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Abstract— Despite the rich literature on modeling TCP, we find 
two common deficiencies with the existing approaches. First, none 
of the work gives sufficient treatment to slow-start, although almost 
all of them show that retransmission timeout events are common. 
Second, the probability that retransmission timeout occurs has 
been underestimated, because retransmission timeout is coupled 
with fast recovery but fast recovery has not been properly modeled 
in the previous work. In this paper, new analytical models for 
predicting the steady state throughput of TCP flows are proposed. 
All major TCP mechanisms, including slow-start, congestion 
avoidance, fast retransmit, and fast recovery, are jointly considered 
under both bursty and independent loss models. We show that our 
proposed throughput models capture TCP performance more 
accurately. 

Index Terms — Bursty Loss, Independent Loss, TCP 
Performance, Slow-Start, Fast Recovery 

I. INTRODUCTION 

Internet traffic is dominated by TCP [1], whose dynamics  
greatly influence the overall performance of the Internet. In order to 
have a better understanding of TCP, numerous analytical models 
have been proposed (e.g. [1-9]). Most of them focus on modeling 
the steady state TCP throughput, and some investigates the transfer 
delay for short transactions. Among them, probably the most widely 
accepted TCP steady state model is introduced in [2], and it is 
subsequently adopted by TFRC [10]. However, after studying TCP 
performance under the general stationary ergodic loss model, 
Altman et al. [8] point out that the model of TCP in [2] may not be 
accurate. They claim that the correctness of the model in [2] is due 
to error cancellation between the model for TCP and the model for 
packet loss.  

Despite the rich literature on modeling TCP, we find two 
common deficiencies with the existing approaches. First, none of 
the work gives sufficient treatment to TCP slow-start, although 
almost all of them show that retransmission timeout events are 
common. (Note that a TCP flow must enter slow-start if a timeout 
occurs.) Second, the cause of retransmission timeout is not analyzed 
with the level of details it deserves, although almost all of the 
previous efforts notice that timeout greatly degrades TCP 
performance. (Note that a TCP flow sends little or no packet during 
the long duration of timeout.) Fast retransmit and fast recovery 
algorithms are the major causes of retransmission timeout, but only 
[3] has analyzed fast recovery under the simplified assumption of 
no retransmission loss. The work in [11] also pointed out that 
retransmission timeout for Reno under bursty loss is much more 

severe than what is shown in [2] with the analysis of fast recovery. 
Motivated to find a more accurate model for TCP steady state 

throughput, we extend the work in [2] to analyze slow-start and fast 
recovery, and extend the analysis of fast recovery in [3] to include 
retransmission timeout caused by loss of retransmitted packets. 
Two of the most widely accepted packet loss models are adopted in 
our study, bursty loss [1-3, 6, 7] and independent loss [3, 8]. Since 
TCP Sack [12] is the current IETF recommendation of TCP 
implementation, Sack is assumed in our analysis. Simulations are 
used to validate our analytical models. We show that without 
considering slow-start and fast recovery, previous models cannot 
accurately capture TCP performance.  

The rest of the paper is organized as follows. Section II 
summarizes the key features of TCP Sack. Section III introduces the 
assumptions, definitions, and notations to be used in the analysis. 
Section IV presents the TCP throughput model under bursty loss. 
Section V gives the throughput model under independent loss. 
Section VI validates our proposed models by simulations. Section 
VII concludes the paper.  

II. TCP SACK 

The Selective Acknowledgment (Sack) option [12] was 
introduced to improve TCP performance when multiple packets are 
lost from a window of data. With Sack, the data receiver can inform 
the sender about all packets that have arrived successfully, so the 
sender needs to retransmit only the packets that have actually been 
lost. 

When the sender receives triple duplicate ACKs (TD), it 
responds with fast retransmit, i.e. it retransmits the first 
unacknowledged packet, sets the slow-start threshold ( H ) to 

2max( ,2)cwnd , then halves its congestion window ( cwnd ) and 
activates the fast recovery algorithm. Upon receiving an ACK that 
acknowledges all the outstanding data when fast recovery was 
triggered ( maxseq ), the sender exits fast recovery. In fast recovery, 
Sack uses a variable pipe  to estimate the number of packets 
outstanding in the network. The sender sends new or lost packets 
only if the value of pipe  is less than cwnd . When TD is received, 
pipe is set to 3cwnd − . With each packet transmission or 

retransmission, pipe  increases by one. When a duplicate ACK 
arrives and reports that new data has successfully arrived at the 
receiver, pipe  is decreased by one. To ensure Sack never recovers 
more slowly than slow-start, Sack decreases the pipe  by two with 
the receipt of a partial ACK (an ACK received in the fast recovery 
that advances the acknowledgment number field but does not take 
the sender out of fast recovery). Throughout this paper, we assume 
the Sack implementation in [12]. 
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Retransmission timeout [13] is used as the last resort to recover 
lost packets. Every time a data packet is sent, if the retransmission 
timer is not running, a new timer is started and counted down with 
an initial value of  0t  seconds. 0t  is given by 
 0 min(60,max(1, 4 ))t RTT RTTVAR= + ⋅ . (1) 
where RTT  is the round trip time and RTTVAR  is the variance of 
the round trip time. If another timeout occurs before receiving an 
ACK that acknowledges maxseq , the sender backs off its 
retransmission timer by setting it to 02t . From (1), the doubling of 
retransmission timer is only effective when 0t  (before doubling) is 
smaller than 60 seconds. 

When the sender’s retransmission timer expires, the sender sets 
H  to max( / 2,2)cwnd  and restarts with slow-start, i.e. the sender 
resets cwnd  to 1 and increases it by one with each received ACK, 
until the slow-start threshold H  is reached. From that time 
onwards, congestion avoidance takes over. In congestion 
avoidance, the sender increases its cwnd  linearly by 1/ cwnd  with 
each received ACK until the sender receives TD or the 
retransmission timer expires. 

III.  ASSUMPTIONS, DEFINITIONS, AND NOTATIONS 

We focus only on the transport layer performance, the delays 
introduced by other layers, such as those caused by scheduling or 
buffering in the session or application layers and contention in the 
data-link layer, are not considered. We also do not consider the 
connection establishment time needed for a TCP flow. We assume 
that for the duration of the data transfer, the sender always sends 
full-sized packets as fast as its congestion window allows, and the 
receiver advertises a consistent flow control window. As the steady 
state throughput is modeled, we assume the duration of data transfer 
is long enough such that the flow experiences enough packet losses. 

We model the performance of TCP in terms of “rounds.” A 
round begins with the transmission of a window of packets and ends 
upon the receipt of one or more ACKs of these packets, which 
implies that the time needed to send out all the packets in a window 
is smaller than the duration of a round. Therefore the duration of a 
round is independent of the window size, and is determined mainly 
by the round trip propagation delay. 

For the characterization of packet losses, two of the widely 
investigated loss models are adopted, bursty loss [1-3, 6, 7] and 
independent loss [3, 8]. The independent loss model assumes all the 
packet losses in the network are independent, with stationary loss 
ratio Ip . In the bursty loss model, the loss probability of a packet 
in a round is independent of any packet loss in other rounds. In the 
same round, the loss probability of a packet depends on whether the 
previous packet in the same round is lost. If the previous packet is 
lost, the current packet is also lost; otherwise the packet is lost with 
probability p . So if a packet is lost in a round, all subsequent 
packets in the same round are also lost. Similar to [1-3, 6, 7], we 
assume that the probability of packet loss is independent of the 
window size, and we do not consider ACK packet losses. For bursty 
loss, we treat all the correlated packet losses in the same round as a 
single loss event, and refer to p  as the loss event ratio. For 
independent loss, since there is no correlation between packet 
losses, a loss event has exactly one lost packet, so the value of Ip  is 
exactly the same as p . For simplicity of discussion, we use symbol 

 
Table I. Notation list. 

TO
iZ  the duration of the i -th TOP 
TD
iZ  the duration between ( 1)i − -th and i -th TOP 

ijH  slow-start threshold when the j -th TDP of TD
iZ  begins 

ijw  cwnd  when the j -th loss event of TD
iZ  is detected 

rw  the receiver’s advertised window size 

iR  the number of packets sent during TO
iZ  

in  the number of TDP’s in interval TD
iZ  

ijY  packets transmitted in the j -th TDP of TD
iZ  

ijA  the duration of the j -th TDP of TD
iZ  

p  but not Ip  when studying the performance under the 
independent loss model. 

We plot the generalized evolution of a TCP sender’s congestion 
window in Fig. 1. We define timeout period (TOP) as the duration 
from when the retransmission timer to be expired is set, to when the 
packet that successfully recovers the data transmission is sent. We 
define triple duplicate period (TDP) as the duration from when the 
sender begins to increase its transmission rate (i.e. enters slow-start 
or congestion avoidance) to the start of the successive TDP or TOP. 
The list of notations to be used is summarized in the table below. 

We define 1/ [ ]Q E n= , where [ ]E n  is the expectation of in . So 
Q , or timeout probability, is the probability that a timeout occurs 
given that a loss event happens. The steady state throughput T  is 
thus given by 

 [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]TD TO TO

E n E Y E R E Y Q E RT
E Z E Z E A Q E Z

+ + ⋅= =
+ + ⋅

. (2) 

Note [ ]TOE Z  is generally far bigger than [ ]E A , but [ ]E R  is far 
smaller than [ ]E Y . In the following two sections, we will derive all 
the variables on the right hand side of (2) under both bursty loss 
model and independent loss model. 

IV. THROUGHPUT UNDER BURSTY LOSS 

A. A closer look on TDP 
Without loss of generality, we consider the evolution of the 

congestion window in a particular TDP in Fig. 2. For simplicity, we 
drop the subscript i  in all the notations defined earlier. To capture 
the difference in slow-start, congestion avoidance, and fast 

Fig. 1. Evolution of congestion window size 
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recovery, jA  in Fig. 2 is further divided into three periods, Pre-CA, 
CA and post-loss. The CA period is from when the sender enters 
congestion avoidance to one round after the loss event. The Pre-CA 
period is from the start of TDP to the start of CA. The post-loss 
period covers the rest of the TDP.  

Respectively, we denote the number of packets sent in Pre-CA, 
CA and post-loss periods of the j -th TDP as jµ , jβ , and jr , and 
the duration of each period as sjX , cjX , and rjX . From Fig. 2, jY  
and jA  are given by 
 j j j jY rµ β= + + , (3) 
 j sj cj rjA X X X= + + . (4) 

Let packet 1jα +  be the first packet lost in a given loss event. 
We have 

 1[ ] 1 [ ] [ ]E E E w
p

α µ β= − = + − , (5) 

where [ ]jw E w= . The problem of TCP performance modeling is 
then transformed to the analysis of TCP reaction under a given 
packet loss in each of the timeout period, Pre-CA, CA, and post-
loss. 

B. Timeout Probability 
We call the round where a loss event occurs as the “loss round” 

and all subsequent rounds as the “ -thd  post-loss round”, where d  
is the round-distance from the loss round.  

Let 1jy +  be the sequence number of the first packet sent in 
the loss round, 1j jy k+ +  the sequence number of the first lost 
packet in the loss round, and 1j j jy w m+ + +  the sequence 
number of the first lost packet in the 1st post-loss round. Under 
the bursty loss model, all packets following 1j jy k+ +  in the loss 
round are also lost. However, since jk  packets are 
acknowledged, another jk  packets can be sent in the 1st post-
loss round. Assume another loss event may occur among these 

jk  packets, say at 1j j jy w m+ + + . jm  is the number of duplicate 
ACKs received by the sender. If jm  is bigger than three, the 
sender receives a TD and 1j jy k+ +  is retransmitted. The sender 

then changes to fast recovery. If jm  is smaller than two, a 
timeout occurs. We refer to this kind of timeouts as No Triple 
Duplicate ACKs (NTD). We call all the loss events followed by 
a retransmission timeout as timeout losses, and the loss event 
causing NTD timeout as NTD timeout loss. 

Let ( , )A s l  be the probability that the first l  packets are 
acknowledged in a round of s  packets sent, given there is a loss 
event in the round. Then 

 (1 )( , )
1 (1 )

l

s

p pA s l
p

−=
− −

. 

Let ( , )C s l  be the probability that s  packets are sent but only the 
first l  packets are acknowledged, and the rest of the packets in the 
round are lost. Then 

 
(1 ) ,

( , ) (1 ) ,
0,

l

s

p p l s
C s l p l s

l s

 − <
= − =
 >

. 

The probability that the sender receives exactly jm  duplicate 
ACKs in the 2nd post-loss round ( )jP m  is given by 

 
1

( ) ( , ) ( , )
j

j j

w

j j j j j
k m

P m A w k C k m
−

=

= ∑ . 

Let ( )NTD jP w  be the probability that an NTD timeout occurs 
given that a loss event has happened. ( )NTD jP w  is given by 

 
33 3(1 (1 ) )(1 (1 ) (1 (1 ) ))( ) min(1, )

1 (1 )

j

j

w

NTD j w

p p pP w
p

−− − + − − −=
− −

. (6) 

Note that in fast recovery, there is no guarantee that the sender 
will send new or lost packets when the ACK for the first 
retransmitted packet arrives. The sender sends (new or lost) packets 
only if the value of pipe  is less than cwnd . When the sender enters 
fast recovery, pipe  is set to 3jw −  and cwnd  is set to / 2jw . With 
each additional duplicate ACK received, pipe  is decreased by one. 
After the sender receives the partial ACK corresponding to the 
retransmission of 1j jy k+ + , pipe  is decreased by two. So if 

2 / 2j j jw m w− − ≥ , a timeout occurs. We call it a Not Recoverable 
(NR) timeout, and the corresponding loss event as NR timeout loss. 
Let ( )NR jP w  be the probability that an NR timeout occurs given that 
a loss event has happened. ( )NR jP w  is given by 

 
/ 2 2

2
3

( ) ( 2 | 3) ( )
j

j

j

w
w

NR j j j j j
m

P w P w m m P m
−

=

= − − ≥ ≥ = ∑ . (7) 

Note that the sender retransmits a packet at most once before 
retransmission timeout. When 2 / 2j j jw m w− − < , suppose one of 
the retransmitted packets is lost, a timeout occurs. We call it 
Retransmission Loss (RL) timeout, and call the associated loss 
event RL timeout loss. The probability of having an RL timeout 
given that a loss event happened is ( )RL jP w , where  

 
4

2

1 1

0max(3, )

( ) ( ) ( , )
j j j

w j
j

w w m

RL j j j
im

P w P m C m i
−

− − −

==

= ∑ ∑ . (8) 

When an RL timeout loss occurs, the TCP flow sends out packets 
continuously before the retransmission timer expires. In fact, from 

jH
jα

jk
jµ

sjX
CjX

jw

jA

jr

rjX

jβ

Fig.2. Congestion window and packets sent in a TDP
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the 4th post-loss round till the retransmission timer expires, the 
sender receives only duplicate ACKs (instead of partial ACKs). 
Assuming no more packet loss in this duration, the number of 
duplicated ACKs received in each round is constant. This is 
equivalent to having an effective congestion window RLw  that 
controls the transmission rate of the TCP flow in this duration. The 
value of RLw  is two times the number of partial ACKs received in 
the 3rd post-loss round, and is given by 

 
1 1

4 0
max(3, )

2

2[ ] ( ) ( , )
( )

j j j

j
j

w w m

RL j j
w iRL j m

E w P m i C m i
P w

− − −

− =
=

= ⋅∑ ∑ . (9) 

To account for all the timeout possibilities of Sack, the overall 
timeout probability Q  for Sack connections is given by  
 ( ) ( ) ( )NTD j NR j RL jQ P w P w P w= + + . (10) 
From (10), we can see that the timeout probability is a function of 
both p  and jw . 

C. Throughput model 
We next derive the throughput model by calculating the 

expectation for other variables in (2), (3), and (4). Our definition of 
post-loss period begins with the 2nd post-loss round. From Figs. 3 
to 5, the expectations of jr , the number of packets sent in a post-
loss part, and its duration rjX , are given by 
 [ ] RL NRE r P P= + , (11) 
 [ ]r NR NTDE X P P= − . (12) 

From [2], [ ]TOE Z  the expectation of the duration of a timeout 
period is 

 
2 3 4 5 6

0
1 2 4 8 16 32[ ]

1
TO p p p p p pE Z t

p
+ + + + + +=

−
. (13) 

As shown in Part B of this section, if RL timeout occurs, TCP 
flows send out packets continuously before the retransmission timer 
expires. With [ ]RLE w  given by (9), we change the representation of 

[ ]E R , the expectation of the number of packets sent in a timeout 
period, obtained in [2] to 

 0 1[ ] [ ]
1

RL
RL

P tE R E w
Q RTT p

= +
−

. (14) 

When NR or RL timeout occurs, the TCP flow experiences two 
congestion slowdowns. The sender sets the slow-start threshold H  
to 2max( ,2)cwnd  when the retransmission timer expires, where cwnd  
has already been halved with fast retransmit. Thus, the expectation 
of H  is 
 [ ] max((2 ) / 4,2)NR RLE H P P w= − − . 

In the above equation, for simplicity, we have ignored the losses 
in TOP, and we believe that the error introduced in H  should be 
negligible. Our analysis indicates that w  increases inversely with 
p . When p  is small, timeout losses seldom occur. When p  is 

large, timeout losses become common, but H  tends to be bounded 
by 2. 

In the Pre-CA period, the expectation of jµ , the number of 
packets sent, and its duration sjX  are 

 2log [ ] 1[ ] 2 HE µ +  = , (15) 
 2 2[ ] log ( ) log (max((2 ) / 4,2))s NR RLE X H P P w= = − − . (16) 

In the CA period, the sender’s cwnd  starts with [ ]E H . Thus we 
have 
 [ ] [ ] 1cE X w E H= − + , (18) 

 
[ ] 1

0
[ ] ( )

2

cE X

i

wE H iβ
−

=

= + +∑ . (17) 

With (16), µ  is shown with w . Similarly β  is shown with w  in 
(17), so w  can be calculated by solving equation (5). Note that the 
variables in (3) are  functions of p  and w , such as µ  in (16), β  in 
(17), and r  in (11), so [ ]E Y  is determined with a given p . 
Similarly, with sX  in (16), cX  in (18), rX  and (12),  [ ]E A  is 

also determined with a given p . Hence, with Q , R , and TOZ  
given by (10), (13), and (14) respectively, Sack throughput of 
equation (2) under bursty loss can be obtained. 

V. THROUGHPUT UNDER INDEPENDENT LOSS 

A. Timeout probability 
With independent loss, let ( , )B s l′  be the probability that exactly 

l  packets are acknowledged with s  packets sent. Then 

 ( , ) (1 )l s ls
B s l p p

l
− ′ = − 

 
. 

We first investigate how NTD timeout happens with independent 
loss. Since all packets before the first lost packet are acknowledged, 

1jw −  packets are sent following the first lost packet. Among these 
1jw −  packets, we define the number of packets that are 

successfully acknowledged by jm′ . It is easy to see that if 3jm′ < , 
NTD timeout loss occurs. So we have  

 
2

0
( ) ( 1, )

j

NTD j j j
m

P w B w m
′ =

′ ′= −∑ . (19) 

If NR timeout loss occurs, we have 2 2 3jw
jm′− ≥ ≥ . So ( )NR jP w  

is given by 

 
/ 2 2

3
( ) ( 1, )

j

j

w

NR j j j
m

P w B w m
−

′ =

′ ′= −∑ . (20) 

The number of packets to be retransmitted is j jw m′− . Any loss 
among the j jw m′−  retransmitted packets causes RL timeout. So 

( )RL jP w  is given by 

 
4

1
( )

max(3, )
2

( ) ( 1, )(1 (1 ) )
j

j j

j
j

w
w m

RL j j j
w

m

P w B w m p
−

−
′−

′ =

′ ′= − − −∑ . (21) 

Substituting (19) to (21) into (10), timeout probability Q  can be 
found. 

B. Throughput model 
Compared with the bursty loss model, when RL timeout occurs, 

the sender receives more duplicate ACKs because not all the 
packets following the loss in the same round are lost. Accordingly, 
the sender sends more packets. We approximate this by rewriting 
the expression of [ ]RLE w  in equation (9) as 

 
4

2

1
( )

2
max(3, )

2[ ] ( 1, )(1 (1 ) )
j

j jj j

w j
j

w
w mw m

RL j j
RL m

E w B w m p
P

−

−

−
′′−

′ =

′ ′= − − −∑ .(22) 
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For other cases studied in Part C of Section VI, Sack flows 

behave similarly as that under bursty packet loss model. After 
replacing (6) with (19), (7) with (20), (8) with (21), and (9) with 
(22), the Sack throughput under independent loss is given similar to 
that under bursty loss model as shown in Section VI. 

VI. MODEL VALIDATION AND COMPARISON 

We validate the proposed analytical models with the ns-2 
simulator. The simulated network is shown in Fig. 3. Packets of 
1KB are used. For simulations with independent loss, the Error 
Model implemented in ns-2 is used. Since bursty loss is not 
implemented in ns-2, we derive a Bursty Loss Model from the basic 
Error Model class. This Bursty Loss Model drops packets with 
probability p , the exact loss event ratio. After a packet is selected 
for dropping, all the subsequent packets in the same rounds are also 
dropped. This follows the assumption of the bursty loss model in 
Section II. In the simulations, the (Bursty) Error Model is placed 
before the queue of the link from nodes G to R. 

Fig. 4 compares the simulation results with the analytical results 
from [2] (denoted “pad2000”), from [3] (denoted “sik2003”), and 
from our model (denoted “proposed bursty” and “proposed indep”). 
Each of the points in Fig. 4 is an average of 2000 simulation runs, 
with each simulation run lasting for at least 200 timeouts. Each of 
our proposed models is clearly a better match to the simulation 
results. Although the model of [2] is for TCP performance under 
bursty loss, it is in fact closer to the performance under independent 
loss. We agree with Altman’s [8] opinion that although the model in 
[2] may be close to the real throughput in some cases, its accuracy 
is due to error cancellation between the model for TCP and the 
model for packet loss. 

The accuracy of our proposed model is mainly due to two 
improvements over previous efforts, the analysis of fast recovery 

which results in a more accurate representation of timeout 
probability, and the analysis of slow-start which provides a more 
reasonable TCP window evolution model.  

VII. CONCLUSION 

Despite the rich literature on modeling TCP, we find two 
common deficiencies with the existing approaches. First, none of 
the work gives sufficient treatment to slow-start, although almost all 
of them show that retransmission timeout events are common. 
Second, the probability that retransmission timeout occurs may 
have been underestimated, because retransmission timeout is 
coupled with fast retransmit and fast recovery but fast recovery has 
not been properly modeled in the previous efforts. In this paper, 
new analytical models for predicting the steady state throughput of 
TCP flows are proposed. All major TCP mechanisms, including 
slow-start, congestion avoidance, fast retransmit, and fast recovery, 
are jointly considered under both bursty and independent losses. We 
show that our proposed models can capture the TCP performance 
more accurately.  
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