
Title Throughput modeling of TCP with slow-start and fast recovery

Author(s) Zhou, K; Yeung, KL; Li, VOK

Citation
The 2005 IEEE Global Telecommunications Conference
(Globecom 2005), St. Louis, MO., 28 November-2 December 2005.
In Conference Proceedings, 2005, v. 1, p. 261-265

Issued Date 2005

URL http://hdl.handle.net/10722/45950

Rights

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37884741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract— Despite the rich literature on modeling TCP, we find
two common deficiencies with the existing approaches. First, none
of the work gives sufficient treatment to slow-start, although almost
all of them show that retransmission timeout events are common.
Second, the probability that retransmission timeout occurs has
been underestimated, because retransmission timeout is coupled
with fast recovery but fast recovery has not been properly modeled
in the previous work. In this paper, new analytical models for
predicting the steady state throughput of TCP flows are proposed.
All major TCP mechanisms, including slow-start, congestion
avoidance, fast retransmit, and fast recovery, are jointly considered
under both bursty and independent loss models. We show that our
proposed throughput models capture TCP performance more
accurately.

Index Terms — Bursty Loss, Independent Loss, TCP
Performance, Slow-Start, Fast Recovery

I. INTRODUCTION

Internet traffic is dominated by TCP [1], whose dynamics
greatly influence the overall performance of the Internet. In order to
have a better understanding of TCP, numerous analytical models
have been proposed (e.g. [1-9]). Most of them focus on modeling
the steady state TCP throughput, and some investigates the transfer
delay for short transactions. Among them, probably the most widely
accepted TCP steady state model is introduced in [2], and it is
subsequently adopted by TFRC [10]. However, after studying TCP
performance under the general stationary ergodic loss model,
Altman et al. [8] point out that the model of TCP in [2] may not be
accurate. They claim that the correctness of the model in [2] is due
to error cancellation between the model for TCP and the model for
packet loss.

Despite the rich literature on modeling TCP, we find two
common deficiencies with the existing approaches. First, none of
the work gives sufficient treatment to TCP slow-start, although
almost all of them show that retransmission timeout events are
common. (Note that a TCP flow must enter slow-start if a timeout
occurs.) Second, the cause of retransmission timeout is not analyzed
with the level of details it deserves, although almost all of the
previous efforts notice that timeout greatly degrades TCP
performance. (Note that a TCP flow sends little or no packet during
the long duration of timeout.) Fast retransmit and fast recovery
algorithms are the major causes of retransmission timeout, but only
[3] has analyzed fast recovery under the simplified assumption of
no retransmission loss. The work in [11] also pointed out that
retransmission timeout for Reno under bursty loss is much more

severe than what is shown in [2] with the analysis of fast recovery.
Motivated to find a more accurate model for TCP steady state

throughput, we extend the work in [2] to analyze slow-start and fast
recovery, and extend the analysis of fast recovery in [3] to include
retransmission timeout caused by loss of retransmitted packets.
Two of the most widely accepted packet loss models are adopted in
our study, bursty loss [1-3, 6, 7] and independent loss [3, 8]. Since
TCP Sack [12] is the current IETF recommendation of TCP
implementation, Sack is assumed in our analysis. Simulations are
used to validate our analytical models. We show that without
considering slow-start and fast recovery, previous models cannot
accurately capture TCP performance.

The rest of the paper is organized as follows. Section II
summarizes the key features of TCP Sack. Section III introduces the
assumptions, definitions, and notations to be used in the analysis.
Section IV presents the TCP throughput model under bursty loss.
Section V gives the throughput model under independent loss.
Section VI validates our proposed models by simulations. Section
VII concludes the paper.

II. TCP SACK

The Selective Acknowledgment (Sack) option [12] was
introduced to improve TCP performance when multiple packets are
lost from a window of data. With Sack, the data receiver can inform
the sender about all packets that have arrived successfully, so the
sender needs to retransmit only the packets that have actually been
lost.

When the sender receives triple duplicate ACKs (TD), it
responds with fast retransmit, i.e. it retransmits the first
unacknowledged packet, sets the slow-start threshold (H) to

2max(,2)cwnd , then halves its congestion window (cwnd) and
activates the fast recovery algorithm. Upon receiving an ACK that
acknowledges all the outstanding data when fast recovery was
triggered (maxseq), the sender exits fast recovery. In fast recovery,
Sack uses a variable pipe to estimate the number of packets
outstanding in the network. The sender sends new or lost packets
only if the value of pipe is less than cwnd . When TD is received,
pipe is set to 3cwnd − . With each packet transmission or

retransmission, pipe increases by one. When a duplicate ACK
arrives and reports that new data has successfully arrived at the
receiver, pipe is decreased by one. To ensure Sack never recovers
more slowly than slow-start, Sack decreases the pipe by two with
the receipt of a partial ACK (an ACK received in the fast recovery
that advances the acknowledgment number field but does not take
the sender out of fast recovery). Throughout this paper, we assume
the Sack implementation in [12].

Throughput Modeling of TCP With Slow-start and Fast Recovery

Kaiyu Zhou, Kwan L. Yeung and Victor O.K. Li
Department of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam, Hong Kong, China

This work is supported in part by Hong Kong Research Grants Council
Earmarked Grant HKU 7048/02E, and in part by the Areas of Excellence
Scheme established under the University Grants Committee of the Hong Kong
Special Administrative Region, China (Project No. AoE/E-01/99).

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 261 0-7803-9415-1/05/$20.00 © 2005 IEEE

Retransmission timeout [13] is used as the last resort to recover
lost packets. Every time a data packet is sent, if the retransmission
timer is not running, a new timer is started and counted down with
an initial value of 0t seconds. 0t is given by
 0 min(60,max(1, 4))t RTT RTTVAR= + ⋅ . (1)
where RTT is the round trip time and RTTVAR is the variance of
the round trip time. If another timeout occurs before receiving an
ACK that acknowledges maxseq , the sender backs off its
retransmission timer by setting it to 02t . From (1), the doubling of
retransmission timer is only effective when 0t (before doubling) is
smaller than 60 seconds.

When the sender’s retransmission timer expires, the sender sets
H to max(/ 2,2)cwnd and restarts with slow-start, i.e. the sender
resets cwnd to 1 and increases it by one with each received ACK,
until the slow-start threshold H is reached. From that time
onwards, congestion avoidance takes over. In congestion
avoidance, the sender increases its cwnd linearly by 1/ cwnd with
each received ACK until the sender receives TD or the
retransmission timer expires.

III. ASSUMPTIONS, DEFINITIONS, AND NOTATIONS

We focus only on the transport layer performance, the delays
introduced by other layers, such as those caused by scheduling or
buffering in the session or application layers and contention in the
data-link layer, are not considered. We also do not consider the
connection establishment time needed for a TCP flow. We assume
that for the duration of the data transfer, the sender always sends
full-sized packets as fast as its congestion window allows, and the
receiver advertises a consistent flow control window. As the steady
state throughput is modeled, we assume the duration of data transfer
is long enough such that the flow experiences enough packet losses.

We model the performance of TCP in terms of “rounds.” A
round begins with the transmission of a window of packets and ends
upon the receipt of one or more ACKs of these packets, which
implies that the time needed to send out all the packets in a window
is smaller than the duration of a round. Therefore the duration of a
round is independent of the window size, and is determined mainly
by the round trip propagation delay.

For the characterization of packet losses, two of the widely
investigated loss models are adopted, bursty loss [1-3, 6, 7] and
independent loss [3, 8]. The independent loss model assumes all the
packet losses in the network are independent, with stationary loss
ratio Ip . In the bursty loss model, the loss probability of a packet
in a round is independent of any packet loss in other rounds. In the
same round, the loss probability of a packet depends on whether the
previous packet in the same round is lost. If the previous packet is
lost, the current packet is also lost; otherwise the packet is lost with
probability p . So if a packet is lost in a round, all subsequent
packets in the same round are also lost. Similar to [1-3, 6, 7], we
assume that the probability of packet loss is independent of the
window size, and we do not consider ACK packet losses. For bursty
loss, we treat all the correlated packet losses in the same round as a
single loss event, and refer to p as the loss event ratio. For
independent loss, since there is no correlation between packet
losses, a loss event has exactly one lost packet, so the value of Ip is
exactly the same as p . For simplicity of discussion, we use symbol

Table I. Notation list.

TO
iZ the duration of the i -th TOP
TD
iZ the duration between (1)i − -th and i -th TOP

ijH slow-start threshold when the j -th TDP of TD
iZ begins

ijw cwnd when the j -th loss event of TD
iZ is detected

rw the receiver’s advertised window size

iR the number of packets sent during TO
iZ

in the number of TDP’s in interval TD
iZ

ijY packets transmitted in the j -th TDP of TD
iZ

ijA the duration of the j -th TDP of TD
iZ

p but not Ip when studying the performance under the
independent loss model.

We plot the generalized evolution of a TCP sender’s congestion
window in Fig. 1. We define timeout period (TOP) as the duration
from when the retransmission timer to be expired is set, to when the
packet that successfully recovers the data transmission is sent. We
define triple duplicate period (TDP) as the duration from when the
sender begins to increase its transmission rate (i.e. enters slow-start
or congestion avoidance) to the start of the successive TDP or TOP.
The list of notations to be used is summarized in the table below.

We define 1/ []Q E n= , where []E n is the expectation of in . So
Q , or timeout probability, is the probability that a timeout occurs
given that a loss event happens. The steady state throughput T is
thus given by

 [] [] [] [] []
[] [] [] []TD TO TO

E n E Y E R E Y Q E RT
E Z E Z E A Q E Z

+ + ⋅= =
+ + ⋅

. (2)

Note []TOE Z is generally far bigger than []E A , but []E R is far
smaller than []E Y . In the following two sections, we will derive all
the variables on the right hand side of (2) under both bursty loss
model and independent loss model.

IV. THROUGHPUT UNDER BURSTY LOSS

A. A closer look on TDP
Without loss of generality, we consider the evolution of the

congestion window in a particular TDP in Fig. 2. For simplicity, we
drop the subscript i in all the notations defined earlier. To capture
the difference in slow-start, congestion avoidance, and fast

Fig. 1. Evolution of congestion window size

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 262 0-7803-9415-1/05/$20.00 © 2005 IEEE

recovery, jA in Fig. 2 is further divided into three periods, Pre-CA,
CA and post-loss. The CA period is from when the sender enters
congestion avoidance to one round after the loss event. The Pre-CA
period is from the start of TDP to the start of CA. The post-loss
period covers the rest of the TDP.

Respectively, we denote the number of packets sent in Pre-CA,
CA and post-loss periods of the j -th TDP as jµ , jβ , and jr , and
the duration of each period as sjX , cjX , and rjX . From Fig. 2, jY
and jA are given by
 j j j jY rµ β= + + , (3)
 j sj cj rjA X X X= + + . (4)

Let packet 1jα + be the first packet lost in a given loss event.
We have

 1[] 1 [] []E E E w
p

α µ β= − = + − , (5)

where []jw E w= . The problem of TCP performance modeling is
then transformed to the analysis of TCP reaction under a given
packet loss in each of the timeout period, Pre-CA, CA, and post-
loss.

B. Timeout Probability
We call the round where a loss event occurs as the “loss round”

and all subsequent rounds as the “ -thd post-loss round”, where d
is the round-distance from the loss round.

Let 1jy + be the sequence number of the first packet sent in
the loss round, 1j jy k+ + the sequence number of the first lost
packet in the loss round, and 1j j jy w m+ + + the sequence
number of the first lost packet in the 1st post-loss round. Under
the bursty loss model, all packets following 1j jy k+ + in the loss
round are also lost. However, since jk packets are
acknowledged, another jk packets can be sent in the 1st post-
loss round. Assume another loss event may occur among these

jk packets, say at 1j j jy w m+ + + . jm is the number of duplicate
ACKs received by the sender. If jm is bigger than three, the
sender receives a TD and 1j jy k+ + is retransmitted. The sender

then changes to fast recovery. If jm is smaller than two, a
timeout occurs. We refer to this kind of timeouts as No Triple
Duplicate ACKs (NTD). We call all the loss events followed by
a retransmission timeout as timeout losses, and the loss event
causing NTD timeout as NTD timeout loss.

Let (,)A s l be the probability that the first l packets are
acknowledged in a round of s packets sent, given there is a loss
event in the round. Then

 (1)(,)
1 (1)

l

s

p pA s l
p

−=
− −

.

Let (,)C s l be the probability that s packets are sent but only the
first l packets are acknowledged, and the rest of the packets in the
round are lost. Then

(1) ,

(,) (1) ,
0,

l

s

p p l s
C s l p l s

l s

 − <
= − =
 >

.

The probability that the sender receives exactly jm duplicate
ACKs in the 2nd post-loss round ()jP m is given by

1

() (,) (,)
j

j j

w

j j j j j
k m

P m A w k C k m
−

=

= ∑ .

Let ()NTD jP w be the probability that an NTD timeout occurs
given that a loss event has happened. ()NTD jP w is given by

33 3(1 (1))(1 (1) (1 (1)))() min(1,)

1 (1)

j

j

w

NTD j w

p p pP w
p

−− − + − − −=
− −

. (6)

Note that in fast recovery, there is no guarantee that the sender
will send new or lost packets when the ACK for the first
retransmitted packet arrives. The sender sends (new or lost) packets
only if the value of pipe is less than cwnd . When the sender enters
fast recovery, pipe is set to 3jw − and cwnd is set to / 2jw . With
each additional duplicate ACK received, pipe is decreased by one.
After the sender receives the partial ACK corresponding to the
retransmission of 1j jy k+ + , pipe is decreased by two. So if

2 / 2j j jw m w− − ≥ , a timeout occurs. We call it a Not Recoverable
(NR) timeout, and the corresponding loss event as NR timeout loss.
Let ()NR jP w be the probability that an NR timeout occurs given that
a loss event has happened. ()NR jP w is given by

/ 2 2

2
3

() (2 | 3) ()
j

j

j

w
w

NR j j j j j
m

P w P w m m P m
−

=

= − − ≥ ≥ = ∑ . (7)

Note that the sender retransmits a packet at most once before
retransmission timeout. When 2 / 2j j jw m w− − < , suppose one of
the retransmitted packets is lost, a timeout occurs. We call it
Retransmission Loss (RL) timeout, and call the associated loss
event RL timeout loss. The probability of having an RL timeout
given that a loss event happened is ()RL jP w , where

4

2

1 1

0max(3,)

() () (,)
j j j

w j
j

w w m

RL j j j
im

P w P m C m i
−

− − −

==

= ∑ ∑ . (8)

When an RL timeout loss occurs, the TCP flow sends out packets
continuously before the retransmission timer expires. In fact, from

jH
jα

jk
jµ

sjX
CjX

jw

jA

jr

rjX

jβ

Fig.2. Congestion window and packets sent in a TDP

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 263 0-7803-9415-1/05/$20.00 © 2005 IEEE

the 4th post-loss round till the retransmission timer expires, the
sender receives only duplicate ACKs (instead of partial ACKs).
Assuming no more packet loss in this duration, the number of
duplicated ACKs received in each round is constant. This is
equivalent to having an effective congestion window RLw that
controls the transmission rate of the TCP flow in this duration. The
value of RLw is two times the number of partial ACKs received in
the 3rd post-loss round, and is given by

1 1

4 0
max(3,)

2

2[] () (,)
()

j j j

j
j

w w m

RL j j
w iRL j m

E w P m i C m i
P w

− − −

− =
=

= ⋅∑ ∑ . (9)

To account for all the timeout possibilities of Sack, the overall
timeout probability Q for Sack connections is given by
 () () ()NTD j NR j RL jQ P w P w P w= + + . (10)
From (10), we can see that the timeout probability is a function of
both p and jw .

C. Throughput model
We next derive the throughput model by calculating the

expectation for other variables in (2), (3), and (4). Our definition of
post-loss period begins with the 2nd post-loss round. From Figs. 3
to 5, the expectations of jr , the number of packets sent in a post-
loss part, and its duration rjX , are given by
 [] RL NRE r P P= + , (11)
 []r NR NTDE X P P= − . (12)

From [2], []TOE Z the expectation of the duration of a timeout
period is

2 3 4 5 6

0
1 2 4 8 16 32[]

1
TO p p p p p pE Z t

p
+ + + + + +=

−
. (13)

As shown in Part B of this section, if RL timeout occurs, TCP
flows send out packets continuously before the retransmission timer
expires. With []RLE w given by (9), we change the representation of

[]E R , the expectation of the number of packets sent in a timeout
period, obtained in [2] to

 0 1[] []
1

RL
RL

P tE R E w
Q RTT p

= +
−

. (14)

When NR or RL timeout occurs, the TCP flow experiences two
congestion slowdowns. The sender sets the slow-start threshold H
to 2max(,2)cwnd when the retransmission timer expires, where cwnd
has already been halved with fast retransmit. Thus, the expectation
of H is
 [] max((2) / 4,2)NR RLE H P P w= − − .

In the above equation, for simplicity, we have ignored the losses
in TOP, and we believe that the error introduced in H should be
negligible. Our analysis indicates that w increases inversely with
p . When p is small, timeout losses seldom occur. When p is

large, timeout losses become common, but H tends to be bounded
by 2.

In the Pre-CA period, the expectation of jµ , the number of
packets sent, and its duration sjX are

 2log [] 1[] 2 HE µ + = , (15)
 2 2[] log () log (max((2) / 4,2))s NR RLE X H P P w= = − − . (16)

In the CA period, the sender’s cwnd starts with []E H . Thus we
have
 [] [] 1cE X w E H= − + , (18)

[] 1

0
[] ()

2

cE X

i

wE H iβ
−

=

= + +∑ . (17)

With (16), µ is shown with w . Similarly β is shown with w in
(17), so w can be calculated by solving equation (5). Note that the
variables in (3) are functions of p and w , such as µ in (16), β in
(17), and r in (11), so []E Y is determined with a given p .
Similarly, with sX in (16), cX in (18), rX and (12), []E A is

also determined with a given p . Hence, with Q , R , and TOZ
given by (10), (13), and (14) respectively, Sack throughput of
equation (2) under bursty loss can be obtained.

V. THROUGHPUT UNDER INDEPENDENT LOSS

A. Timeout probability
With independent loss, let (,)B s l′ be the probability that exactly

l packets are acknowledged with s packets sent. Then

 (,) (1)l s ls
B s l p p

l
− ′ = −

.

We first investigate how NTD timeout happens with independent
loss. Since all packets before the first lost packet are acknowledged,

1jw − packets are sent following the first lost packet. Among these
1jw − packets, we define the number of packets that are

successfully acknowledged by jm′ . It is easy to see that if 3jm′ < ,
NTD timeout loss occurs. So we have

2

0
() (1,)

j

NTD j j j
m

P w B w m
′ =

′ ′= −∑ . (19)

If NR timeout loss occurs, we have 2 2 3jw
jm′− ≥ ≥ . So ()NR jP w

is given by

/ 2 2

3
() (1,)

j

j

w

NR j j j
m

P w B w m
−

′ =

′ ′= −∑ . (20)

The number of packets to be retransmitted is j jw m′− . Any loss
among the j jw m′− retransmitted packets causes RL timeout. So

()RL jP w is given by

4

1
()

max(3,)
2

() (1,)(1 (1))
j

j j

j
j

w
w m

RL j j j
w

m

P w B w m p
−

−
′−

′ =

′ ′= − − −∑ . (21)

Substituting (19) to (21) into (10), timeout probability Q can be
found.

B. Throughput model
Compared with the bursty loss model, when RL timeout occurs,

the sender receives more duplicate ACKs because not all the
packets following the loss in the same round are lost. Accordingly,
the sender sends more packets. We approximate this by rewriting
the expression of []RLE w in equation (9) as

4

2

1
()

2
max(3,)

2[] (1,)(1 (1))
j

j jj j

w j
j

w
w mw m

RL j j
RL m

E w B w m p
P

−

−

−
′′−

′ =

′ ′= − − −∑ .(22)

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 264 0-7803-9415-1/05/$20.00 © 2005 IEEE

For other cases studied in Part C of Section VI, Sack flows

behave similarly as that under bursty packet loss model. After
replacing (6) with (19), (7) with (20), (8) with (21), and (9) with
(22), the Sack throughput under independent loss is given similar to
that under bursty loss model as shown in Section VI.

VI. MODEL VALIDATION AND COMPARISON

We validate the proposed analytical models with the ns-2
simulator. The simulated network is shown in Fig. 3. Packets of
1KB are used. For simulations with independent loss, the Error
Model implemented in ns-2 is used. Since bursty loss is not
implemented in ns-2, we derive a Bursty Loss Model from the basic
Error Model class. This Bursty Loss Model drops packets with
probability p , the exact loss event ratio. After a packet is selected
for dropping, all the subsequent packets in the same rounds are also
dropped. This follows the assumption of the bursty loss model in
Section II. In the simulations, the (Bursty) Error Model is placed
before the queue of the link from nodes G to R.

Fig. 4 compares the simulation results with the analytical results
from [2] (denoted “pad2000”), from [3] (denoted “sik2003”), and
from our model (denoted “proposed bursty” and “proposed indep”).
Each of the points in Fig. 4 is an average of 2000 simulation runs,
with each simulation run lasting for at least 200 timeouts. Each of
our proposed models is clearly a better match to the simulation
results. Although the model of [2] is for TCP performance under
bursty loss, it is in fact closer to the performance under independent
loss. We agree with Altman’s [8] opinion that although the model in
[2] may be close to the real throughput in some cases, its accuracy
is due to error cancellation between the model for TCP and the
model for packet loss.

The accuracy of our proposed model is mainly due to two
improvements over previous efforts, the analysis of fast recovery

which results in a more accurate representation of timeout
probability, and the analysis of slow-start which provides a more
reasonable TCP window evolution model.

VII. CONCLUSION

Despite the rich literature on modeling TCP, we find two
common deficiencies with the existing approaches. First, none of
the work gives sufficient treatment to slow-start, although almost all
of them show that retransmission timeout events are common.
Second, the probability that retransmission timeout occurs may
have been underestimated, because retransmission timeout is
coupled with fast retransmit and fast recovery but fast recovery has
not been properly modeled in the previous efforts. In this paper,
new analytical models for predicting the steady state throughput of
TCP flows are proposed. All major TCP mechanisms, including
slow-start, congestion avoidance, fast retransmit, and fast recovery,
are jointly considered under both bursty and independent losses. We
show that our proposed models can capture the TCP performance
more accurately.

REFERENCES
[1]. N. Cardwell, S. Savage, and T. Anderson, "Modeling TCP latency," in

Proceeding of Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, (INFOCOM '00), vol. 3, pp. 1742-1751,
Mar. 26-31, 2000, Tel Aviv, Israel, 2000.

[2]. J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, "Modeling TCP
Reno Performance: A Simple Model and Its Empirical Validation,"
IEEE/ACM Transactions on Networking, vol. 8, pp. 133-145, 2000.

[3]. B. Sikdar, S. Kalyanaraman, and K. S. Vastola, "Analytic Models for the
Latency and Steady-State Throughput of TCP Tahoe, Reno, and SACK,"
IEEE/ACM Transactions on Networking, vol. 11, pp. 959-971, 2003.

[4]. I. Khalifa and L. Trajkovic, "An overview and comparison of analytical
TCP models," in Proceeding of IEEE. the 2004 International Symposium
on Circuits and Systems, 2004. ISCAS '04, vol. 5, pp. 469-472 Vol.5,
2004.

[5]. S. Fortin and B. Sericola, "A model of TCP in wide area networks," in
Proceeding of 10th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems, 2002,
(MASCOTS'02), pp. 453-462, Oct. 12-16, 2002, Fort Worth, Texas, USA,
2002.

[6]. D. Zheng, G.Y. Lazarou, and R. Hu, "A stochastic model for short-lived
TCP flows," in Proceeding of IEEE International Conference on
Communications, 2003, (ICC'03), vol. 1, pp. 76-81, May 11-15, 2003,
Anchorage, AK, USA, 2003.

[7]. T. J. Ott, T. V. Lakshman, and L. H. Wong, "SRED: stabilized RED," in
Proceeding of Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM '99), vol. 3, pp. 1346-1355,
Mar. 21-25, 1999, New York, NY, USA, 1999.

[8]. E. Altman, K. Avrachenkov, and C. Barakat, "A stochastic model of
TCP/IP with stationary random losses," ACM Computer Communication
Review, vol. 30, pp. 231-242, 2000.

[9]. B. Sikdar, S. Kalyanaraman, and K. S. Vastola, "An integrated model for
the latency and steady-state throughput of TCP connections," Performance
Evaluation, vol. 46, pp. 139-154, 2001.

[10]. H. Handley, S. Floyd, J. Padhye, and J. Widmer, "TCP Friendly Rate
Control (TFRC): Protocol Specification," in RFC3448, 2003.

[11]. K. Zhou, K. L. Yeung, and V. O.K. Li, "On Bursty Packet Loss Model for
TCP Performance Analysis," in Proceeding of 2005 IEEE Workshop on
High Performance Switching and Routing (HPSR'05), May 12-14, 2005,
Hong Kong, China, 2005.

[12]. S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, "An Extension to the
selective acknowledgement (SACK) option for TCP," in RFC 2883, 2000.

[13]. V. Paxson and M. Allman, "Computing TCP's Retransmission Timer," in
RFC2988, 2000.

Fig. 4. Comparison of throughput estimations

Fig. 3 The simulated network

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject

IEEE Globecom 2005 265 0-7803-9415-1/05/$20.00 © 2005 IEEE

