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Abstract-In this paper, we study the timeout probahility of 
TCP Reno under the bursty packet loss model, which is widely 
used to represent the loss characteristics of TCP under droptail 
FIFO queues. With a detailed analysis on the three timeout reaGons 
for TCP Reno, we show that the impact of timeout has been 
underestimated in the existing literature. Surprisingly, we find that 
this more precise representation of timeout probahility does not 
match the actual performance of TCP under drop-tail FlFO 
queues. Therefore we conclude that the bursty loss model is 
incapable of capturing the behavior of drop-tail F1FO queues, and 
wing bursty loss model to analyze TCP performance is flawed. 

I. INTRODUCTION 

TCP dominates the Intemet traffic [121. Its performance 
affects the performance of the overall Intemet. Analytical 
models for TCP give us a better understanding of the sensitivity 
of TCP performance to various network parameters. They also 
provide insights in the design of active queue management [7 ]  
and TCP-friendly rate control schemes [lo]. Existing TCP 
analytical models focus on the steady-state throughput of long- 
lived TCP flows [1,2,61 orland the transfer delay of short-lived 

A fundamental issue in modeling TCP performance is to 
determine the packet loss model to be adopted. Of the existing 
TCP analyucal models, the bursty loss model is widely used 
[1-5], and it is assumed to be an idealization of drop-tail FIFO 
queueing, i.e. when a FIFO queue is full, all subsequently 
arrived packets that belong to the same burst (to be formally 
defined later) will be dropped. An important steady-state 
throughput model based on bursty loss model was proposed in 
[I]. The throughput equations derived there have also been 
recommended for adoption by TCP-friendly rate control 
protocol [ 101. 

In this paper, we determine if the bursty loss model is suitable 
for analysis of TCP performance over FIFO queue. Although it 
is  inferred in [ l]  that for TCP Reno the probability of timeout 
after a bursty loss is high, it does not model fast recovery. In [ZI, 
it is found that the probability of timeout with TCP Sack is 
about 50 percent under bursty loss after modelling fast recovery, 
and emphasizes the importance of the proper determination of 
loss model for TCP performance study. After modelling fast 
recovery, with a detailed analysis on three possible timeout 
reasons, we show that bursty loss also causes a very high 
timeout probability in TCP Reno. Although such high timeout 
probability is consistent with the simulation results based on the 
exact loss model, it does not match the actual performance of 
TCP Reno under drop-tail FIFO queues. This shows that the 
currently prevailing bursty loss model cannot precisely capture 
the loss characteristics of TCP Reno under drop-tail FIFO 
queues, so adopting it for TCP performance analysis is flawed. 

TCP flows [2-61. 

Tbis research is supported in part by the Research Grants Council of 
Hong Kong under Grant No. 7044/02E. 

The rest of this paper is organized as follows. Section Il 
reviews the important mechanisms of TCP Reno. Section III 
presents the definition and assumptions adopted in our analysis. 
Section IV derives the timeout probability of TCP Reno under 
bursty loss model. Section V validates our analytical model and 
compares our analysis with simulation results. Section VI 
concludes this paper. 

II. THE MECHANISM OF TCP RENO 

TCP [ 81 is a window-based, connection-oriented, reliable 
transport layer protocol. L e t  the next packet to be acknowledged 
as W3brj. The sequence numbers of all the outstanding packets is 
then denoted by [W,,,,,W,, + cwnd - 11 . With each ACK 
received, Wsm,,, increases by a value equal to the number of 
packets acknowledged. This allows more data packets to be 
sent. To keep track of the packets sent, the sender maintains a 
variable m x s e q  , which stores the highest sequence number the 
sender has sent out+ Accordingly, a new packet can be sent out 
only if 

W,,, + cwnd - 1 > mxseq . (1) 
TCP Reno I81 adds slow-smt, congestion avoidance, fasr 

retransmit and fast r e c o v q  algorithms to the original TCP. 
During the slow-start phase, the sender increases its cwnd hy 
one with each ACK, until the slow-start threshold W is reached 
and the congestion avoidance phase takes over. In congestion 
avoidance, the sender increases its cwnd linearly by 1/"d 
with each ACK received. If triple duplicate ACKs (TD) are 
received, the sender infers a packet loss and retransmits the lost 
packet, i.e. fast retransmit. The sender then sets H to c w n d / 2 ,  
halves its m d  and activates the fast recovery algorithm. In 
fast recovery, the sender treats each duplicate ACK as a signal 
that one packet has left the network. To keep the pipe between 
the sender and the receiver full, the sender increases its usable 
congestion window by one for each duplicate ACK received. 
When the retransmitted packet is acknowledged, the sender 
exits fast recovery and sets cwnd to H . Then the sender enters 
the congestion avoidance phase again. Note that TCP Reno can 
retransmit at most one lost packet per round-trip-time (RTI3. 
Since the arrival of duplicate ACKs implies that the receiver did 
receive some packets that follow the loss, the value of m s e q  is 
not cleared and his prevents the unnecessary re-sending of data 
that has already been received. 

Retransmission timeout [9] is used as the last resort to 
recover lost packets. Every time a data packet is sent, if the 
retransmission timer is not running, a new timer is started to 
count down with an initial value of to seconds, to is given by 

to =min(SO,max(l,RTT+4.RTTVAR)). (2) 
where R7T is the round trip time and RTTKAR is the 

variance of the round trip time. In the case that another timeout 

0-7803-8924-7/05/S20.00 ( ~ ) 2 0 0 5  JEEE. 292 



occurs before receiving an ACK that acknowledges 
nzmseq(when fast recovery starts), the sender back uff its 
retransmission timer by setting it to 2,. From i2), the doubling 
of the retransmission timer is only effective when r, (before 
doubling) is smaller than 60 seconds. 

UI. DEFINITION AND ASSUMPTIONS 

For ease of our later presentation, this section introduces our 
assumptions for the analysis in Section IV and our definition of 
rimeour probabilfiy . 

Our analysis adopts the same set of assumptions about the 
end systems and network as in [1-31 and [SI. We consider a 
saturated TCP Reno sender, i.e., a flow with an unlimited 
amount of data to send. We also assume that a TCP connection 
is generally able to enter congestion avoidance phase before the 
next Ioss event. This helps us to simplify the analysis by 
neglecting the loss which occurs during the slow start. We 
assume that for the duration of the data transfer, the sender 
always sends fuIl-sized packets as fast as its congestion window 
allows, and the receiver advertises a consistent flow control 
window. The effects of Nagle algorithm and silly window 
syndrome avoidance [SI are not considered. 

We model the performance of TCP Reno in terms of 
“rounds.” A round begins wilh the transmission of a window of 
packets and ends on the receipt of one or more ACKs of these 
packets, which implies that the time needed to send out all the 
packets in a window is smaller than the duration of a round. 
Therefore the duration of a round is independent of the window 
size, and is determined mainly by the round trip propagation 
delay. Note that with TCP Reno congestion control, this means 
the congestion window size at the sender must always be 
smaller than the bandwidth-delay product of the path, so the 
flow is not fully utilizing the path bandwidth. 

The bursry loss mdel  [ I ]  is adopted. Let the probability that 
a packet is lost in a round be p . p is independent of any packet 
loss in other rounds. In the same round, whether a packet will be 
lost is determined by whether the previous packet in the same 
round is lost. If the previous packet is lost, the current packet is 
lost. Otherwise the packet is lost with probability p . In other 
words, if a packet is lost in a round, all the packets follow it in 

sequence number 
$. 

the same round (i.e. a bursr of packets) are lost. Like [l,5], we 
assume that the probability of packet loss is independent of 
window size and this is again only valid when flows are not 
fully utilizing the link. To simplify the discussion, ACK packet 
losses are ignored as [l-61. We treat all the correlated packet 
losses in the same round as a single foss evenr. 

From Section II, a TCP sender responds to packet losses with 
either fast retransmit [followed by fast recovery) or timeout. 
Given a packet loss evenr, we define the probability that the 
TCP sender has to recover its data transmission with timeout 
(i.e. fast retransmit fails to recover it) as the timeoutprobnbilip, 
or Q .  

Iv. TIMEObT PROBABILlTY 

A. How does rimeour happen? 

After a loss event, three conditions may trigger the 
retransmission timeout. We call them the three timeout reasons. 

Reason I :  Not enough (i.e. 3) duplicate ACKs to t r iger  a 
triple duplicate ACKs (TD) indication after a loss event. This is 
what has been discussed in detail in [l]. 

Reason 2: After the lost packet is retransmitted, if the 
retransmission fails again, a timeout occurs. Note that although 
the sender may send out new packets during fast recovery, those 
packets will be achowledged by the same duplicate ACKs. The 
retransmission timer is not cleared and a timeout eventually 
occurs. 

Reason 3: Even after the retransmitted packet is successfully 
acknowledged, timeout may still happen. Upon receiving the 
ACK €or the retransmitted packet, the sender exits fast recovery 
and enters congestion avoidance. The data transfer is now 
regulated by the conditon stipulated in (1). Compared with when 
packet loss is detected, the sender now has a decreased cwnd 
and an increased WsD,, . Note there is no guarantee that 
W,,fl+cwnd-l>maxseq, and the sender may send no new 
packets and a timeour occurs. (We will elaborate more on this 
reason in the next subsection.) 

B. 

With the understanding of the three timeout reasons, we now 
focus on how packets are sent in the rouna’s following a loss 

What happens after a loss event? 

# 

i 

3rd psr-tow round 

Fig. 1 .  The rounds following the loss event 
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event. Our aim is to show that there are seven possible 
reactionslevents of 3 TCP Reno sender to a loss event. Then by 
conditioning on these seven events, the timeout probability is 
found. 

Fig. 1 tracks the packets sent in the rounds after a loss event. 
We refer to the round where a loss event occurs as the "l0s.s 
roimd' and all subsequent rounds as the "n-th posr-loss round," 
where n is the round-distance from the loss round. Let yi + l  
be the sequence number of the first packet in the loss round, and 
w, be the mid, Thus w, packets are sent in the Ioss round. 
Let yi + k,i + 1 be the sequence number of the first lost packet. 
With the bursty loss model, all packets following yi  + hj + 1 and 
in the loss round are also lost. However, since packets yi + 1 , 
y, + 2 ,  ..., pi +kli  are achowledged, another hi packets, 
y , + y + 1 ,  y a + n ; - t 2 ,  ..., yi+wi+k,; canbesentinthe lstpost- 
loss round. This round of packets may have another loss, say at 
packet si +w, + qc +1, then packets following it in the 1st post- 
loss round are also lost. The packets successfully sent in the 1st 
post-loss round are acknowldged by duplicate ACKs for y ,  + klJ 
in the 2nd post-loss round. The number of duplicate ACKs is 
equal to the number of successfully received packets in the 1st 
post-loss round, with our assumption that no ACK packet loss 
happens. If the number of such ACKs is more than three: then a 
Triple Duplicare (TD) ACKs indication occurs. We denote this 
event by TDI. Packet y, fk,, +1 is then retransmitted in h e  2nd 
post-loss round. If the number of duplicate ACKs is less than 
three, a limeout (TO) occurs. The associated event is denoted by 
TO1. Note that TO1 follows the timeout reason 1 .  Let P,,(wi) 
be the probability that TO1 occurs given that a loss event 
happened. From [l], PWD(wi) is given by 

In the 2nd post-loss round, after receiving the third duplicate 
ACK for jt +k,,  , the sender resends packet y, + k, + 1, set its 
w d  to wA, and enters fast recovery. The sender expands its 
usable congestion window size with the number of duplicate 
ACKs received. Since "I,, packets are acknowledged in the 2nd 
post-loss round, the usable congestion window at the end of this 
round is wA -f q, . From (l), another k2, packets may be sent out 
in this round, k ,  is given by 

W k,=m,,--, w h e r e 3 1 n 1 , , I ~ , S w , .  
2 

Among the k2c packets sent, another loss may happen. Let the 
first loss be y, +w, + k , ,  +m2, +1, so q, packets are 
acknowledged in the 3rd post-loss round. If the retransmitted 
packet y, i- k,, +- 1 is lost, a timeout occurs (which follows the 
timeout reason 2). We denote this event by T02. 

Let A(r1.m) be the probability that the first m packets are 
acknowledged in a round of n packets sent, given there is a loss 
event in the round. ?hen 

0 - P ) " P  
1 - (1- p)" ' 

A(& m )  = 

Let C(n,m) be the probability that n packets are sent out but 

only the first m packets are acknowledged, and the rest of the 
packets in the round are lost. Then 

[ ; , - , p l y ,  nISf1-1 

c(n.nf) = (1 - p)".  m = ? I  . 

I1 < nr 

Then P(nr,, 1 i )  be the probability that more than i packets 
are acknowledged in the 3rd post-loss round. !'(mi 2 il is given 

W .  t l  I 

by 

P ( q i  2 i )  = 5 A ( y , k , , )  C(k,,.m,,) 2 C(ml i -y ,m2j )  . 
43=3 .% =3 q , = i  

If the retransmitted packet is successfully received, and 
mzi < 3 ,  depending on the number of losl packets in the loss 
event, a timeout may occur (event T03) following the timeout 
reason 3, otherwise the data transfer is recovered (event E l ) .  
After receiving the ACK for retransmission, the sender's 
window size is determined by 

owid  = N; I2 
rizaxseq = .vi + wi + hi + tgi 

yi  -k kti + 2. 
' ( 3 )  

i f k l j  I w, - 2  

WSbd = yi +wi + k2< +1, 

After substituting (3) into (l) ,  we find that the data transfer 
can be recovered only if k,i = w, - 1 and mIi = k,, (no loss with 
the k,i packets sent in the 2nd post-loss round). Thus the 
probability that event RE1 occurs given the retransmitted packet 
in TDI has been successfully acknowledged is 

i f k l i  =w, - 1  and qi I. vi + wi + k,i + k2i + 1. if kli = wi - 1 and nili = kli 

A(w~,w> - 1)(1- p)'"-I 
4 ( W &  = 

(1 - PWD(WiN(l - p ) P ( m i  < 3) . 
When the retransmitted packet is successfully received and 
q, 23, if there are more than two packets lost in the loss 
event, triple duplicate (TD) ACK will be detected for the second 
time in the 3rd post-loss round (denote this event by TD2). The 
sender resends the second lost packet, halves its m n d  to wi, 
expands its usable congestion window by m2i and continues in 
fast recovery phase., In such case, a single loss event triggers 
two consecutive fast retransmits. The maximum of the usable 
congestion window in the 3rd post-loss round becomes 
wA +qi , which is smaller than the maximum of the usable 

congestion window in the 2nd post-loss round wA+rq,. At the 
same rime W,, increases only by 1, so no more packets can be 
sent in the 3rd post-loss round. The retransmission in event TD2 
may also be lost. Like the retransmision in event TDI, if the 
retransmitted packet is lost, a timeout that follows timeout 
reason 2 occurs (event TO4); if the retransmission is 
successfully ACKed, a timeout that follows timeout reason 3 
inay occur (event T05); otherwise the data transfer is recovered 
(event RE2). 

Y, + 4, + 3. if k,j I wj - 3  
yj +wi +m,, + J ,  if kj = y - 3 +  J,qi 5 bi - j 
yi + wi +k,, +n$, i-1, if hi i  =wi - 3 +  j , q i  > ki - j 

wherej = 1,2 

. (4) 
1 wm = 

cwnd = wi14 

maxseq = yi + w, + nGi + k,, 



Fig. 2. Different reachordevents after a loss event 
With the receiving of the ACK for the retransmission in event 

TD2, the sender's window size is given by (4). Given that he 
retransmitted packet of TD2 is successfully ACKed, the 
probability that event RE2 happens is 

,. 

k = l  P,(w,, = 

As the result, after a loss event, a TCP Reno sender may 
respond with one of the five timeout events (TO1 to T05) or 
one of the two recovery events (RE1 and RE2), whereas events 
TD1 and TD2 serve as inremediate events. Therefore the 
probability that a loss event causes retransmission timeout is 
given by 

(1- Pm(W)(1 - dP", 2 3) 

'POI (Y 1 = PMD (w, I 
P,,(W') = (1 - P,,(w, ))P 
P,,(W,J = (1 - Pm("l- P P ( 9 ,  < 31u ~ WYj) 

P,,(W,)=(l--~~(W'))(1-P)P(IIE2, 1 3 ) P  . ( 5 )  

P,,iY) = ( l - P k ( W , ) ) u -  p )p (m, ,  <3R:(Yl 
pTo5 (w,) = (l-  p M D  (W$ - p.)' P(m,, 31(1 - 4 ( w ~ ) )  

,Pm*(W,) = (1-P,,(w,))(l-P)2P(m,, 23)p,(w,) 

From (5 )  and (6), the timeout probability Q is expressed as a 
function of w , the expection of w, 

V. COMPARISON AND VALIDATION 

In this section, the analytical results of Q from ( 5 )  and (6) are 
compared with the simulation results based on the bursty loss 
model and drop-tail FIFO queues respectively. All the 
simulations use TCP Reno agent of ns-2.lb9 [ l l ]  and all the 
packets in the simulations are of size 1 KBytes. 

5 0 6 -  
3 
g 0 5 -  
a 

m 2 0 4 -  

0 2  - 

0 1  - 
0 ._,-,-.-.l.-.-.-.-.l.l.-.-.l.-l-l-l-l-l-,-, 

o 10 20 30 40 50 60 70 EO 90 loo 
w - congcstlon window size 

Fig. 3. Timeout probability of different reasons vs. w , p =0.001 

sender fburs& i u s  m&d/ 
Fig. 4 The simulation network for bursty loss model 

Fig. 3 plots Q ,  obtained from (5 )  and (6) with p=0.001, 
against congestion window size w .  The probabilities that a 
timeout is triggered by reason 1 only (P,,), reason 2 only 
( PTO, +Pro, 1, reason 3 only ( PTu3 + P,,), and the probability of 
recovery after a loss event ( PE, + PRE2 ) are shown. Although 
the probability of timeout triggered by reason 1 drops quickly 
with increasing w ,  the probability of timeout triggered by 
reason 3 increases. The overall timeout probability Q decreases 
quickly after w reaches 3, and slows down after point a, and 
starts to increase after point b. For all the w values Q is always 
high, with a minimum of about 0.6s as shown in Fig. 3. (Further 
analysis shows that increasing p results in decreasing w .  That 
part simply follows the method used in [l]  and is not introduced 
here due to space limitation.) 

Next we implement the bursty loss model based on the 
network in Fig. 4. Since the bursty loss model is not 
implemented in the ns simulator, we have derived such a bursty 
loss model from ns's basic errur model class. In our simulation, 
the bursty loss model is placed before the queue of link from 
nodes G to R, and all the queue buffers are sei big enough (5000 
packets) to avoid congestion loss. With p=O.OOl, the timeout 
probability of a TCP Reno connection is found to be 0.95 with 
w =41.27 packets. This result matches very well what is shown 
in Fig. 3. 

Fig. 5 compares the estimates of Q and P,, (the timeout 
probability in [l]) with simulation results based on the network 
of Fig. 4. This shows that our proposed analytical model is more 
accurate. Note that the work in [ l ]  only considers the timeout 
triggered by reason 1 ( P,, ). Therefore it has underestimated the 
timeout impact on the performance of TCP Reno. 

Finally we simulate the actual performance of TCP Reno 
based on the network in Fig. 5, where drop-tail FIFO routers are 
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problematic. 
We notice that the throughput model in [ 11 shows good match 

in the reported performance. However, [13] indicates that the 
correctness of the model in [ 11 may be due to error cancellation 
between the model for TCP and the model for packet losses. 
Comparing with the modelling methods proposed in this paper, 
the method used in [ 11 underestimates the timeout probability. 
Their results may match a loss pattern in which the dropping of 
successive packets in the same round is of a probability less 
than 100%. This again emphasizes that a proper determination 
of the loss model is of utmost importance in TCP performance 
study. 

We also notice that E. Altman et al. [13] have proposed a 
throughput model based on the general stationary ergodic loss, 
Their analysis, as in [l-71, does not consider the particular 
behavior that TCP Reno shows in fast recovery. Our future 
work in this area will focus on combining their work with the 
methods presented in this paper €or a more precise TCP 
performance model. 

VI. CONCLUSION 

This paper studies the timeout probability of a TCP Reno 
connection under the bursty loss model. We find that the impact 
of timeout has been underestimated. With a detailed analysis on 
three timeout reasons, our work captures the impact of timeout 
more precisely than previous works. Surprisingly, we find that 
this more precise representation of timeout probability does not 
match the actual performance of TCP under drop-tail FIFO 
queues. Therefore we conclude that the bursty loss model is 
incapable of capturing the behavior of drop-tail FIFO queues, 
and using bursty loss model to analyze TCP performance is 
flawed. 
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used. Assume there are N concurrent TCP flows. The bottleneck 
queue buffer size (at the output link from router go to gl )  is set 
to 100 packets. Table 1 summarizes the results under “FIFO 
queue,” where the dropping probability p has been normalized 
to represent the probabiltiy of loss event (loss occurring in the 
same round are counted as a single loss event). For comparison 
with the FIFO queue results, another set of simulations based on 
the bursty loss model are done using the same set of p ,  The 
network simulated is still the network in Fig. 5, but there is only 
one senderkeceiver pair. The bursty error model is placed 
before the output queue of the link from go to gl ,  and all the 
queue buffers are set large enough to avoid congestion loss. The 
results are shown under “Bursty-loss model” in Table 1. We see 
that there are significant differences between the values of Q in 
the two tables. The above comparison assumes that the 
influence of drop-tail FIFO queue to TCP connections can be 
represented solely by loss probability. Although the drop-tail 
FIFO queue also adds queue delay, its influence to timeout 
probability should be negligible. 

The discrepancy in the timeout probability results shows that 
the bursty loss model does not capture rhe loss characteristics of 
TCP under drop-tail FIFO queues well. Considering the 
significant influence of timeout on TCP performance, using this 
burstyjoss model to analyze the performance of TCP is indeed 
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