5,500 research outputs found

    Whitham hierarchy in growth problems

    Get PDF
    We discuss the recently established equivalence between the Laplacian growth in the limit of zero surface tension and the universal Whitham hierarchy known in soliton theory. This equivalence allows one to distinguish a class of exact solutions to the Laplacian growth problem in the multiply-connected case. These solutions corerespond to finite-dimensional reductions of the Whitham hierarchy representable as equations of hydrodynamic type which are solvable by means of the generalized hodograph method.Comment: 20 pages, 4 figures, based on the talk given at the Workshop ``Classical and quantum integrable systems'' (Dubna, January 2004), minor correction

    On the multiplicity of the hyperelliptic integrals

    Full text link
    Let I(t)=∮δ(t)ωI(t)= \oint_{\delta(t)} \omega be an Abelian integral, where H=y2−xn+1+P(x)H=y^2-x^{n+1}+P(x) is a hyperelliptic polynomial of Morse type, δ(t)\delta(t) a horizontal family of cycles in the curves {H=t}\{H=t\}, and ω\omega a polynomial 1-form in the variables xx and yy. We provide an upper bound on the multiplicity of I(t)I(t), away from the critical values of HH. Namely: $ord\ I(t) \leq n-1+\frac{n(n-1)}{2}if if \deg \omega <\deg H=n+1.Thereasoninggoesasfollows:weconsidertheanalyticcurveparameterizedbytheintegralsalong. The reasoning goes as follows: we consider the analytic curve parameterized by the integrals along \delta(t)ofthe of the n‘‘Petrov′′formsof ``Petrov'' forms of H(polynomial1−formsthatfreelygeneratethemoduleofrelativecohomologyof (polynomial 1-forms that freely generate the module of relative cohomology of H),andinterpretthemultiplicityof), and interpret the multiplicity of I(t)astheorderofcontactof as the order of contact of \gamma(t)andalinearhyperplaneof and a linear hyperplane of \textbf C^ n.UsingthePicard−Fuchssystemsatisfiedby. Using the Picard-Fuchs system satisfied by \gamma(t),weestablishanalgebraicidentityinvolvingthewronskiandeterminantoftheintegralsoftheoriginalform, we establish an algebraic identity involving the wronskian determinant of the integrals of the original form \omegaalongabasisofthehomologyofthegenericfiberof along a basis of the homology of the generic fiber of H.Thelatterwronskianisanalyzedthroughthisidentity,whichyieldstheestimateonthemultiplicityof. The latter wronskian is analyzed through this identity, which yields the estimate on the multiplicity of I(t).Still,insomecases,relatedtothegeometryatinfinityofthecurves. Still, in some cases, related to the geometry at infinity of the curves \{H=t\} \subseteq \textbf C^2,thewronskianoccurstobezeroidentically.Inthisalternativeweshowhowtoadapttheargumenttoasystemofsmallerrank,andgetanontrivialwronskian.Foraform, the wronskian occurs to be zero identically. In this alternative we show how to adapt the argument to a system of smaller rank, and get a nontrivial wronskian. For a form \omegaofarbitrarydegree,weareledtoestimatingtheorderofcontactbetween of arbitrary degree, we are led to estimating the order of contact between \gamma(t)andasuitablealgebraichypersurfacein and a suitable algebraic hypersurface in \textbf C^{n+1}.Weobservethat. We observe that ord I(t)growslikeanaffinefunctionwithrespectto grows like an affine function with respect to \deg \omega$.Comment: 18 page

    Nuttall's theorem with analytic weights on algebraic S-contours

    Get PDF
    Given a function ff holomorphic at infinity, the nn-th diagonal Pad\'e approximant to ff, denoted by [n/n]f[n/n]_f, is a rational function of type (n,n)(n,n) that has the highest order of contact with ff at infinity. Nuttall's theorem provides an asymptotic formula for the error of approximation f−[n/n]ff-[n/n]_f in the case where ff is the Cauchy integral of a smooth density with respect to the arcsine distribution on [-1,1]. In this note, Nuttall's theorem is extended to Cauchy integrals of analytic densities on the so-called algebraic S-contours (in the sense of Nuttall and Stahl)

    Normal random matrix ensemble as a growth problem

    Full text link
    In general or normal random matrix ensembles, the support of eigenvalues of large size matrices is a planar domain (or several domains) with a sharp boundary. This domain evolves under a change of parameters of the potential and of the size of matrices. The boundary of the support of eigenvalues is a real section of a complex curve. Algebro-geometrical properties of this curve encode physical properties of random matrix ensembles. This curve can be treated as a limit of a spectral curve which is canonically defined for models of finite matrices. We interpret the evolution of the eigenvalue distribution as a growth problem, and describe the growth in terms of evolution of the spectral curve. We discuss algebro-geometrical properties of the spectral curve and describe the wave functions (normalized characteristic polynomials) in terms of differentials on the curve. General formulae and emergence of the spectral curve are illustrated by three meaningful examples.Comment: 44 pages, 14 figures; contains the first part of the original file. The second part will be submitted separatel
    • …
    corecore