48 research outputs found

    Versatile Markovian models for networks with asymmetric TCP sources

    Get PDF
    In this paper we use Stochastic Petri Nets (SPNs) to study the interaction of multiple TCP sources that share one or two buffers, thereby considerably extending earlier work. We first consider two sources sharing a buffer and investigate the consequences of two popular assumptions for the loss process in terms of fairness and link utilization. The results obtained by our model are in agreement with existing analytic models or are closer to results obtained by ns-2 simulations. We then study a network consisting of three sources and two buffers and provide evidence that link sharing is approximately minimum-potential-delay-fair in case of equal round-trip times. \u

    Throughput modeling of TCP with slow-start and fast recovery

    Get PDF
    Despite the rich literature on modeling TCP, we find two common deficiencies with the existing approaches. First, none of the work gives sufficient treatment to slow-start, although almost all of them show that retransmission timeout events are common. Second, the probability that retransmission timeout occurs has been underestimated, because retransmission timeout is coupled with fast recovery but fast recovery has not been properly modeled in the previous work. In this paper, new analytical models for predicting the steady state throughput of TCP flows are proposed. All major TCP mechanisms, including slow-start, congestion avoidance, fast retransmit, and fast recovery, are jointly considered under both bursty and independent loss models. We show that our proposed throughput models capture TCP performance more accurately. © 2005 IEEE.published_or_final_versio

    On bursty packet loss model for TCP performance analysis

    Get PDF
    In this paper, we study the timeout probability of TCP Reno under the bursty packet loss model, which is widely used to represent the loss characteristics of TCP under drop-tail FIFO queues. With a detailed analysis on the three timeout reasons for TCP Reno, we show that the impact of timeout has been underestimated in the existing literature. Surprisingly, we find that this more precise representation of timeout probability does not match the actual performance of TCP under drop-tail FIFO queues. Therefore we conclude that the bursty loss model is incapable of capturing the behavior of drop-tail FIFO queues, and using bursty loss model to analyze TCP performance is flawed. © 2005 IEEE.published_or_final_versio

    STCP: A New Transport Protocol for High-Speed Networks

    Get PDF
    Transmission Control Protocol (TCP) is the dominant transport protocol today and likely to be adopted in future high‐speed and optical networks. A number of literature works have been done to modify or tune the Additive Increase Multiplicative Decrease (AIMD) principle in TCP to enhance the network performance. In this work, to efficiently take advantage of the available high bandwidth from the high‐speed and optical infrastructures, we propose a Stratified TCP (STCP) employing parallel virtual transmission layers in high‐speed networks. In this technique, the AIMD principle of TCP is modified to make more aggressive and efficient probing of the available link bandwidth, which in turn increases the performance. Simulation results show that STCP offers a considerable improvement in performance when compared with other TCP variants such as the conventional TCP protocol and Layered TCP (LTCP)

    Qos In Cognitive Packet Networks: Adaptive Routing, Flow And Congestion Control

    Get PDF
    With the emergence of various applications that have different Quality of Service (QoS) requirements, the capability of a network to support QoS becomes more and more important and necessary. This dissertation explores QoS in Cognitive Packet Networks (CPN) by using adaptive routing, flow and congestion control. We present a detailed description and analysis of our proposed routing algorithms based on single and multiple QoS constraints. An online estimation of packet loss rate over a path is introduced. We implement and evaluate the adaptive routing scheme in an experimental CPN test-bed. Our experiments support our claims that the users can achieve their desired best-effort QoS through this routing scheme. We also propose a QoS-based flow and congestion control scheme that is built in the transport layer and specially designed to work with CPN to support users\u27 QoS while remaining friendly to TCP. Theoretical models and experimental analysis are presented. Finally we experimentally demonstrate that the proposed flow and congestion control scheme can effectively control the input flows, react to the congestion and work with our proposed adaptive routing scheme to achieve users\u27 QoS

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Queues with Congestion-dependent Feedback

    Get PDF
    This dissertation expands the theory of feedback queueing systems and applies a number of these models to a performance analysis of the Transmission Control Protocol, a flow control protocol commonly used in the Internet
    corecore