (PY‖QY) ,

so they achieve the same optimal performance. However, because the two-stage decoder does not

take the code rate RQ into account, it imposes a stronger requirement on the codebook design—in

general, it requires a codebook with input distribution PX such that I (PX, W) = R, while for the

typicality decoder, the optimal performance can be achieved even when I (PX, W) > R.

In other words, for a given PX such that I(PX, W) > RQ, the one-stage scheme, in general,

achieves a higher Ef than the two-stage scheme, as illustrated in Figure 3-1, where

Ef1(RQ, PX) , D (PY‖QY) + I(PX, W)− RQ

∈ (D (PY‖QY) , Ef(RQ)]

Ef2(RQ, PX) , D (PY‖QY)

= Ef(I (PX, W))

0 RQ I (PX , W) C

Ef(RQ = C)

Ef2(RQ, PX)

Ef1(RQ, PX)

Ef(RQ = 0)
Ef(RQ)

range of Ef1(RQ, PX)

R

Figure 3-1: For a given PX, one-stage decoding generally achieves a larger Ef than two-stage de-
coding at a given rate RQ.

39



CHAPTER 3. MAXIMUM FALSE ALARM EXPONENT FOR DMC

� 3.3 Converse

In this section we derives an upper bound for Ef(RQ), which agrees with the achievable Ef(RQ) in

Proposition 3.2. This completes the converse part of Theorem 3.1.

We start with a “sphere-packing”-like upper bound for constant composition codes, and later

connect the result to general channel codes. The proof shows that, due to the requirement that Pe

and Pm must be vanishing asymptotically, the codeword acceptance region An essentially needs

to include the typical shells of all codewords, and hence cannot be too small. This leads to a lower

bound for Pf = QY(An) and thus an upper bound for Ef(RQ).

Lemma 3.5 (Upper bound for Ef(RQ), constant composition codes). Given an asynchronous DMC

(X , ?, W,Y), for every R > 0, ε > 0, λ > 0, any constant composition code ( fn, gn) with type PX
2,

rate
1
n

log
∣∣M fn

∣∣ ≥ R− λ (3.33)

and maximal probability of error

P(n)
e ≤ ε (3.34)

satisfies

P(n)
f ≥ poly(n) exp [−n(Ea(PX, R) + 2λ)] , (3.35)

when n sufficiently large and Ea(·, ·) is defined in (3.15).

Proof. Since P(n)
e ≤ ε, when n sufficiently large, for all m,

Wn (Dm| xn(m)) ≥ 1− ε. (3.36)

In addition, when n sufficiently large,

Wn
(
T n

[W]δ(xn(m))
∣∣∣ xn(m)

)
≥ 1− ε. (3.37)

2Strictly speaking, the type PX depends on the block length n. However, for any distribution P ∈ P (X ) and any
ε > 0, we can find a type P′ ∈ Pn (X ) such that ‖P − P′‖∞ < ε when n sufficiently large, and it is not hard to see
that this dependence on n is inconsequential. Therefore, we avoid this technicality and simply treat PX as a common
type that can be achieved by a sequence of constant composition codebooks index by n, when n sufficiently large. This
treatment is implicitly used in Theorem 1.5.3 of [12] as well and we follow this convention in the rest of this thesis.
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Therefore, when n sufficiently large,

Wn
(
Dm ∩ T n

[W]δ(xn(m))
∣∣∣ xn(m)

)
≥ 1− 2ε. (3.38)

Let Fm , Dm ∩ T n
[W]δ

(xn(m)), which are disjoint since Dm are disjoint. When n sufficiently large,

1
n

log |Fm| ≥ H(W|PX)− λ/2. (3.39)

And since xn(m) ∈ TPX ,

yn ∈ T n
[W]δ(xn(m)) ⇒ yn ∈ T n

[PY ]δ′
, (3.40)

where PY = [PX ·W]Y and both δ and δ′ can be made to satisfy the “Delta Convention”. Hence for

any yn ∈ Fm, when n sufficiently large,

D (PY‖QY) + H(PY)− λ/2 ≤ − 1
n

log Qn
Y(yn) ≤ D (PY‖QY) + H(PY) + λ/2. (3.41)

Therefore,

P(n)
f = QY(An) (3.42)

≥ QY



|M fn |⋃

m=1

Fm


 =

|M fn |
∑

m=1
QY(Fm) =

|M fn |
∑

m=1
∑

yn∈Fm

QY(yn) (3.43)

≥ poly(n)en[R−λ]en[H(W|PX)−λ/2]e−n[D(PY‖QY)+H(PY)+λ/2] (3.44)

= poly(n) exp {−n [D (PY‖QY) + I(PX, W)− R + 2λ]} (3.45)

= poly(n) exp [−n(Ea(PX, R) + 2λ)] (3.46)

�

Now we connect the above result back to general channel codes via the following simple yet

important fact about channel codes.

Lemma 3.6 (Every channel code contains a constant composition subcode of the same rate). For

any λ > 0, any code ( fn, gn) satisfying

∣∣M fn

∣∣ ≥ en(R−λ) (3.47)
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has a constant composition subcode ( f̂n, ĝn) with

∣∣∣M f̂n

∣∣∣ ≥ en(R−2λ), (3.48)

when n is sufficiently large.

Proof. Use the fact that the number of different types of sequences in X n is polynomially many

(Type Counting Lemma), or see P.171 in [12]. �

Now we are ready to prove the converse for general channel codes.

Theorem 3.7 (Upper bound for Ef(RQ), general channel codes). Given an asynchronous DMC

(X , ?, W,Y), for every R > 0, ε ∈ (0, 1), λ > 0, every code C = ( fn, gn) with rate

1
n

log
∣∣M fn

∣∣ ≥ R− λ (3.49)

and maximal probability of error

P(n)
e ≤ ε (3.50)

satisfies

Pf(C) ≥ poly(n) exp [−n(Eb(R, λ) + 4λ)] , (3.51)

when n sufficiently large, where

Eb(R, λ) , max
PX :I(PX ,W)≥R−3λ

Ea(PX, R). (3.52)

Proof. Lemma 3.6 shows that there exists a constant composition subcode Ĉ = ( f̂n, ĝn) with type

PX and rate
1
n

log
∣∣∣M f̂n

∣∣∣ ≥ R− 2λ. (3.53)

Given Pe

(
C(n)

)
≤ ε, it is not hard to show that there exists a Ĉ(n) such that Pe

(
Ĉ(n)

)
≤ ε and

Pf

(
Ĉ(n)

)
≤ Pf

(
C(n)

)
. Then by Corollary 2.1.4 in [12], Pe

(
Ĉ(n)

)
≤ ε indicates for any τ > 0,

1
n

log
∣∣∣M f̂n

∣∣∣ ≤ I(PX, W) + 2τ, (3.54)
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when n sufficiently large. Let τ = λ/2, then I(PX, W) ≥ R− 3λ.

From Lemma 3.5,

Pf

(
C(n)

)
≥ Pf(Ĉ(n))

≥ poly(n) exp [−n(Ea(PX, R) + 4λ)]

≥ poly(n) exp [−n(Eb(R, λ) + 4λ)] .

�

Combing the achievability and converse results, we can now prove Proposition 3.2.

Proof for Proposition 3.2. Pick a sequence of positive numbers {λn} such that λn → 0 as n → ∞.

Let

P∗X ∈ arg max
PX

I(PX; PY) + D (PY‖QY)− RQ (3.55)

and apply Theorem 3.4, then

Ef(RQ) ≥ lim inf
n→∞

− 1
n

log P(n)
f (3.56)

≥ lim
n→∞

Ea(P∗X, RQ)− λn (3.57)

= Ea(P∗X, RQ). (3.58)

Then apply Theorem 3.7, we have

Ef(RQ) ≤ lim inf
n→∞

− 1
n

log P(n)
f (3.59)

≤ lim inf
n→∞

max
PX :I(PX ,W)≥RQ−3λn

[Ea(PX, RQ)− 4λn] (3.60)

= max
PX :I(PX ,W)≥RQ

Ea(PX, RQ). (3.61)

Therefore,

Ef(RQ) = max
PX :I(PX ,W)≥RQ

Ea(PX, RQ) = max
PX :I(PX ,W)≥RQ

D (PY‖QY) + I(PX, W)− RQ (3.62)

�
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1

0

1

1− ε
0

ε

ε

?

1− u
u

Figure 3-2: An asynchronous BSC with crossover probability ε and ? output distribution Bern (u).

� 3.4 Examples

In this section, we specialize our results about Ef(RQ) to both the AWGN channel3 and the BSC to

calculate the maximum false alarm reliability functions.

� 3.4.1 AWGN channel

For an asynchronous AWGN channel (defined in Section 2.4.2) with average codeword power

constraint P, and noise Z ∼ N(0, 1), we use an i.i.d. non-zero mean Gaussian codebook with input

distribution PX ∼ N(µ, σ2), where µ2 + σ2 = P .

Let k ,
σ2

P
∈ [0, 1], then

D (PY‖QY) =
1
2

[
SNR− log(1 + kSNR)

]
(3.63)

I (PX, W) =
1
2

log(1 + kSNR), (3.64)

where SNR = P. Hence

Ef(R) = SNR/2− R, (3.65)

which decreases linearly with R. Some sample Ef(R) plots are shown in Figure 3-5 and discussed

later.

� 3.4.2 Binary symmetric channel

Recall that we define an asynchronous BSC in Section 2.4.1 via its crossover probability ε and ?

output distribution Bern (u) (Figure 3-2), where without loss of generality, we assume ε < 1/2 and

u ≤ 1/2.
3 Strictly speaking, an AWGN channel does not have a discrete alphabet and hence is not a DMC, but results in this

chapter can be extended to AWGN channels via standard arguments.
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For a BSC, let the input distribution be PX ∼ Bern (p), then the output distribution is PY ∼
Bern (s), where s = p ∗ ε. We have

I (PX, W) = Hb (s)− Hb (ε) (3.66)

D (PY‖QY) = D (s‖ u) = s log
s
u

+ (1− s) log
1− s
1− u

. (3.67)

Given a rate R, choose P∗X ∼ Bern (p∗) such that I (P∗X, W) = R, where p∗ ≥ 1/2. Let s∗ = p∗ ∗ ε,

then Ef(R) = D (s∗‖ u).

Figure 3-3 shows the Ef(R) of two BSCs under various u values. As we can see, at all rates

below capacity, we achieve positive false alarm exponents. And even at capacity, the false alarm

probability does not decrease exponentially only when QY (·) is the same as the capacity-achieving

distribution Bern
( 1

2

)
. In this case, the output distributions of the codebook and the noise sequence

are identical and hence they “look the same” in the sense of empirical distribution, and no positive

error exponent can be achieved.

In addition, it is obvious that the optimal false alarm exponent decreases as the rate R increases

or the channel cross-over probability increases. Therefore, to achieve the same false alarm prob-

ability requirement, we need to use a longer code at higher rates or at higher channel crossover

probabilities.

0 0.2 0.4 0.6 0.8
0

1

2

3

R

E f
(R

)

u = 0.1
u = 0.3
u = 0.5

(a) ε = 0.01

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

R

E f
(R

)

u = 0.1
u = 0.3
u = 0.5

(b) ε = 0.1

Figure 3-3: Maximum false alarm reliability function Ef(R) for BSCs with various crossover prob-
ability ε and ? output distribution Bern (u).
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� 3.5 Comparison with Separate Synchronization and Coding

In the separate synchronization–coding (training) approach, to transmit nR bits of information in n

channel uses, we first use (1− R
C )n symbols for synchronization and then use a capacity-achieving

code with block length R
C n, where the symbols xc in the sync word satisfies

xc = arg max
x∈X

D (W (·|x)‖W (·|?)) . (3.68)

This is illustrated in Figure 3-4.

When the detection is based on the sync word only, the maximum achievable false alarm error

exponent is

Et(R) =
(

1− R
C

)
D (W (·|xc)‖W (·|?)) , (3.69)

and it is strictly not better than the joint sync–coding approach, which is natural since the separate

sync–coding approach can be viewed as a special case of the joint sync–coding approach.

More Specifically, we show that joint sync–coding is strictly better than separate sync–coding

under a broad set of conditions.

Theorem 3.8 (Separated sync–coding is suboptimal). For an asynchronous DMC (X , ?, W,Y),

if there exists a capacity-achieving distribution P∗X such that D (QY‖ P∗Y) > 0, then

Et(R) < Ef(R)

for all R > 0, where P∗Y = [P∗X ·W]Y is the output distribution corresponding to the capacity-

achieving input distribution.

xc xc . . . xc capacity achieving code

(1− R
C )n symbols R

C n symbols

Figure 3-4: Separate sync–coding, where the first (1− R
C )n symbols are used for synchronization,

and the next R
C n symbols are coded as a capacity-achieving code for information transmission.
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Proof. Note

Ef(R = 0) = Et(R = 0),

Ef(R = C) ≥ D (QY‖ P∗Y) > 0 = Et(R = C).

The statement now follows from the concavity of Ef(R) (Corollary 3.3). �

Figures 3-5 and 3-6 show the differences between the Et(R) curves (separate approach) and

Ef(R) curves (joint approach) on various AWGN and binary symmetric channels, with rate R in

the unit of bits. The plots show that, in general, the loss of the separate sync–coding approach is

more significant at high rates, because in this regime, the separate sync–coding approach needs

to use most of the degrees of freedom for information transmission, rather than synchronization

(detection), resulting poor performance.

Remark:

Note that under certain conditions, it is possible for separate sync–coding to achieve Ef(R) and

thus to be optimal. For example, for the AWGN channel, separate sync–coding achieves Ef(R) =

0.5− R (only) when SNR = 1, and for the BSC, separate sync–coding achieves Ef(R) (only) when

u = 1/2. However, this is mainly due to our lenient requirement on Pm, which is merely Pm → 0.

Chapter 4 shows that once we impose a stricter requirement on the miss error probability Pm by

constraining its error exponent, separate sync–coding is suboptimal even under the above channel

conditions.

0 0.2 0.4
0

0.2

0.4

0.6

R

SNR = 1

0 0.5 1 1.5
0

2

4

R

SNR = 10

0 2 4
0

50

100

150

R

SNR = 300

optimal Ef(R) training Et(R)

Figure 3-5: Maximum achievable false alarm exponent comparison of joint sync–coding and sep-
arate sync–coding (training) for AWGN channels with different SNRs.
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Figure 3-6: Maximum achievable false alarm exponent comparison of joint sync–coding and sepa-
rate sync–coding (training) for BSCs with ε = 0.01, ε = 0.1 and different noise output distributions
Bern (u).

� 3.6 A Discussion on Communication by Timing

In this section we diverge from the problem of synchronization and discuss another implication

of distinguishing codes from noise.

Suppose a transmitter and a receiver can establish a time window with L time slots, and they

communicate by both the content of a codeword and the slot location (timing) of the codeword.

This can be viewed as an extension of the pulse position modulation (PPM) [15]. In PPM, the pulse

itself does not carry any information and all information is conveyed through the location of the

pulse, while in this scheme, the “pulse” is a codeword, which carries certain information itself.

If the transmitter uses a code with rate R, then our analysis on maximum false alarm exponent

indicates that L
.
≤ exp(nEf(R)), otherwise the total false alarm probability (L− 1)Pf is unbounded
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as n increases. Hence, the maximum number of bits we can communicate by both codeword and

timing is

N(R) = nR + max log L = n(R + Ef(R)). (3.70)

Then by choosing a proper rate R∗ that maximizes N(R), we can obtain the optimal operating

window length L∗ = exp(nEf(R∗)).

For the AWGN channel,

NAWGN(R) = n(R + Ef(R)) = nSNR/2. (3.71)

Therefore, this communication scheme achieves the same throughput regardless of the rate or the

window size we choose. Hence, it is sufficient to simply use a code with R = 0, which reduces the

scheme to PPM.

For the BSC,

NBSC(R) = n(R + Ef(R)) = n [Hb (s)− Hb (ε) + D (s‖ u)] , (3.72)

where s satisfies Hb (s)− Hb (ε) = R. Assuming u ≤ 1/2, then 1/2 ≤ s ≤ 1− ε. Thus

Hb (s)− D (s‖ u) = −s log u− (1− s) log(1− u) (3.73)

= s log
1− u

u
− log(1− u), (3.74)

which increases as s increases. Therefore NBSC(R) is maximized at s = 1− ε, which corresponds to

R = 0. This indicates for this specific scheme that communicates via both codeword and timing,

coding does not help, and sometimes it may reduce the throughput. Figure 3-7 shows an exam-

ple that as the code rate R increases, the throughput decreases, because the reduction in Ef(R)

outweighs the increase in R.

� 3.7 Summary

The results in this chapter indicate that for sparse communication, it is beneficial to use the joint

sync–coding scheme instead of training, especially in the high rate regime. In addition, the trade-

off between rate and maximum false alarm exponent indicates that, when we transmit at a rate

R that is below capacity C, it is beneficial to use a code that just achieves rate R rather than that
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Figure 3-7: Throughput NBSC(R) for a BSC with ε = 0.01 and u = 0.3.

achieves the capacity C. By backing off from capacity, we can use a smaller acceptance region for

the code, leading to a lower false alarm probability in detection.
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Chapter 4

Optimal False Alarm Exponent with Miss Exponent

Constraint: DMC Channels

In this chapter we investigate the codebook detection problem subject to a miss exponent con-

straint. By choosing different Em values, the user can impose different requirements on the miss

error probability. This problem is more general than the problem in Chapter 3, and leads to an

investigation of the false alarm reliability function Ef(RQ, Em), which has been defined in Chapter 2.

In addition, as mentioned in Chapter 2, finding the false alarm reliability function is equivalent

to finding the achievable error exponent region E(RQ) with ed = 0, and for certain analysis in

this chapter, we adopt the error exponent region description, if it is more natural for the specific

analysis1 . Also note that this characterization about E(RQ) leads to a characterization for Em(RQ)

when we constrain ef = 0.

In our investigation, we first develop and analyze achievability schemes for the DMC based on

the i.i.d. random codebook and the constant composition codebook in Section 4.1, which gives us

several lower bounds to the false alarm reliability function. In addition, the performance of train-

ing is analyzed in Section 4.3. All these results are later specialized to BSC, and the comparisons

in Section 4.4.4 demonstrate that the constant composition codebook achieves better performance

than the i.i.d. codebook and training. Besides inner bounds, we establish a connection between

the upper bound to the false alarm reliability function and the minimum output image size of a

codebook for the DMC in Section 4.2. Then in Section 4.4.3, we apply this result to the BSC via

an entropy inequality over the binary channel, and provide an upper bound to the false alarm

reliability function that is asymptotically tight at low rate.

� 4.1 Achievability schemes for DMC

� 4.1.1 i.i.d. codebook with optimal detection

The optimal performance of an i.i.d. codebook is simple to analyze, based on the following result.

1 In this case, the lower bound and upper bound for the false alarm reliability function become the inner bound and
outer bound of the error exponent region.
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Theorem 4.1. Given an asynchronous DMC (X , ?, W,Y) W and a rate RQ, a (em, e f ) pair is

achievable by an i.i.d. codebook with distribution PX if there exists a Pλ = ζPλ
Y Q1−λ

Y with

0 ≤ λ ≤ 1 and ζ being a normalization constant such that

em < D (Pλ‖ PY) and ef < D (Pλ‖QY) , (4.1)

where I (PX, W) ≥ RQ and PY = [PX ·W].

Proof. The result follows directly from the properties of Neyman-Pearson test, Sanov’s theorem

(Section 11.7 and 11.9 in [14]) and the standard random coding argument. �

Remark:

The above result extends to channels with continuous alphabets as Sanov’s theorem can be “ex-

tended to continuous distributions using quantization” (P.388 of [14]).

However, unlike the case in Chapter 3, i.i.d. codebooks are in general suboptimal in terms of

false alarm error exponents when there is a miss error exponent constraint. A miss error exponent

constraint implies a stronger requirement on the typicality of the codebook, because, although

the atypical codewords produced during the i.i.d. codebook generation process only occupy an

exponentially small fraction of the codebook, it has an impact on the miss error exponent. This

motivates us to investigate a type of codebook that eliminates the atypicality in the codebook

generation process, the constant composition codebook.

� 4.1.2 Constant composition codebook

Since atypicality is eliminated in a constant composition codebook, we focus on the atypicality of

the channel, and obtain the following achievable performance based on an argument that parti-

tions the channel realizations {V} into different types.

Theorem 4.2 (Achievability, constant composition codebook). For an asynchronous DMC

(X , ?, W,Y), given a rate RQ and a miss error exponent constraint Em, the following lower
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bound for the false alarm reliability function is achievable via a sequence of constant compo-

sition codebooks

Ef(RQ, Em) = max
PX :I(PX ,W)≥RQ

min
V:D(V‖W|PX)≤Em

[
D (QV‖QY) + {I (PX, V)− RQ}+

]
. (4.2)

Similarly, given a rate RQ and a false alarm error exponent constraint Ef, the following

lower bound for the miss reliability function is achievable via a sequence of constant compo-

sition codebooks

Em(RQ, Ef) = max
PX :I(PX ,W)≥RQ

min
V:D(QV‖QY)≤Ef

D (V‖W|PX) . (4.3)

Proof. We first prove the result regarding the lower bound for the false alarm reliability function.

Given a rate RQ and a type PX such that I (PX, W) ≥ RQ, from the channel coding theorem (or

see Corollary 2.1.3 and Exercise 2.1.17 in [12]), there exists a codebook C(n) with type PX such that

for any τ > 0, ε ∈ (0, 1),

1
n

log
∣∣M fn

∣∣ ≥ I (PX, W)− 2τ ≥ RQ − 2τ (4.4)

and Pe

(
C(n)

)
≤ ε. In addition, we partition the channel realizations V into two sets

V1 , {V : D (V‖W|PX) > Em} (4.5)

V2 , {V : D (V‖W|PX) ≤ Em} , (4.6)

and let the acceptance and rejection regions be

An =
⋃

i

⊔

V∈V2

T n
V (xn(i)) (4.7)

=
⊔

V∈V2

⋃

i

T n
V (xn(i)) (4.8)

Bn = An
c (4.9)

=
⋂

i

⊔

V∈V1

T n
V (xn(i)) . (4.10)
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We first show that this scheme satisfies the constraint that the miss probability has an exponent

at least Em.

For any given m,

Pm(xn(m)) = Wn (Bn| xn(m)) (4.11)

= Wn

(
⋂

i

⊔

V∈V1

T n
V (xn(i))

∣∣∣∣∣ xn(m)

)
(4.12)

≤Wn

(
⊔

V∈V1

T n
V (xn(m))

∣∣∣∣∣ xn(m)

)
(4.13)

= ∑
V∈V1

Wn (T n
V (xn(m))| xn(m)) (4.14)

≤ ∑
V∈V1

exp {−n [D (V‖W|PX)]} (4.15)

< |V1| e−nEm = e−n(Em−λn), (4.16)

where λn =
1
n

log |V1| → 0 as n→ ∞. Hence

lim
n→∞
− 1

n
log P(n)

m ≥ lim
n→∞
− 1

n
log
[
max

m
Pm(xn(m))

]
(4.17)

≥ lim
n→∞

(Em − λn) = Em. (4.18)

Given that the Em constraint is satisfied, we now calculate the achievable false alarm error expo-

nent.

P(n)
f = QY(An) (4.19)

= QY

(
⊔

V∈V2

⋃

i

T n
V (xn(i))

)
= ∑

V∈V2

QY

(
⋃

i

T n
V (xn(i))

)
(4.20)

≤ ∑
V∈V2

|M fn |
∑
i=1

e−n[D(QV‖QY)+H(QV)]enH(V|PX) (4.21)

= ∑
V∈V2

exp {−n [D (QV‖QY) + I (PX, V)− (RQ − 2τ)]} , (4.22)

where QV , [PX ·V]Y. Therefore,

lim
n→∞
− 1

n
log P(n)

f ≥ min
V∈V2

[D (QV‖QY) + I (PX, V)− RQ] . (4.23)

54



4.1. ACHIEVABILITY SCHEMES FOR DMC

Since each xn(i) is constant composition,
⋃

i T n
V (xn(i)) ⊂ T n

QV
. Therefore,

QY

(
⋃

i

T n
V (xn(i))

)
≤ exp [−nD (QV‖QY)] . (4.24)

Hence

lim
n→∞
− 1

n
log P(n)

f ≥ min
V∈V2

D (QV‖QY) . (4.25)

Combing (4.23) and (4.25),

lim
n→∞
− 1

n
log P(n)

f ≥ min
V∈V2

[
D (QV‖QY) + {I (PX, V)− R}+

]
. (4.26)

Intuitively, the result in (4.23) corresponds to a bound that is tight when {T n
V (xn(i))} are

approximately disjoint, while the result in (4.25) corresponds to a bound that is tight when

{T n
V (xn(i))} are overlapping and almost fill the output type class T n

QV
.

Then by choosing the PX that maximizes

min
V:D(V‖W|PX)≤Em

[
D (QV‖QY) + {I (PX, V)− RQ}+

]
,

we obtain the following lower bound to Ef(RQ, Em),

Ef(RQ, Em) = max
PX :I(PX ,W)≥RQ

min
V:D(V‖W|PX)≤Em

[
D (QV‖QY) + {I (PX, V)− RQ}+

]
. (4.27)

The result regarding the lower bound of miss reliability function can be established similarly.

Let

V ′1 , {V : D (QV‖QY) ≤ Ef} (4.28)

V ′2 , {V : D (QV‖QY) > Ef} , (4.29)

and define acceptance and rejection regions as

An =
⋃

i

⊔

V∈V ′2
T n

V (xn(i)) (4.30)

Bn = An
c. (4.31)
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Then similarly, we can obtain

lim
n→∞
− 1

n
log P(n)

f ≥ min
V∈V ′2

D (QV‖QY) (4.32)

and

lim
n→∞
− 1

n
log P(n)

m ≥ min
V∈V ′1

D (V‖W|PX) . (4.33)

Hence the conclusion follows. �

� 4.2 Upper bound for the false alarm reliability function of DMC

This section shows that the upper bound for Ef(RQ, Em) is closely related to the output image

size of a constant composition code, which can be characterized by the entropy of certain random

vectors. These results do not lead to a computable upper bound for the DMC, but can be special-

ized to the BSC to obtain a computable upper bound that is asymptotically tight at low rate, as

discussed in Section 4.4.3.

Intuitively, the size of An is related to P(n)
f = QY(An), therefore, a lower bound of |An| is

helpful in providing a lower bound for P(n)
f and hence an upper bound for Ef(RQ, Em). Also note

that we would like the lower bound of |An| to be as large as possible to make the upper bound

tight.

We first show that it is sufficient to consider a constant composition codebook.

Lemma 4.3. If a codebook C(n) satisfies that, for any δ > 0, ε > 0 and λ > 0,

1
n

log
∣∣M fn

∣∣ ≥ RQ − δ, (4.34)

Pe

(
C(n)

)
≤ ε (4.35)

and Pm

(
C(n)

)
≤ exp[−n(Em − λ)], (4.36)

then it contains a constant composition subcode Ĉ(n) such that

1
n

log
∣∣∣M f̂n

∣∣∣ ≥ RQ − 2δ, (4.37)

Pe

(
Ĉ(n)

)
≤ ε, (4.38)

Pm

(
Ĉ(n)

)
≤ exp[−n(Em − λ)], (4.39)
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and

Pf

(
Ĉ(n)

)
≤ Pf

(
C(n)

)
. (4.40)

Proof. First, we note that Lemma 3.6 shows that there is a subcode Ĉ(n) satisfying (4.37). Let

ĝ−1
n (m) = g−1

n (m) for any m ∈ M f̂n
and let Ân = An, then

Pe

(
Ĉ(n)

)
≤ Pe

(
C(n)

)
≤ ε (4.41)

Pm

(
Ĉ(n)

)
≤ Pm

(
C(n)

)
≤ exp[−n(Em − λ)] (4.42)

and Pf

(
Ĉ(n)

)
= Pf

(
C(n)

)
(4.43)

�

Lemma 4.3 shows that we can lower bound the false alarm probability of a channel code by

lower bounding the false alarm probability of its constant composition subcode with the same

rate. Hence, it is sufficient to work with the constant composition codebook for the rest of this

section.

We now show that the miss error exponent constraint Em on W indicates that the probability of

the channel output of a codeword falling into An needs to be large for a class of channels, which

is provided by the following immediate corollary of Lemma A.3.

Corollary 4.4. Given an asynchronous DMC (X , ?, W,Y) W : X → Y and a rate RQ, if for any

δ > 0 and λ > 0, a constant composition code C(n) with type PX satisfies

1
n

log
∣∣M fn

∣∣ ≥ RQ − λ (4.44)

and

P(n)
m ≤ exp [−n(Em − δ)] (4.45)

when n sufficiently large, then for any V : X → Y such that

D (V‖W|PX) ≤ Em − 2δ, (4.46)
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for any ε > 0 and any xn(m) ∈ C(n),

Vn (Bn|xn(m)) ≤ ε, or equivalently, Vn (An|xn(m)) ≥ 1− ε, (4.47)

when n sufficiently large.

For a channel V, we have the following result regarding its image size based on Lemma A.6.

Lemma 4.5. For C(n) ⊂ X n, consider a random vector X̂n = X̂1X̂2 · · · X̂n distributed over C(n)

with uniform distribution PX̂n and let the random vector Ẑn = Ẑ1Ẑ2 · · · Ẑn be connected with X̂n

by the channel V, then for every τ > 0,

1
n

log
∣∣∣ImgV

(
C(n), 1− ε

)∣∣∣ ≥ S(n)
V − τ, (4.48)

where S(n)
V , SV

(
C(n)

)
=

1
n

H(Ẑn) and when n sufficiently large.

This leads to a useful lower bound on the size of |An|.

Lemma 4.6. Given an asynchronous DMC (X , ?, W,Y) W : X → Y and a rate RQ, if for any δ > 0

and λ > 0, a constant composition code C(n) with type PX satisfies

1
n

log
∣∣M fn

∣∣ ≥ RQ − λ (4.49)

and

P(n)
m ≤ exp [−n(Em − δ)] (4.50)

when n sufficiently large, then for any τ > 0,

1
n

log |An| ≥ S(n)
∗ (Em)− τ (4.51)

when n sufficiently large, where

V (n)
Em
, {V : D (V‖W|PX) ≤ Em − δ} (4.52)

S(n)
∗ (Em) , S∗

(
C(n), E(n)

m

)
, max

V∈V (n)
Em

S(n)
V . (4.53)
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Proof. For any V ∈ V (n)
Em

, Corollary 4.4 indicates An must be an (1− ε)-image of C(n) over V, thus

|An| ≥ max
V∈V

E(n)
m

∣∣∣ImgV

(
C(n), 1− ε

)∣∣∣ . (4.54)

Then the result is immediate from Lemma 4.5. �

Finally, we combine the above results to obtain the following upper bound to the false alarm

reliability function.

Theorem 4.7. For a sequence of reliable codesQ =
{
C(n)

}
with rate RQ that achieves miss er-

ror exponent Em over an asynchronous DMC (X , ?, W,Y) W : X → Y , the following function

Ef(RQ, Em) = max
P∈P(Y):H(P)≥S∗(RQ,Em)

D (P‖QY) (4.55)

is an upper bound to the false alarm reliability function, where

S∗ (RQ, Em) , lim inf
n→∞

S(n)
∗ (Em) , (4.56)

and the infimum is over all possible reliable codes with rate RQ.

Proof. Lemma 4.6 and Lemma A.5 indicate that for τn → 0,

P(n)
f = QY(An) (4.57)

≥ exp

{
−n

[
max

P′∈P(Y):H(P′)≥S(n)
∗ (Em)

D
(
P′
∥∥Q
)
+ 2τn

]}
(4.58)

Thus

lim inf
n→∞

− 1
n

log P(n)
f ≤ lim inf

n→∞
max

P′∈P(Y):H(P′)≥S(n)
∗ (Em)

D
(
P′
∥∥Q
)
+ 2τn (4.59)

≤ max
P∈P(Y):H(P)≥S∗(RQ,Em)

D (P‖QY) (4.60)

�
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Theorem 4.7 shows the upper bound result is determined by S∗ (RQ, Em), which is in turn

determined by S(n)
V =

1
n

H(Ẑn). Thus the key is to obtain the single-letter characterization of
1
n

H(Ẑn). However, this kind of characterizations for general DMCs has not been found yet and

we only give an upper bound for BSC in Section 4.4.3.

� 4.3 Performance of Separate Synchronization and Coding

In the separate synchronization–coding (training) approach, we have the same codeword struc-

ture shown in Figure 3-4. However, to satisfy the miss error exponent Em requirement, the detec-

tion rule needs to be changed accordingly. Theorem 4.1 indicates that the following (em, ef) are

achievable at rate RQ for an asynchronous DMC (X , ?, W,Y) W:

em <

(
1− R

C

)
D (Pλ‖ Pc) and ef <

(
1− R

C

)
D (Pλ‖QY) , (4.61)

where Pc (·) = W (·|xc) and QY (·) = W (·|?), and Pλ = ζPλ
c Q1−λ

Y , 0 ≤ λ ≤ 1.

In Section 4.4.4, the performance of the separate sync–coding approach is compared to the

performance of the joint sync–coding approach, in the context of BSC.

� 4.4 BSC Channel

This section applies our results regarding the DMC to a simple class of channels, the BSC. We

first analyze the achievable performances of both the i.i.d. codebook and the constant composi-

tion codebook. Then we show an upper bound to the false alarm reliability function, which is

asymptotically tight at low rate. A tight upper bound for all rates is unknown.

Recall that we define an asynchronous BSC in Section 2.4.1 via its cross over probability ε and

? output distribution Bern (u) (Figure 4-1). Also, without loss of generality, we assume ε < 1/2

and u ≤ 1/2.

1

0

1

1− ε
0

ε

ε

?

1− u
u

Figure 4-1: An asynchronous BSC with crossover probability ε and ? output distribution Bern (u).
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� 4.4.1 i.i.d. codebook with optimal detection

Given a rate R, let the input distribution Bern (p) satisfy

I (PX, W) = Hb (p ∗ ε)− Hb (ε) = R, (4.62)

where p ≥ 1/2. Then s = p ∗ ε ≥ u, and Theorem 4.1 indicates the following (em, e f ) values are

achievable at rate RQ for any γ ∈ (u, s),

em < D (γ‖ s) and e f < D (γ‖ u) . (4.63)

� 4.4.2 Constant composition codebook

In this section we analyze a straightforward constant composition codebook design. We first de-

scribe the codebook via its encoding strategy, then provide a simple decoding rule, and finally

evaluate its performance by analyzing the detection error exponents. Numerical results show that

this codebook is equivalent to the codebook proposed in Theorem 4.2.

Encoding

Given a rate R on BSC, we choose s ≥ 1/2 and p ≥ 1/2 such that

R = Hb (s)− Hb (ε) (4.64)

p =
s− ε

1− 2ε
. (4.65)

Then following the same argument in Theorem 4.2, there exists a sequence of constant composi-

tion codebooks with rate R and type Bern (p) that achieves vanishing decoding error probability

asymptotically. Hence, we only need to analyze the detection performance.

Detection

When we receive a sequence yn, we use the following detection rule, which use the Hamming

weight of yn, |yn|H, as a statistic:

An = {yn : |yn|H ≥ η} (declare a codeword) (4.66)

Bn = {yn : |yn|H < η} , (declare noise) (4.67)

where η = δn is a properly chosen threshold. Obviously, we should use u < δ < s < p.
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Remark:

Strictly speaking, we need to impose the constraint that η = δn ∈ Z. However, this constraint

becomes inconsequential as n → ∞. Hence, we ignore this constraint throughout the thesis and

treat the thresholds as if they were real valued.

Error probability analysis Note that for a Binomial random variable X ∼ Binom (n, p), we have

the following exponential approximations

P [X ≤ nδ] .= exp [−nEB(δ, p)] (4.68)

P [X = nδ] .= exp [−nD (δ‖ p)] , (4.69)

where

EB(δ, p) =





0 when δ ≥ p

D (δ‖ p) when δ < p
. (4.70)

Based on the above results, the false alarm error probability calculation is straightforward.

Pf = P
[
|yn|H > η, yn ∈ TBern(u)

]
(4.71)

.= exp (−nD (δ‖ u)) . (4.72)

Therefore

Ef(δ) , D (δ‖ u) . (4.73)

Now we calculate the miss probability. Since we use a constant composition codebook, we can

partition each codeword into two subsequences, each with 0s and 1s only, where they corresponds

to two output subsequence y0 and y1, with

L0 , |y0|H ∼ Binom (n(1− p), ε) (4.74)

L1 , |y1|H ∼ Binom (np, 1− ε) (4.75)

|yn|H = L0 + L1 (4.76)

E [|yn|H ] = nε(1− p) + n(1− ε)p (4.77)

= n(ε + p− 2εp). (4.78)
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Then

Pm = P [|yn|H ≤ η] = P [L0 + L1 ≤ η] (4.79)

=
η

∑
k=0

P [L0 ≤ η − k] P [L1 = k] (4.80)

.=
η

∑
k=0

exp
[
−n(1− p)EB

(
η − k

(1− p)n
, ε

)]
exp

[
−npD

(
k

pn

∥∥∥∥ 1− ε

)]
(4.81)

.= exp
[
−n min

κ∈[0,δ]

(
(1− p)EB

(
δ− κ

1− p
, ε

)
+ pD

(
κ

p

∥∥∥∥ 1− ε

))]
. (4.82)

Note that (1− p)EB

(
δ−κ
1−p , ε

)
+ pD

(
κ
p

∥∥∥ 1− ε
)

is convex in κ and hence the minimization can

be solved numerically in a straightforward way, and we let

Em(δ) , min
κ∈[0,δ]

(
(1− p)EB

(
δ− κ

1− p
, ε

)
+ pD

(
κ

p

∥∥∥∥ 1− ε

))
, (4.83)

where by convexity

Em(δ) ≥ D (δ‖ s) . (4.84)

Note

δ− κ

(1− p)
< ε⇐⇒ κ > δ− (1− p)ε (4.85)

δ < s⇐⇒ δ− (1− p)ε < p(1− ε), (4.86)

and D
(

κ

p

∥∥∥∥ 1− ε

)
changes from decreasing to increasing at κ = p(1− ε). Some simplifications

show

Em(δ) = min
κ∈[δ−(1−p)ε,κ∗]

[
(1− p)D

(
δ− κ

1− p

∥∥∥∥ ε

)
+ pD

(
κ

p

∥∥∥∥ 1− ε

)]
, (4.87)

where κ∗ = min {δ, p(1− ε)}.

� 4.4.3 An upper bound for the false alarm reliability function of BSC

An upper bound for the constant composition codebook

In this section we provide an upper bound for the false alarm reliability function achieved by the

constant composition codebook C.
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1

0

1− v1
1

1− v0
0

v1

v0

Figure 4-2: A binary channel with cross over probabilities v0 and v1.

Note that given a BSC channel W and miss error exponent requirement Em, we have the corre-

sponding set

VEm = {V : D (V‖W|PX) ≤ Em} , (4.88)

where V is an binary channel with cross-over probabilities V (1| 0) = v1 and V (0| 1) = v0, as

shown in Figure 4-2.

Let the output of the channel V be Ẑn. Theorem 4.7 indicates that the key to finding a good

upper bound is a good bound for S∗ (RQ, Em), which lower bounds
1
n

log H(Ẑn). Below we obtain

one lower bound for
1
n

log H(Ẑn) via a channel decomposition technique and a binary entropy

inequality.

Note that for a channel V with v0 ≥ ε and v1 ≥ ε, we can decompose it as the cascade of a

binary symmetric channel W and a binary channel U, as shown in Figure 4-3, where





v0 = (1− u1)ε + u0(1− ε)

v1 = u1(1− ε) + (1− u0)ε

⇐⇒





u0 =
(1− ε)v1 + εv0 − ε

1− 2ε

u1 =
(1− ε)v0 + εv1 − ε

1− 2ε

. (4.89)

1

0

1− ε 1

1− ε 0

ε

ε

1− u1 1

1− u0 0

u1

u0

Figure 4-3: Decomposing a binary channel into the cascade of a BSC and a binary channel.
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X̂n Ŷn ẐnẐnWn Un

Vn

Figure 4-4: Input and output random vectors for a cascaded channel, where Ŷn connects to X̂n via
channel Wn, Ẑn connects to Ŷn via channel Un, and Ẑn connects to X̂n via channel Vn.

Let h(·) be the function that maps V to the corresponding U in the above decomposition, and

define

VEm,+ , {V : V ∈ VEm , v0 ≥ ε, v1 ≥ ε} (4.90)

UEm,+ , {U : U = h(V), V ∈ VEm,+} . (4.91)

Furthermore, we let X̂n be uniformly distributed over C, and Ŷn be connected with X̂n by the

channel Wn : {0, 1}n → {0, 1}n, Ẑn be connected with X̂n by the channel Vn : {0, 1}n → {0, 1}n,

or equivalently, Ẑn be connected with Ŷn by the channel Un : {0, 1}n → {0, 1}n, as shown in

Figure 4-4.

We first show the well-known fact that we can characterize H(Ŷn) when C is a channel node.

Proposition 4.8. For any (n, ε) channel code C on channel W with rate RQ, i.e., for any δ > 0,
1
n

log
∣∣M fn

∣∣ ≥ RQ − δ, then for any λ > 0,

1
n

H(Ŷn) ≥ RQ + Hb (ε)− λ, (4.92)

when n sufficiently large.

Proof. Note H(X̂n) =
1
n

log
∣∣M fn

∣∣ ≥ RQ− δ, and for any (n, ε) channel code C, Lemma A.6 shows

1
n

log |ImgW (C, 1− ε)| − δ ≤ 1
n

H(Ŷn) ≤ 1
n

log |ImgW (C, 1− ε)|+ δ, (4.93)

when n sufficiently large and for any τ > 0

1
n

log |ImgW (C, 1− ε)| > 1
n

log
∣∣M fn

∣∣+ H(W|P)− τ (4.94)

(from Lemma 2.1.4 in [12]).
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Thus,
1
n

H(Ŷn) ≥ RQ + Hb (ε)− δ− τ. (4.95)

Letting δ = τ = λ/2 gives (4.92). �

Given that
1
n

H(Ŷn) is lower bounded, we can show that
1
n

H(Ẑn) cannot be too small either,

based on the following entropy inequality.

Theorem 4.9 (Entropy inequality for the binary channel [16]). For a binary channel U with

cross over probabilities u0 and u1, input vector Ŷn, output vector Ẑn, and
1
n

H(Ŷn) ≥ x,

1
n

H(Ẑn) ≥ min
p:Hb(p)=x

Hb (p ∗U) , (4.96)

where p ∗U , p ∗ (1− u1) + (1− p) ∗ u0.

Remark:

The lower bound in Theorem 4.9 is tight in the sense that there exists a Ŷn such that
1
n

H(Ŷn) = x

and its corresponding output vector Ẑn has entropy
1
n

H(Ẑn) = minp:Hb(p)=x Hb (p ∗U). However,

given extra information about Ŷn, such as which set it is distributed over, the lower bound in (4.96)

may no longer be tight.

Proposition 4.8 and Theorem 4.9 give us the following upper bound for the BSC.

Theorem 4.10. For a sequence of reliable codes Q =
{
C(n)

}
with rate RQ that achieves miss

error exponent Em over a BSC W, the following function

Ef(RQ, Em) = max
s:Hb(s)≥x

D (s‖ u) (4.97)

is an upper bound for the false alarm reliability function Ef(RQ, Em), where

x = max
U∈UEm,+

min
q:Hb(q)=R+Hb(ε)

H(q ∗U). (4.98)
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Proof. For any given V ∈ VEm,+ and its corresponding U = h(V), let λn → 0, we can obtain

1
n

H(Ẑn) ≥ l(U) , min
qn :Hb(qn)=R+Hb(ε)−λn

H(qn ∗U). (4.99)

Thus

S(n)
∗ (Em) = max

U∈UEm

S(n)
U (4.100)

≥ max
U∈UEm,+

S(n)
U (4.101)

≥ max
U∈UEm,+

l(U) (4.102)

≥ max
U∈UEm,+

min
qn :Hb(qn)=R+Hb(ε)−λn

H(qn ∗U), (4.103)

when n sufficiently large. Therefore,

S∗ (RQ, Em) = lim inf
n→∞

S(n)
∗ (Em) ≥ max

U∈UEm,+
min

q:Hb(q)=R+Hb(ε)
H(q ∗U). (4.104)

Combine this with Theorem 4.7, and let P = Bern (s), then

Ef(RQ, Em) ≤ max
s:Hb(s)≥S∗(RQ,Em)

D (s‖ u) (4.105)

≤ max
s:Hb(s)≥x

D (s‖ u) , (4.106)

where

x = max
U∈UEm,+

min
q:Hb(q)=R+Hb(ε)

H(q ∗U) ≤ S∗ (RQ, Em) . (4.107)

�

However, this upper bound is not tight, especially at high rates and large Em requirements, as

shown in Figure 4-5. The reason is explained in the remark of Theorem 4.9.

� 4.4.4 Performance comparisons

We compare the performance of the i.i.d. codebook, constant composition codebook, and training

for BSC in Figure 4-5, with the following conclusions.
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Figure 4-5: Performance comparison between i.i.d. codebook, constant composition codebook,
and training for a BSC with ε = 0.05 and u = 0.5.

First, the i.i.d. codebook achieves good false alarm exponent only at very low Em requirements.

Therefore, whenever we have a strong requirement on the miss probability and thus the miss error

exponent Em, we should not use an i.i.d. codebook.

Second, the constant composition codebook achieves much larger false alarm error exponent

than training, especially at high rates. Therefore, when transmitting at rates close to capacity, it
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is very beneficial to use a constant composition codebook instead of training. On the other hand,

when transmitting at low rate, we may use training without much performance penalty, gaining

the benefit of faster detection.

� 4.5 Summary

In this chapter we establish various lower and upper bounds for the optimal false alarm reliability

function with miss error exponent constraint, and these bounds indicate that it is beneficial to use

the joint sync–coding scheme instead of the separate sync–coding scheme (training), especially in

the high rate regime.

Unlike Chapter 3, we do not have a complete converse result and it remains an interesting

open problem. Our conjecture is that for a given rate R, a constant composition codebook with

type PX such that I (PX, W) = R achieves the optimal false alarm reliability function.

One would expect that the analysis of constant composition codes for the DMC can be easily

extended to the AWGN channel, as in Chapter 3. However, this is not the case. Hence, in the

next chapter we characterize the optimal false alarm reliability function given a miss exponent

constraint for the AWGN channel.
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Chapter 5

Optimal False Alarm Exponent with Miss Exponent

Constraint: AWGN Channels

As mentioned at the end of Chapter 4, we now analyze the optimal false alarm exponent with

miss exponent constraint for the AWGN channel, which requires a different set of techniques that

are mostly from the theory of large deviations.

In this chapter, we mainly focus on two-stage decoding strategies, i.e., strategies that first de-

tect the presence of a codeword, then decode it according to the usual channel coding procedure.

These strategies are usually simpler to analyze and often admit simpler detection rules. We formu-

late all detection problems as finding the large deviation exponents of certain random functions,

where these functions are related to random variables that generate the codebook. Then via the

standard random coding argument, achieving these large deviation exponents implies the exis-

tence of a codebook sequence that achieves the same detection error exponents asymptotically.

Similar to Chapter 4, we adopt the error exponent region description when it is more natural

than the false alarm reliability function description.

Recall that the AWGN channel is of the following form:

Yi = Xi + Zi, Zi ∼ N (0, 1) . (5.1)

where Xi is the channel input, Yi is the channel output and Zi is the additive white Gaussian noise.

� 5.1 i.i.d. Codebook with Optimal Detection

Given a rate R, following the standard random coding argument, we can generate an i.i.d. channel

code according to the distribution PX ∼ N
(
µ, σ2), where µ and σ2 satisfies R = 1

2 log
(
1 + σ2) and

µ2 + σ2 = P. Then at the channel output, we have a simple binary hypothesis testing problem

between PY and QY, where

PY ∼ X + Z ∼ N(µ, σ2 + 1) (5.2)

QY ∼ Z ∼ N(0, 1). (5.3)
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Then based on Theorem 4.1, let Pλ = ζPλ
Y Q1−λ

Y ∼ N
(
µλ, σ2

λ

)
(see Section B.1.2 for details), then

the following (em, ef) values are achievable for any λ ∈ (0, 1),

em < D (Pλ‖ PY) and ef < D (Pλ‖QY) . (5.4)

� 5.2 Spherical Codebook with Energy Detection

The i.i.d. Gaussian codebook in Section 5.1 corresponds to the case that codewords are uniformly

distributed within the n-dimensional sphere. In this section, we investigate a codebook design that

has all codewords uniformly distributed on the surface of the n-dimensional sphere.

� 5.2.1 Encoding and decoding

We uniformly pick enR points out of the surface of a n-dimensional sphere with radius
√

nP, and

let each point be a codeword. It is not hard to show this can generate a codebook that achieves

rate R with Pe → 0.

At the decoder, we use the following energy detection rule:

An =
{

yn : ‖yn‖2 > nη
}

(declare a codeword) (5.5)

Bn =
{

yn : ‖yn‖2 ≤ nη
}

, (declare noise) (5.6)

where 1 < η < P + 1.

� 5.2.2 Performance analysis

Let Xn be uniformly distributed on a n-dimensional sphere with radius
√

nP, and Zn ∼ N(0, Ik),

where Xn and Zn are statistically independent. Then

Pm = P
[
‖Xn + Zn‖2 ≤ nη

]

.= exp[−nISG,≤ (P, η)],

where ISG,≤ (·) is given in (B.34), and

Pf = P
[
‖Zn‖2 > nη

]

.= exp[−nIχ2
1,≥ (η)],
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where Iχ2
1,≥ (η) is given in (B.16).

Therefore, given η, we can achieve the following miss and false alarm error exponent pair

em = ISG,≤ (P, η) (5.7)

ef = Iχ2
1,≥ (η) . (5.8)

Remark:

This energy detection rule does not take the rate of the code into account, therefore its performance

is expected to be close to optimal only at high rates.

� 5.3 Clustered Spherical Codebook

Intuitively, to reduce the false alarm error probability, we want the codeword detection region An

to be small. Therefore, we would like to have codewords be close to each other, while maintaining

the channel code requirements. This leads to the “clustered spherical codebook” design analyzed

in this section.

� 5.3.1 Codebook design

Given a rate R, define Pc and Ps such that (recall that noise power N = 1)

R = log (1 + Pc) (5.9)

Ps = 1− Pc. (5.10)

where we called Pc the “communication power” and Ps the “synchronization power”.

Then we can generate a codebook as follows: choose enR points uniformly from the surface of

a (n− 1)-dimensional sphere with radius
√

nPc, where the points are X̂n−1(1), X̂n−1(2), · · · . Then

let

Xn(i) =
(√

nPs, X̂1(i), X̂2(i), · · · , X̂n−1(i)
)

i = 1, 2, · · · , enR, (5.11)

and use
{

Xn(i), i = 1, 2, · · · , enR} as a codebook. It is not hard to show that this can indeed gen-

erate a codebook that achieves rate R with vanishing decoding error probability.

Remark:

One drawback for the codebook design in (5.11) is the high peak power due to first symbol
√

nPs,
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which is unbounded as n grows. However, since X̂n is spherically symmetric, we can transform

the codebook in (5.11) via an orthogonal transform (let U be an orthogonal matrix) to the following

codebook,

Xn(i) = (
√

Ps, . . . ,
√

Ps) + U(0, X̂1(i), X̂2(i), · · · , X̂n−1(i)), (5.12)

which has a much lower peak power.

Therefore, when we need to impose the more practical peak power constraint rather than the

average power constraint, we can use the codebook constructed in (5.12) and it achieves exactly

the same performance as the one in (5.11), and the analysis in this section still holds.

� 5.3.2 Optimal detection rule

Given the above encoding strategy, it is possible to use the log-likelihood ratio test, which is known

to be optimal. And since the first component and the next (n− 1) components of a codeword are

independent, and the (n− 1) components are spherically symmetric, the acceptance region can be

parameterized by y1 and ‖yn
2‖. However, the performance of this detector is difficult to analyze so

we use the simpler detection rule below for performance evaluation.

� 5.3.3 Heuristic detection rules

In this section we develop a heuristic detection rule that allows asymptotic performance analysis,

where the following detection rule are used:

An =
{

yn : ay1 + b‖yn
2‖ ≥

√
nη
}

(declare a codeword) (5.13)

Bn =
{

yn : ay1 + b‖yn
2‖ <

√
nη
}

, (declare noise) (5.14)

where a ∈ [0, 1] and b ∈ [0, 1] are weights to be selected. Here we use y1 and ‖yn
2‖ as the ele-

ments of the linear combination, because their values are also the building blocks for the optimal

detection rule. This gives us a “cone shape” detection region in the n-dimension space.

Remark:

Some reasonable criteria for choosing a and b are:

• When Ps = P, we should have a = 1 and b = 0, and vice versa.

• When Ps ≥ Pc, we should have a ≥ b, and vice versa.
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Given a and b, the above detection rule achieves the following false alarm and miss error

exponents (see calculation details in Section B.5.1).

ef(η, a, b) =





0 η ≤ b

min
0≤r≤η−b

r2

2a2 + Iχ2
1

(
(η − r)2

b2

)
η > b

(5.15)

em(η, a, b) =





+∞ η ≤ 0

min
η−b
√

Pc+1≤r≤η

(r− a
√

Ps)2

2a2 + ISG

(
Pc,

(η − r)2

b2

)
0 < η < a

√
Ps + b

√
Pc + 1

0 η ≥ a
√

Ps + b
√

Pc + 1

.

(5.16)

Hence the achievable error exponents of this scheme are

ef(η) = max
(a,b)∈[0,1]×[0,1]

ef(η, a, b) (5.17)

em(η) = max
(a,b)∈[0,1]×[0,1]

em(η, a, b). (5.18)

Remark:

The optimization problems in (5.15) and (5.16) in general do not admit analytical solutions, but

they are easy to solve numerically.

Alternatively, we can imagine using the following detection rule, which also seems quite nat-

ural:

An =
{

yn : a‖y1‖2 + b‖yn
2‖2 ≥ nη

}
(declare a codeword) (5.19)

Bn =
{

yn : a‖y1‖2 + b‖yn
2‖2 < nη

}
, (declare noise) (5.20)
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This detection rule achieves the following error exponents (see detailed calculations in Section B.5.2):

e f (η, a, b) =





0 η ≤ b

min
0≤r≤η−b

r
2a

+ Iχ2
1

(
η − r

b

)
η > b

(5.21)

em(η, a, b) =





+∞ η ≤ 0

min
rl≤r≤ru

(
√

r/a−√Ps)2

2
+ ISG

(
Pc,

η − r
b

)
0 < η < aPs + b(Pc + 1)

0 η ≥ aPs + b(Pc + 1)

. (5.22)

However, the scheme based on (5.20) in general performs slightly worse than the scheme

based on (5.14). This is due to the fact that we use y2
1 in (5.20), where the sign of y1 contains some

useful information for detection.

� 5.3.4 Training: detection based on synchronization power only

For the AWGN channel, separate sync–coding (training) has the same codebook structure as the

clustered spherical codebook, but the detection is simply based on the synchronization power
√

nPs. Thus, given threshold nη,

Pm = P
[
N
(√

nPs, 0
)

+ N (0, 1) < nη
]

Pf = P [N (0, 1) ≥ nη] (5.23)

.= exp
[
−n
(

(
√

Ps − η)2

2

)]
, .= exp

[
−n
(

η2

2

)]
. (5.24)

Hence we can achieve error exponents em(η) =
(

(
√

Ps − η)2

2

)
and ef(η) =

(
η2

2

)
.

Since this detection relies only on the synchronization power Ps, which is large only at low

rate. Therefore, the detection performance of training degrades as the rate increases.

� 5.4 Performance Comparisons

In this section, we compute the achievable error exponents of the schemes analyzed in this chap-

ter and compare their performances. Four schemes are considered: i.i.d. codebook with opti-

mal detection, spherical codebook with energy detection, training, and clustered spherical code-

book with the heuristic detection rule specified in (5.14), where we choose a =
√

Ps√
Ps +

√
Pc

and

b =
√

Pc√
Ps +

√
Pc

as the weighting parameters. This set of parameters is shown to be optimal or

near-optimal for most channels and rates in numerical calculations.
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Figure 5-1: Performance comparison between i.i.d. codebook, spherical codebook, clustered spher-
ical codebook, and training for AWGN channels at different SNRs and communication rates.

Figure 5-1 shows the achievable error exponents of these four schemes for AWGN channels

with different SNRs and communication rates. As we can see, in different regimes, it may be

beneficial to use different coding and detection schemes.
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In the low SNR regime, when we communicate at low rates, i.i.d. codebook, clustered spher-

ical codebook and training perform almost equally well and hence any of these schemes can be

selected. When we communicate at high rates, the clustered spherical codebook is more suitable

because it achieves better Em–Ef trade-off than all other three schemes.

In the high SNR regime, the i.i.d. codebook performs poorly, because in this regime, the chan-

nel is well-behaved so that the atypicality introduced during the codebook generation affects the

performance significantly. Also, the spherical codebook with energy detection and the clustered

spherical codebook perform almost equally well. Furthermore, training performs well only at

low rates and suffers significant performance degradation at high rates. Hence, in the high SNR

regime, we can use a spherical codebook without much loss of performance, gaining the benefit

of having a simpler detection rule.

As the design of the clustered spherical codebook combines the advantages of training and

the spherical codebook, its performance is robust with respect to SNR and rate changes. This

demonstrates that better codebook design and better detection strategy combined can achieve

significant performance improvements.

� 5.5 Summary

This chapter investigates the achievable false alarm error exponent (given miss error exponent

constraint) for a variety of schemes at different channel conditions and rates for the AWGN chan-

nel. The results indicate that, if the system is designed to operate under low rates, then there is

no need to modify the existing separate sync–coding architecture. However, if the system may

operate in the high SNR or high rate regime, it is more beneficial to use the spherical codebook

with energy detection or the clustered spherical codebook with heuristic detection, respectively.

Among all schemes investigated, the clustered spherical codebook with heuristic detection

rule performs the best at essentially all SNRs and all rates; hence it is a robust choice when there

is uncertainty about the regime that the system operates at.
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Chapter 6

Conclusions

This thesis shows in sparse communication, for many regimes of interest, it is beneficial to treat the

problem of synchronization and coding jointly, instead of the traditional approach of separating

synchronization and coding. By designing codebooks that can be easily distinguished from noise,

the joint approach could result significant performance gain in terms of detection error exponents.

In Chapter 3, we show that for the DMC, if we only require Pe → 0 and Pm → 0, then an

i.i.d. codebook is sufficient to achieve the optimal error exponent. And training is in general

suboptimal, especially at high rates.

In Chapter 4, we show, when there is a requirements on the error exponent of Pm, a constant

composition codebook achieves the best known performance on the DMC.

The performance of various coding schemes on the DMC is summarized in Table 6.1.

constant composition codebook i.i.d. codebook training
Em = 0 optimal optimal suboptimal
Em ≥ 0 best known achievable suboptimal suboptimal

Table 6.1: Comparisons for coding schemes on DMCs.

In Chapter 5, we turn to the AWGN channel and analyze its false alarm reliability function. We

show that the clustered spherical codebook with heuristic decoding performs uniformly well in

all SNR and rate regimes, while other schemes may be better or worse depending on the channel

SNR and communication rate. The results are summarized in Table 6.2, where the schemes are

ordered by performance (A < B means the performance of A is worse than the performance of B).

Low SNR High SNR
Low rate spherical < i.i.d. i.i.d. < spherical

≈ training ≈ clustered spherical < training ≈ clustered spherical
High rate training < spherical i.i.d. < training

< i.i.d. < clustered spherical < spherical ≈ clustered spherical

Table 6.2: Comparisons for coding schemes on AWGN channels.
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Remark: analogy between BSC and AWGN channels

The BSC and the AWGN channel are popular channel models for information-theoretic analysis.

Results for these two channels can often be connected via a nice analogy, since both channels are

additive and there is a geometric similarity between the Hamming space and the Euclidean space.

In our results, we show that for BSC channels, the constant composition codebook with type

PX such that I (PX, W) = R achieves the best known performance, whose analog for the AWGN

channel is the spherical codebook. However, on the AWGN channel, we show that the clustered

spherical codebook performs better than the spherical codebook in general. This distinction be-

tween the BSC and the AWGN channel is mainly due to the power constraint we impose on coding

for the AWGN channel. For the BSC, if R = Hb (p ∗ ε)− Hb (ε) and we constrain the Hamming

weight of each codeword to be no more than αn, where α < p, then we can no longer use the con-

stant composition codebook with type Bern (p), and the resulting codebook would be something

analogous to the clustered spherical codebook for the AWGN channel.

Future Work

Several interesting issues are still open for future work.

Regarding our analysis for the DMC, the upper bound in Chapter 4 is not tight, and it may

be of interest to further enhance the upper bound results. For example, it will be of much prac-

tical interest to see if a constant composition codebook with type PX such that I (PX, W) = RQ is

optimal. Similarly, it will be interesting to establish upper bounds for our analysis on the AWGN

channel in Chapter 5 as well.

In addition, this work can be extended to accommodate more performance metrics. One possi-

bility is to include the decoding error exponent in the analysis, and analyze the trade-offs between

the three error exponents Em, Ef and Ed, instead of two of them. Another possible extension is to

characterize error bounds with respect to finite block length rather than infinite block length, as in

channel coding [17].

Finally, there is a connection between the problem of distinguishing codes from noise and

the problem of unequal error protection of one special message (which corresponds to the noise

sequence in this thesis), where results at capacity are given in [18]. The main difference is, in

the unequal error protection setting, we can design the special message to make it “different”

from other messages. This actually corresponds to a more active transmission strategy in sparse

communication: the transmitter transmits even in the time slots that we have no message to sent,
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and try to induce channel outputs that are different from the outputs of the codewords in the

codebook. It will be of interest to draw connection between the two. One possibility is to extend

the results in [18] to rates below capacity, which provides us with the performance limit in the

scenario of using an active transmitter.
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Appendix A

Useful Results in Information Theory

This appendix lists certain results in information theory that are used in the thesis.

� A.1 Inequalities

Fact A.1.

D (PXY‖ [PX ·QY]) = I(PX; PY) + D (PY‖QY) . (A.1)

Proof.

D (PXY‖ [PX ·QY]) = ∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)QY(y)
(A.2)

= ∑
x,y

PXY(x, y) log
PX|Y(y|x)

PX(x)
+ ∑

x,y
PXY(x, y) log

PY(y)
QY(y)

(A.3)

= I(PX; PY) + D (PY‖QY) (A.4)

�

� A.2 Lemmas and Propositions

Proposition A.1. Define f : P(X )×P(X )→ R that

f (P, Q) , D (P‖Q) + H(P) = − ∑
x∈X

P(x) log Q(x). (A.5)

Given probability distributions P, P′ and Q over finite alphabetX , if Support(P, P′) ⊂ Support(Q)

and

‖P′ − P‖∞ < δ, (A.6)

then f (·, Q) is Lipschitz continuous with constant M|X |, where M = maxx∈Support(P,P′) |log Q(x)|.

Proof. Support(P, P′) ⊂ Support(Q) indicates that for any x ∈ Support(P, P′), 0 < Q(x) ≤ 1,

therefore, the set {|log Q(x)| : x ∈ Support(P, P′)} is finite and bounded, and hence M indeed

exists.

83



APPENDIX A

Then for any P′ and P such that

‖P′ − P‖∞ < δ, (A.7)

we have

∣∣ f (P, Q)− f (P′, Q)
∣∣ =

∣∣∣∣∣∑x∈X
(P′(x)− P(x)) log Q(x)

∣∣∣∣∣ (A.8)

≤ ∑
x∈X

∣∣P′(x)− P(x)
∣∣ |log Q(x)| (A.9)

≤ M|X |δ (A.10)

�

Lemma A.2. Given two probability distribution P and Q over alphabet X , and Support(Q) = X ,

for any xn ∈ T n
[P]δn

,

Q(xn) .= exp [−n(H(P) + D (P‖Q))] . (A.11)

Proof. Note

T n
[P]δn

=
⋃

P′ :‖P′−P‖∞<δn

T n
P′ (A.12)

For any xn ∈ TP′ ,

Q(xn) = poly(n) exp
[
−n(H(P′) + D

(
P′
∥∥Q
)
)
]

(A.13)

then based on Proposition A.1,

poly(n) exp [−n (H(P) + D (P‖Q) + M|X |δn)] ≤ Q(xn) (A.14)

≤ poly(n) exp [−n (H(P) + D (P‖Q)−M|X |δn)]

(A.15)

Since δn → 0 as n→ ∞ (Delta Convention), and limn→∞
1
n

log poly(n) = 0,

lim
n→∞

1
n

log Q(xn) = H(P) + D (P‖Q) (A.16)
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Hence,

Q(xn) .= exp [−n (H(P) + D (P‖Q))] (A.17)

�

Lemma A.3. For a sequence of sets {Bn : Bn ⊂ X n} and a distribution Q ∈ P(X ) such that for

any δ > 0,

Qn(Bn) ≤ e−n(E−δ),

when n sufficiently large, then for any δ′ > δ and any P ∈ P(X ) with D (P‖Q) ≤ E− δ′, for any

ε > 0,

Pn(Bn) ≤ ε, (A.18)

when n sufficiently large.

Proof. Let D1 , Bn ∩ T n
[P] and D2 , Bn ∩ T n

[P]
c, then Bn = D1

⊔D2 and

e−n(E−δ) ≥ Qn(Bn)

≥ Qn(D1) = ∑
xn∈D1

Qn(xn).

Note that for any xn ∈ T n
[P] and λ = (δ− δ′)/4, when n sufficiently large,

poly(n) exp [−n (H(P) + D (P‖Q) + λ)] ≤ Q(xn) (A.19)

≤ poly(n) exp [−n (H(P) + D (P‖Q)− λ)] . (A.20)

Hence

e−n(E−δ) ≥ ∑
xn∈D1

Qn(xn) (A.21)

≥ |D1|poly(n) exp [−n (H(P) + D (P‖Q) + λ)] . (A.22)

Therefore,

|D1| ≤ poly(n) exp [n (H(P) + D (P‖Q) + λ− E + δ)] (A.23)

≤ poly(n) exp
[
n
(

H(P)− δ′ + δ + λ
)]

. (A.24)
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Note that

Pn(Bn) = Pn(D1) + Pn(D2). (A.25)

And when n sufficiently large,

Pn(D2) ≤ Pn(T n
[P]

c) (A.26)

= 1− Pn(T n
[P]) (A.27)

≤ 1− (1− ε/2) (A.28)

≤ ε/2, (A.29)

Pn(D1) = ∑
xn∈D1

Pn(xn) (A.30)

≤ |D1|poly(n) exp [−n (H(P)− λ)] (A.31)

≤ poly(n) exp
[
n
(

H(P)− δ′ + δ + λ
)]

exp [−n (H(P)− λ)] (A.32)

= poly(n) exp
[
−n(δ′ − δ− 2λ)

]
(A.33)

= poly(n) exp [−n(2λ)] (A.34)

≤ ε/2. (A.35)

Hence Pn(Bn) ≤ ε when n sufficiently large. �

Lemma A.4. For the set An ⊂ X n and P ∈ P(X ) such that for any δ > 0,

|An| ≥ exp[n(H(P)− δ)]. (A.36)

Then there exists P′ ∈ P(X ) such that H(P′) ≥ H(P) and

|An ∩ T n
P′ | ≥ exp[n(H(P′)− 2δ)], (A.37)

when n sufficiently large.

Proof. This directly follows from the Type Counting Lemma (Lemma 1.2.2 in [12]). �

Lemma A.5. For the set An ⊂ X n and P ∈ P(X ) such that for any δ > 0,

|An| ≥ exp[n(H(P)− δ)]. (A.38)
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We have for any Q ∈ P(X ),

Qn(An) ≥ exp
{
−n
[

max
P′∈P(X ):H(P′)≥H(P)

D
(
P′
∥∥Q
)
+ 2δ

]}
, (A.39)

when n sufficiently large.

Proof. Lemma A.4 indicates there exist at least one P′ ∈ P(X ) such that H(P′) ≥ H(P) and

|An ∩ T n
P′ | ≥ exp[n(H(P′)− 2δ)]. (A.40)

Thus

Q(An) ≥ Q(An ∩ T n
P′) = |An ∩ T n

P′ | exp
{
−n
[
D
(
P′
∥∥Q
)
+ H(P′)

]}

≥ exp[n(H(P′)− 2δ)] exp
{
−n
[
D
(
P′
∥∥Q
)
+ H(P′)

]}

≥ exp
{
−n
[
D
(
P′
∥∥Q
)
+ 2δ

]}
.

So,

Q(An) ≥ exp
{
−n
[

max
P′ :H(P′)≥H(P)

D
(
P′
∥∥Q
)
+ 2δ

]}
. (A.41)

�

� A.2.1 Entropy and image size characterization

Lemma A.6 (Relationship between image size and entropy [12]). For any set A ⊂ X n, consider

random vector Xn distributed over A and let random vector Yn = Yn be connected with Xn by

the channel Wn : X n → Yn. Then for every δ > 0, 0 < ε < 1

1
n

H(Yn)− δ ≤ 1
n

log |ImgW (A, η)| , (A.42)

when n ≥ n0 (|X | , |Y| , δ, η).

Moreover, ifA ⊂ T n
[X] is the codeword set of an (n, ε)-code for the DMC W, and Xn has uniform

distribution over A, then one also has

1
n

H(Yn) + δ + ε log |Y| ≥ 1
n

log |ImgW (A, η)| , (A.43)

provided n ≥ n0 (|X | , |Y| , δ, η).
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Appendix B

Large Deviation Results for the AWGN Channel

In this appendix, we derive certain exponential approximation results that are useful for calculat-

ing the performance bounds in Chapter 5. Most results are based on the theory of large deviations.

Given Xi ∼ PX, i = 1, · · · , n, define IX,≥ (x) and IX,≤ (x) as follows:

P

[
1
n

n

∑
i=1

Xi ≥ x

]
.= exp (−nIX,≥ (x)) (B.1)

P

[
1
n

n

∑
i=1

Xi ≤ x

]
.= exp (−nIX,≤ (x)) . (B.2)

We derive IX,≥ (x), IX,≤ (x) for various distributions PX that are related to the AWGN channel

in the following sections.

� B.1 Gaussian Distribution

For PX ∼ N(µ, σ2), then it is well known that

IN,≥ (x) =





(µ− x)2

2σ2 x > µ

0 x ≤ µ

(B.3)

IN,≤ (x) =





(µ− x)2

2σ2 x < µ

0 x ≥ µ

. (B.4)

In addition to the above rate functions, we also derive the expressions for divergence between

two Gaussians and the geometric mean of two Gaussians, which is useful in the application of

Chernoff bound.

� B.1.1 Divergences between two Gaussians

If P1 ∼ N(µ1, σ2
1 ), P2 ∼ N(µ2, σ2

2 ), then

D(P1‖P2) =
1
2

[
log

σ2
2

σ2
1

+
(µ1 − µ2)2 + (σ2

1 − σ2
2 )

σ2
2

]
. (B.5)
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When σ1 = σ2 = σ,

D(P1‖P2) =
(µ1 − µ2)2

2σ2 = D (P2‖ P1) . (B.6)

When µ1 = µ2 = µ,

D(P1‖P2) =
1
2

[
log

σ2
2

σ2
1

+
σ2

1

σ2
2
− 1
]
. (B.7)

� B.1.2 Geometric mean of two Gaussians

Given two Gaussian distributions P1 ∼ N
(
µ1, σ2

1

)
and P2 ∼ N

(
µ2, σ2

2
)
, their geometric mean is

Pλ ∼ N
(
µλ, σ2

λ

)
, where

µλ =
λµ1σ2

2 + (1− λ)µ2σ2
1

λσ2
2 + (1− λ)σ2

1
(B.8)

σ2
λ =

σ2
1 σ2

2

λσ2
2 + (1− λ)σ2

1
. (B.9)

When µ1 = µ2 = 0, Pλ ∼ N(0, σ2
λ), and

D(Pλ‖P1) =
1
2

[
log

σ2
1

σ2
λ

+
σ2

λ

σ2
1
− 1
]

(B.10)

D(Pλ‖P2) =
1
2

[
log

σ2
2

σ2
λ

+
σ2

λ

σ2
2
− 1
]
. (B.11)

When σ2
1 = σ2

2 = σ2, Pλ ∼ N(λµ1 + (1− λ)µ2, σ2), and

D(Pλ‖P1) = (1− λ)2 P
2N

(B.12)

D(Pλ‖P2) = λ2 P
2N

. (B.13)

� B.2 χ2-distribution with Degree of Freedom k

Let

Iχ2
k
(x) ,

x
2
− k

2
+

k
2
(ln k− ln x), (B.14)
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it is well known that

Iχ2
k ,≥ (x) =





Iχ2
k
(x) x > k

0 x ≤ k
(B.15)

Iχ2
k ,≤ (x) =





+∞ x ≤ 0

Iχ2
k
(x) 0 < x < k

0 x ≥ k

(B.16)

We frequently refer to the special case k = 1, which has a simpler form:

Iχ2
1
(x) =

1
2
(x− ln x− 1). (B.17)

� B.3 Sum of Spherically Uniform Distribution and Gaussian Distribu-

tion

Let Sn be uniformly distributed on a n-dimensional sphere with radius
√

nP and Zn ∼ N(0, Ik),

where Sn and Zn are statistically independent. In this section, we calculate the exponents ISG,≥ (P, η)

and ISG,≤ (P, η), which are defined as

P

[
1
n
‖Sn + Zn‖2 ≥ η

]
.= exp [−nISG,≥ (P, η)] (B.18)

P

[
1
n
‖Sn + Zn‖2 ≤ η

]
.= exp [−nISG,≤ (P, η)] , (B.19)

and the expressions for ISG,≥ (P, η) and ISG,≤ (P, η) are shown in (B.27) and (B.34).
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� B.3.1 Derivations for ISG,≥ (P, η)

Let sn = (
√

nP, 0, 0, · · · , 0). Note that Sn + Zn is spherically symmetric, we have

P

[
1
n
‖Sn + Zn‖2 ≥ η

]
= P

[
1
n
‖sn + Zn‖2 ≥ η

]
(B.20)

= P

[
(
√

nP + Z1)2 +
n

∑
i=2

Z2
i ≥ nη

]
(B.21)

=
∫ +∞

−∞
fZ1(z1)P

[
n

∑
i=2

Z2
i ≥ nη − (

√
nP + z1)2

]
dz1 (B.22)

(let t = z1/
√

n) .=
∫ +∞

−∞
exp

(
−n

t2

2

)
P

[
n

∑
i=2

Z2
i ≥ n

[
η − (

√
P + t)2

]]
dt (B.23)

Then by Laplace’s Principle,

ISG,≥ (P, η) = min
t

t2

2
+ Iχ2

1,≥
(

η − (
√

P + t)2
)

(B.24)

Some simplifications show that

ISG,≥ (P, η) =





0 η ≤ P + 1

min
t∈[−

√
P−
√

η−1,−
√

P+
√

η−1]

[
t2

2
+ Iχ2

1

(
η − (

√
P + t)2

)]
η > P + 1

(B.25)

Solving the minimization problem (see Section B.3.3 for details) in (B.25) gives us the mini-

mum value

ISG(P, η) ,
1
2

(
P + η −

√
1 + 4Pη − log

[√
1 + 4Pη − 1

2P

])
(B.26)

then

ISG,≥ (P, η) =





0 η ≤ P + 1

ISG(P, η) η > P + 1
(B.27)
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� B.3.2 Derivations for ISG,≤ (P, η)

Again, using the spherical symmetry property of Sn + Zn, let sn = (
√

nP, 0, . . . , 0), we have

P

[
1
n
‖Sn + Zn‖2 ≤ η

]
= P

[
1
n
‖sn + Zn‖2 ≤ η

]
(B.28)

= P

[
(
√

nP + Z1)2 +
n

∑
i=2

Z2
i ≤ nη

]
(B.29)

=
∫ +∞

−∞
fZ1(z1)P

[
n

∑
i=2

Z2
i ≤ nη − (

√
nP + z1)2

]
dz1 (B.30)

(let t = z1/
√

n) .=
∫ +∞

−∞
exp

(
−n

t2

2

)
P

[
n

∑
i=2

Z2
i ≤ n

[
η − (

√
P + t)2

]]
dt (B.31)

Then by Laplace’s Principle, we have

ISG,≤ (P, η) = min
t

[
t2

2
+ Iχ2

1,≤
(

η − (
√

P + t)2
)]

(B.32)

Some simplifications show that

ISG,≤ (P, η) =





+∞ η ≤ 0

min
t∈[−

√
P−√η,−

√
P+√η]

[
t2

2
+ Iχ2

1

(
η − (

√
P + t)2

)]
0 < η ≤ 1

min
t∈[−

√
P+
√

η−1,−
√

P+√η]

[
t2

2
+ Iχ2

1

(
η − (

√
P + t)2

)]
1 ≤ η < P + 1

0 η ≥ P + 1

(B.33)

Solve the minimization problem (see Section B.3.3 for details) in (B.33) gives that when 0 <

η < P + 1, the minimum value is also ISG(P, η) and we have

ISG,≤ (P, η) =





+∞ η ≤ 0

ISG(P, η) 0 < η < P + 1

0 η ≥ P + 1

(B.34)
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−
√

P−
√

η − 1 −
√

P −
√

P +
√

η − 1

t

Figure B-1: Iχ2
1,≥
(

η − (
√

P + t)2
)

with η > P + 1.

� B.3.3 Calculation details

Note when η > 0,

η − (
√

P + t)2 > 0⇐⇒ t ∈ [−
√

P−√η,−
√

P +
√

η] (B.35)

and when η > 1,

η − (
√

P + t)2 > 1⇐⇒ t ∈ [−
√

P−
√

η − 1,−
√

P +
√

η − 1] (B.36)

The simplifications that lead to (B.25) and (B.33) can be seen after observing Figure B-1 and

Figure B-2.

For the minimization problem in both (B.25) and (B.33), setting the derivative of the objective

function to zero, we solve can for the roots and have

t1 = −1 + 2P−
√

1 + 4Pη

2
√

P
(B.37)

t2 = −1 + 2P +
√

1 + 4Pη

2
√

P
(B.38)

and we can verify that only t1 is a true solution, because





t1 ∈ (−
√

P +
√

η − 1,
√

P +√η) η > 1

t1 ∈ (−
√

P−√η,
√

P +√η) 0 < η ≤ 1
(B.39)
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−
√

P−√η −
√

P −
√

P +√η

+∞

t

(a) 0 < η < 1

−
√

P−√η −
√

P−
√

η − 1 −
√

P +
√

η − 1 −
√

P +√η

+∞

t

(b) 1 < η < 1 + P

Figure B-2: Iχ2
1,≤
(

η − (
√

P + t)2
)

.

Therefore we can substitute t1 and obtain (B.26).

� B.4 Exponential Approximation for the Square of Gaussian Distribu-

tions

Let X ∼ Z2, where Z ∼ N
(√

nλ, 1
)

, then

P [X = nt] = P
[

Z = −
√

nt or Z =
√

nt
]

(B.40)

.= P
[

Z =
√

nt
]

(B.41)

.= exp

(
−n

(
√

t−
√

λ)2

2

)
. (B.42)

� B.5 Calculation Details for Heuristic Detection Rules

In this section we document the calculation details for the results in Section 5.3.3. We let Zi
i.i.d.∼

N (0, 1) in this section.
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� B.5.1 Detection rule #1

Pf = P
[
aZ1 + b‖Zn

2‖ ≥
√

nη
]

(B.43)

.=
∫ +∞

−∞
P
[

Z1 =
√

n
r
a

]
P

[
‖Zn

2‖2 ≥ n
(

η − r
b

)2
]

dr (B.44)

.=
∫ +∞

−∞
exp

[
−n(

r2

2a2 )
]

exp
[
−n
(

Iχ2
1,≥

(
(η − r)2

b2

))]
dr (B.45)

.= exp
[
−ne f (η, a, b)

]
(B.46)

where

e f (η, a, b) = min
r≥0

r2

2a2 + Iχ2
1,≥

(
(η − r)2

b2

)
(B.47)

Some further simplifications show

e f (η, a, b) =





0 η ≤ b

min
0≤r≤η−b

r2

2a2 + Iχ2
1

(
(η − r)2

b2

)
η > b

(B.48)

Pm = P
[

a(
√

nPs + Z1) + b‖Sn
2 + Zn

2‖ ≤
√

nη
]

(B.49)

.=
∫ +∞

−∞
P
[
N
(√

nPs, 1
)

=
√

n
r
a

]
P

[
‖Sn

2 + Zn
2‖ ≤

√
n

η − r
b

]
dr (B.50)

.=
∫ +∞

−∞
exp

[
−n

(r− a
√

Ps)2

2a2

]
exp

[
−n
(

ISG,≤

(
Pc,

(η − r)2

b2

))]
dr (B.51)

.= exp [−nem(η, a, b)] (B.52)

where

em(η, a, b) = min
r>0

(r− a
√

Ps)2

2a2 + ISG,≤

(
Pc,

(η − r)2

b2

)
(B.53)
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Some further simplifications show

em(η, a, b) =





+∞ η ≤ 0

min
η−b
√

Pc+1≤r≤η

(r− a
√

Ps)2

2a2 + ISG

(
Pc,

(η − r)2

b2

)
0 < η < a

√
Ps + b

√
Pc + 1

0 η ≥ a
√

Ps + b
√

Pc + 1
(B.54)

� B.5.2 Detection rule #2

Pf = P
[
a‖Z1‖2 + b‖Zn

2‖2 ≥ nη
]

(B.55)

.=
∫ +∞

0
P
[
‖Z1‖2 = n

r
a

]
P

[
‖Zn

2‖2 ≥ n
η − r

b

]
dr (B.56)

.=
∫ +∞

0
exp

[
−n(

r
2a

)
]

exp
[
−n
(

Iχ2
1,≥

(
η − r

b

))]
dr (B.57)

.= exp
[
−ne f (η, a, b)

]
(B.58)

where

e f (η, a, b) = min
r≥0

r
2a

+ Iχ2
1,≥

(
η − r

b

)
(B.59)

Some further simplifications show

e f (η, a, b) =





0 η ≤ b

min
0≤r≤η−b

r
2a

+ Iχ2
1

(
η − r

b

)
η > b

(B.60)

Pm = P
[

a‖
√

nPs + Z1‖2 + b‖Sn
2 + Zn

2‖2 ≤ nη
]

(B.61)

.=
∫ +∞

0
P
[
‖N
(√

nPs, 1
)
‖2 = n

r
a

]
P

[
‖Sn

2 + Zn
2‖2 ≤ n

η − r
b

]
dr (B.62)

.=
∫ +∞

0
exp

[
−n

(
√

r/a−√Ps)2

2

]
exp

[
−n
(

ISG,≤

(
Pc,

η − r
b

))]
dr (B.63)

.= exp [−nem(η, a, b)] (B.64)
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APPENDIX B

where

em(η, a, b) = min
r>0

(
√

r/a−√Ps)2

2
+ ISG,≤

(
Pc,

η − r
b

)
(B.65)

Some further simplifications show

em(η, a, b) =





+∞ η ≤ 0

min
rl≤r≤ru

(
√

r/a−√Ps)2

2
+ ISG

(
Pc,

η − r
b

)
0 < η < aPs + b(Pc + 1)

0 η ≥ aPs + b(Pc + 1)

(B.66)

where rl = max {0, η − b(Pc + 1)} and ru = min {η, aPs}.
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[18] S. Borade, B. Nakiboğlu, and L. Zheng, “Unequal error protection: An Information-Theoretic

perspective,” IEEE Transactions on Information Theory, vol. 55, no. 12, pp. 5511–5539, 2009.

100


	Introduction
	Background
	Notations
	Probability distributions

	Synchronous DMC and Block Codes
	Subcode and extension
	Code sequences

	Asynchronous DMC and Block Codes
	Error exponents for asynchronous DMC

	Important Asynchronous Channels
	Binary symmetric channel
	Additive white Gaussian noise channel

	Exponential Approximation
	Algebras for exponential approximations
	Exponential inequalities

	Quantities in Information Theory
	Method of Types
	Important Codebooks

	Maximum False Alarm Exponent for DMC
	Main Results
	Achievability
	Encoding
	Typicality (one-stage) decoding
	Two-stage decoding
	Comparison of one-stage and two-stage decoding


	Converse
	Examples
	AWGN channel
	Binary symmetric channel

	Comparison with Separate Synchronization and Coding
	A Discussion on Communication by Timing
	Summary

	Optimal False Alarm Exponent with Miss Exponent Constraint: DMC Channels
	Achievability schemes for DMC
	i.i.d. codebook with optimal detection
	Constant composition codebook

	Upper bound for the false alarm reliability function of DMC
	Performance of Separate Synchronization and Coding
	BSC Channel
	i.i.d. codebook with optimal detection
	Constant composition codebook
	Encoding
	Detection

	An upper bound for the false alarm reliability function of BSC
	An upper bound for the constant composition codebook

	Performance comparisons

	Summary

	Optimal False Alarm Exponent with Miss Exponent Constraint: AWGN Channels
	i.i.d. Codebook with Optimal Detection
	Spherical Codebook with Energy Detection
	Encoding and decoding
	Performance analysis

	Clustered Spherical Codebook
	Codebook design
	Optimal detection rule
	Heuristic detection rules
	Training: detection based on synchronization power only

	Performance Comparisons
	Summary

	Conclusions
	Useful Results in Information Theory
	Inequalities
	Lemmas and Propositions
	Entropy and image size characterization


	Large Deviation Results for the AWGN Channel
	Gaussian Distribution
	Divergences between two Gaussians
	Geometric mean of two Gaussians

	2-distribution with Degree of Freedom k
	Sum of Spherically Uniform Distribution and Gaussian Distribution
	Derivations for ISG,(P,)
	Derivations for ISG,(P,)
	Calculation details

	Exponential Approximation for the Square of Gaussian Distributions
	Calculation Details for Heuristic Detection Rules
	Detection rule #1
	Detection rule #2



