
Title On bursty packet loss model for TCP performance analysis

Author(s) Zhou, K; Yeung, KL; Li, VOK

Citation 2005 Workshop On High Performance Switching And Routing,
Hpsr 2005, 2005, p. 292-296

Issued Date 2005

URL http://hdl.handle.net/10722/45830

Rights Creative Commons: Attribution 3.0 Hong Kong License

On Bursty Packet Loss Model for TCP Performance Analysis
Kaiyu Zhou, Kwan L. Yeung and Victor OK. Li
Department of Electrical and Electronic Engineering

The University of Hong Kang, Pokfulam, Hong Kong, China
kyzhou @eee.hku.hk, kyeung @eee. hku. hk, vli @eee. hku. hk

Abstract-In this paper, we study the timeout probahility of
TCP Reno under the bursty packet loss model, which is widely
used to represent the loss characteristics of TCP under droptail
FIFO queues. With a detailed analysis on the three timeout reaGons
for TCP Reno, we show that the impact of timeout has been
underestimated in the existing literature. Surprisingly, we find that
this more precise representation of timeout probahility does not
match the actual performance of TCP under drop-tail FlFO
queues. Therefore we conclude that the bursty loss model is
incapable of capturing the behavior of drop-tail F1FO queues, and
wing bursty loss model to analyze TCP performance is flawed.

I. INTRODUCTION

TCP dominates the Intemet traffic [121. Its performance
affects the performance of the overall Intemet. Analytical
models for TCP give us a better understanding of the sensitivity
of TCP performance to various network parameters. They also
provide insights in the design of active queue management [7]
and TCP-friendly rate control schemes [lo]. Existing TCP
analytical models focus on the steady-state throughput of long-
lived TCP flows [1,2,61 orland the transfer delay of short-lived

A fundamental issue in modeling TCP performance is to
determine the packet loss model to be adopted. Of the existing
TCP analyucal models, the bursty loss model is widely used
[1-5], and it is assumed to be an idealization of drop-tail FIFO
queueing, i.e. when a FIFO queue is full, all subsequently
arrived packets that belong to the same burst (to be formally
defined later) will be dropped. An important steady-state
throughput model based on bursty loss model was proposed in
[I]. The throughput equations derived there have also been
recommended for adoption by TCP-friendly rate control
protocol [101.

In this paper, we determine if the bursty loss model is suitable
for analysis of TCP performance over FIFO queue. Although it
is inferred in [l] that for TCP Reno the probability of timeout
after a bursty loss is high, it does not model fast recovery. In [ZI,
it is found that the probability of timeout with TCP Sack is
about 50 percent under bursty loss after modelling fast recovery,
and emphasizes the importance of the proper determination of
loss model for TCP performance study. After modelling fast
recovery, with a detailed analysis on three possible timeout
reasons, we show that bursty loss also causes a very high
timeout probability in TCP Reno. Although such high timeout
probability is consistent with the simulation results based on the
exact loss model, it does not match the actual performance of
TCP Reno under drop-tail FIFO queues. This shows that the
currently prevailing bursty loss model cannot precisely capture
the loss characteristics of TCP Reno under drop-tail FIFO
queues, so adopting it for TCP performance analysis is flawed.

TCP flows [2-61.

Tbis research is supported in part by the Research Grants Council of
Hong Kong under Grant No. 7044/02E.

The rest of this paper is organized as follows. Section Il
reviews the important mechanisms of TCP Reno. Section III
presents the definition and assumptions adopted in our analysis.
Section IV derives the timeout probability of TCP Reno under
bursty loss model. Section V validates our analytical model and
compares our analysis with simulation results. Section VI
concludes this paper.

II. THE MECHANISM OF TCP RENO

TCP [81 is a window-based, connection-oriented, reliable
transport layer protocol. L e t the next packet to be acknowledged
as W3brj. The sequence numbers of all the outstanding packets is
then denoted by [W,,,,,W,, + cwnd - 11 . With each ACK
received, Wsm,,, increases by a value equal to the number of
packets acknowledged. This allows more data packets to be
sent. To keep track of the packets sent, the sender maintains a
variable m x s e q , which stores the highest sequence number the
sender has sent out+ Accordingly, a new packet can be sent out
only if

W,,, + cwnd - 1 > mxseq . (1)
TCP Reno I81 adds slow-smt, congestion avoidance, fasr

retransmit and fast r e c o v q algorithms to the original TCP.
During the slow-start phase, the sender increases its cwnd hy
one with each ACK, until the slow-start threshold W is reached
and the congestion avoidance phase takes over. In congestion
avoidance, the sender increases its cwnd linearly by 1/"d
with each ACK received. If triple duplicate ACKs (TD) are
received, the sender infers a packet loss and retransmits the lost
packet, i.e. fast retransmit. The sender then sets H to c w n d / 2 ,
halves its m d and activates the fast recovery algorithm. In
fast recovery, the sender treats each duplicate ACK as a signal
that one packet has left the network. To keep the pipe between
the sender and the receiver full, the sender increases its usable
congestion window by one for each duplicate ACK received.
When the retransmitted packet is acknowledged, the sender
exits fast recovery and sets cwnd to H . Then the sender enters
the congestion avoidance phase again. Note that TCP Reno can
retransmit at most one lost packet per round-trip-time (RTI3.
Since the arrival of duplicate ACKs implies that the receiver did
receive some packets that follow the loss, the value of m s e q is
not cleared and his prevents the unnecessary re-sending of data
that has already been received.

Retransmission timeout [9] is used as the last resort to
recover lost packets. Every time a data packet is sent, if the
retransmission timer is not running, a new timer is started to
count down with an initial value of to seconds, to is given by

to =min(SO,max(l,RTT+4.RTTVAR)). (2)
where R7T is the round trip time and RTTKAR is the

variance of the round trip time. In the case that another timeout

0-7803-8924-7/05/S20.00 (~) 2 0 0 5 JEEE. 292

occurs before receiving an ACK that acknowledges
nzmseq(when fast recovery starts), the sender back uff its
retransmission timer by setting it to 2,. From i2), the doubling
of the retransmission timer is only effective when r, (before
doubling) is smaller than 60 seconds.

UI. DEFINITION AND ASSUMPTIONS

For ease of our later presentation, this section introduces our
assumptions for the analysis in Section IV and our definition of
rimeour probabilfiy .

Our analysis adopts the same set of assumptions about the
end systems and network as in [1-31 and [SI. We consider a
saturated TCP Reno sender, i.e., a flow with an unlimited
amount of data to send. We also assume that a TCP connection
is generally able to enter congestion avoidance phase before the
next Ioss event. This helps us to simplify the analysis by
neglecting the loss which occurs during the slow start. We
assume that for the duration of the data transfer, the sender
always sends fuIl-sized packets as fast as its congestion window
allows, and the receiver advertises a consistent flow control
window. The effects of Nagle algorithm and silly window
syndrome avoidance [SI are not considered.

We model the performance of TCP Reno in terms of
“rounds.” A round begins wilh the transmission of a window of
packets and ends on the receipt of one or more ACKs of these
packets, which implies that the time needed to send out all the
packets in a window is smaller than the duration of a round.
Therefore the duration of a round is independent of the window
size, and is determined mainly by the round trip propagation
delay. Note that with TCP Reno congestion control, this means
the congestion window size at the sender must always be
smaller than the bandwidth-delay product of the path, so the
flow is not fully utilizing the path bandwidth.

The bursry loss mdel [I] is adopted. Let the probability that
a packet is lost in a round be p . p is independent of any packet
loss in other rounds. In the same round, whether a packet will be
lost is determined by whether the previous packet in the same
round is lost. If the previous packet is lost, the current packet is
lost. Otherwise the packet is lost with probability p . In other
words, if a packet is lost in a round, all the packets follow it in

sequence number
$.

the same round (i.e. a bursr of packets) are lost. Like [l,5], we
assume that the probability of packet loss is independent of
window size and this is again only valid when flows are not
fully utilizing the link. To simplify the discussion, ACK packet
losses are ignored as [l-61. We treat all the correlated packet
losses in the same round as a single foss evenr.

From Section II, a TCP sender responds to packet losses with
either fast retransmit [followed by fast recovery) or timeout.
Given a packet loss evenr, we define the probability that the
TCP sender has to recover its data transmission with timeout
(i.e. fast retransmit fails to recover it) as the timeoutprobnbilip,
or Q .

Iv. TIMEObT PROBABILlTY

A. How does rimeour happen?

After a loss event, three conditions may trigger the
retransmission timeout. We call them the three timeout reasons.

Reason I : Not enough (i.e. 3) duplicate ACKs to t r iger a
triple duplicate ACKs (TD) indication after a loss event. This is
what has been discussed in detail in [l].

Reason 2: After the lost packet is retransmitted, if the
retransmission fails again, a timeout occurs. Note that although
the sender may send out new packets during fast recovery, those
packets will be achowledged by the same duplicate ACKs. The
retransmission timer is not cleared and a timeout eventually
occurs.

Reason 3: Even after the retransmitted packet is successfully
acknowledged, timeout may still happen. Upon receiving the
ACK €or the retransmitted packet, the sender exits fast recovery
and enters congestion avoidance. The data transfer is now
regulated by the conditon stipulated in (1). Compared with when
packet loss is detected, the sender now has a decreased cwnd
and an increased WsD,, . Note there is no guarantee that
W,,fl+cwnd-l>maxseq, and the sender may send no new
packets and a timeour occurs. (We will elaborate more on this
reason in the next subsection.)

B.

With the understanding of the three timeout reasons, we now
focus on how packets are sent in the rouna’s following a loss

What happens after a loss event?

i

3rd psr-tow round

Fig. 1 . The rounds following the loss event

0-7803-8924-7/05/520.00 (~)2005 IEEE. 293

event. Our aim is to show that there are seven possible
reactionslevents of 3 TCP Reno sender to a loss event. Then by
conditioning on these seven events, the timeout probability is
found.

Fig. 1 tracks the packets sent in the rounds after a loss event.
We refer to the round where a loss event occurs as the "l0s.s
roimd' and all subsequent rounds as the "n-th posr-loss round,"
where n is the round-distance from the loss round. Let yi + l
be the sequence number of the first packet in the loss round, and
w, be the mid, Thus w, packets are sent in the Ioss round.
Let yi + k,i + 1 be the sequence number of the first lost packet.
With the bursty loss model, all packets following yi + hj + 1 and
in the loss round are also lost. However, since packets yi + 1 ,
y, + 2 , ..., pi +kli are achowledged, another hi packets,
y , + y + 1 , y a + n ; - t 2 , ..., yi+wi+k,; canbesentinthe lstpost-
loss round. This round of packets may have another loss, say at
packet si +w, + qc +1, then packets following it in the 1st post-
loss round are also lost. The packets successfully sent in the 1st
post-loss round are acknowldged by duplicate ACKs for y , + klJ
in the 2nd post-loss round. The number of duplicate ACKs is
equal to the number of successfully received packets in the 1st
post-loss round, with our assumption that no ACK packet loss
happens. If the number of such ACKs is more than three: then a
Triple Duplicare (TD) ACKs indication occurs. We denote this
event by TDI. Packet y, fk,, +1 is then retransmitted in h e 2nd
post-loss round. If the number of duplicate ACKs is less than
three, a limeout (TO) occurs. The associated event is denoted by
TO1. Note that TO1 follows the timeout reason 1 . Let P,,(wi)
be the probability that TO1 occurs given that a loss event
happened. From [l], PWD(wi) is given by

In the 2nd post-loss round, after receiving the third duplicate
ACK for jt +k,, , the sender resends packet y, + k, + 1, set its
w d to wA, and enters fast recovery. The sender expands its
usable congestion window size with the number of duplicate
ACKs received. Since "I,, packets are acknowledged in the 2nd
post-loss round, the usable congestion window at the end of this
round is wA -f q, . From (l), another k2, packets may be sent out
in this round, k , is given by

W k,=m,,--, w h e r e 3 1 n 1 , , I ~ , S w , .
2

Among the k2c packets sent, another loss may happen. Let the
first loss be y, +w, + k , , +m2, +1, so q, packets are
acknowledged in the 3rd post-loss round. If the retransmitted
packet y, i- k,, +- 1 is lost, a timeout occurs (which follows the
timeout reason 2). We denote this event by T02.

Let A(r1.m) be the probability that the first m packets are
acknowledged in a round of n packets sent, given there is a loss
event in the round. ?hen

0 - P) " P
1 - (1- p)" '

A(& m) =

Let C(n,m) be the probability that n packets are sent out but

only the first m packets are acknowledged, and the rest of the
packets in the round are lost. Then

[; , - , p l y , nISf1-1

c(n.nf) = (1 - p)". m = ? I .

I1 < nr

Then P(nr,, 1 i) be the probability that more than i packets
are acknowledged in the 3rd post-loss round. !'(mi 2 il is given

W . t l I

by

P (q i 2 i) = 5 A (y , k , ,) C(k,,.m,,) 2 C(ml i -y ,m2j) .
43=3 .% =3 q , = i

If the retransmitted packet is successfully received, and
mzi < 3 , depending on the number of losl packets in the loss
event, a timeout may occur (event T03) following the timeout
reason 3, otherwise the data transfer is recovered (event E l) .
After receiving the ACK for retransmission, the sender's
window size is determined by

owid = N; I2
rizaxseq = .vi + wi + hi + tgi

yi -k kti + 2.
' (3)

i f k l j I w, - 2

WSbd = yi +wi + k2< +1,

After substituting (3) into (l) , we find that the data transfer
can be recovered only if k,i = w, - 1 and mIi = k,, (no loss with
the k,i packets sent in the 2nd post-loss round). Thus the
probability that event RE1 occurs given the retransmitted packet
in TDI has been successfully acknowledged is

i f k l i =w, - 1 and qi I. vi + wi + k,i + k2i + 1. if kli = wi - 1 and nili = kli

A(w~,w> - 1)(1- p)'"-I
4 (W & =

(1 - PWD(WiN(l - p) P (m i < 3) .
When the retransmitted packet is successfully received and
q, 23, if there are more than two packets lost in the loss
event, triple duplicate (TD) ACK will be detected for the second
time in the 3rd post-loss round (denote this event by TD2). The
sender resends the second lost packet, halves its m n d to wi,
expands its usable congestion window by m2i and continues in
fast recovery phase., In such case, a single loss event triggers
two consecutive fast retransmits. The maximum of the usable
congestion window in the 3rd post-loss round becomes
wA +qi , which is smaller than the maximum of the usable

congestion window in the 2nd post-loss round wA+rq,. At the
same rime W,, increases only by 1, so no more packets can be
sent in the 3rd post-loss round. The retransmission in event TD2
may also be lost. Like the retransmision in event TDI, if the
retransmitted packet is lost, a timeout that follows timeout
reason 2 occurs (event TO4); if the retransmission is
successfully ACKed, a timeout that follows timeout reason 3
inay occur (event T05); otherwise the data transfer is recovered
(event RE2).

Y, + 4, + 3. if k,j I wj - 3
yj +wi +m,, + J , if kj = y - 3 + J,qi 5 bi - j
yi + wi +k,, +n$, i-1, if hi i =wi - 3 + j , q i > ki - j

wherej = 1,2

. (4)
1 wm =

cwnd = wi14

maxseq = yi + w, + nGi + k,,

Fig. 2. Different reachordevents after a loss event
With the receiving of the ACK for the retransmission in event

TD2, the sender's window size is given by (4). Given that he
retransmitted packet of TD2 is successfully ACKed, the
probability that event RE2 happens is

,.

k = l P,(w,, =

As the result, after a loss event, a TCP Reno sender may
respond with one of the five timeout events (TO1 to T05) or
one of the two recovery events (RE1 and RE2), whereas events
TD1 and TD2 serve as inremediate events. Therefore the
probability that a loss event causes retransmission timeout is
given by

(1- Pm(W)(1 - dP", 2 3)

'POI (Y 1 = PMD (w, I
P,,(W') = (1 - P,,(w,))P
P,,(W,J = (1 - Pm("l- P P (9 , < 31u ~ WYj)

P,,(W,)=(l--~~(W'))(1-P)P(IIE2, 1 3) P . (5)

P,,iY) = (l - P k (W ,)) u - p)p (m, , <3R:(Yl
pTo5 (w,) = (l- p M D (W$ - p.)' P(m,, 31(1 - 4 (w ~))

,Pm*(W,) = (1-P,,(w,))(l-P)2P(m,, 23)p,(w,)

From (5) and (6), the timeout probability Q is expressed as a
function of w , the expection of w,

V. COMPARISON AND VALIDATION

In this section, the analytical results of Q from (5) and (6) are
compared with the simulation results based on the bursty loss
model and drop-tail FIFO queues respectively. All the
simulations use TCP Reno agent of ns-2.lb9 [l l] and all the
packets in the simulations are of size 1 KBytes.

5 0 6 -
3
g 0 5 -
a

m 2 0 4 -

0 2 -

0 1 -
0 ._,-,-.-.l.-.-.-.-.l.l.-.-.l.-l-l-l-l-l-,-,

o 10 20 30 40 50 60 70 EO 90 loo
w - congcstlon window size

Fig. 3. Timeout probability of different reasons vs. w , p =0.001

sender fburs& i u s m&d/
Fig. 4 The simulation network for bursty loss model

Fig. 3 plots Q , obtained from (5) and (6) with p=0.001,
against congestion window size w . The probabilities that a
timeout is triggered by reason 1 only (P,,), reason 2 only
(PTO, +Pro, 1, reason 3 only (PTu3 + P,,), and the probability of
recovery after a loss event (PE, + PRE2) are shown. Although
the probability of timeout triggered by reason 1 drops quickly
with increasing w , the probability of timeout triggered by
reason 3 increases. The overall timeout probability Q decreases
quickly after w reaches 3, and slows down after point a, and
starts to increase after point b. For all the w values Q is always
high, with a minimum of about 0.6s as shown in Fig. 3. (Further
analysis shows that increasing p results in decreasing w . That
part simply follows the method used in [l] and is not introduced
here due to space limitation.)

Next we implement the bursty loss model based on the
network in Fig. 4. Since the bursty loss model is not
implemented in the ns simulator, we have derived such a bursty
loss model from ns's basic errur model class. In our simulation,
the bursty loss model is placed before the queue of link from
nodes G to R, and all the queue buffers are sei big enough (5000
packets) to avoid congestion loss. With p=O.OOl, the timeout
probability of a TCP Reno connection is found to be 0.95 with
w =41.27 packets. This result matches very well what is shown
in Fig. 3.

Fig. 5 compares the estimates of Q and P,, (the timeout
probability in [l]) with simulation results based on the network
of Fig. 4. This shows that our proposed analytical model is more
accurate. Note that the work in [l] only considers the timeout
triggered by reason 1 (P,,). Therefore it has underestimated the
timeout impact on the performance of TCP Reno.

Finally we simulate the actual performance of TCP Reno
based on the network in Fig. 5, where drop-tail FIFO routers are

0-7803-8924-7/05/520.00 (~)2005 IEEE. 295

problematic.
We notice that the throughput model in [11 shows good match

in the reported performance. However, [13] indicates that the
correctness of the model in [11 may be due to error cancellation
between the model for TCP and the model for packet losses.
Comparing with the modelling methods proposed in this paper,
the method used in [11 underestimates the timeout probability.
Their results may match a loss pattern in which the dropping of
successive packets in the same round is of a probability less
than 100%. This again emphasizes that a proper determination
of the loss model is of utmost importance in TCP performance
study.

We also notice that E. Altman et al. [13] have proposed a
throughput model based on the general stationary ergodic loss,
Their analysis, as in [l-71, does not consider the particular
behavior that TCP Reno shows in fast recovery. Our future
work in this area will focus on combining their work with the
methods presented in this paper €or a more precise TCP
performance model.

VI. CONCLUSION

This paper studies the timeout probability of a TCP Reno
connection under the bursty loss model. We find that the impact
of timeout has been underestimated. With a detailed analysis on
three timeout reasons, our work captures the impact of timeout
more precisely than previous works. Surprisingly, we find that
this more precise representation of timeout probability does not
match the actual performance of TCP under drop-tail FIFO
queues. Therefore we conclude that the bursty loss model is
incapable of capturing the behavior of drop-tail FIFO queues,
and using bursty loss model to analyze TCP performance is
flawed.

REFERENCFS

Packet error rate
FigS. Comparison of timeout probability estimation

Fig. 6. Simulated network for FIFO drop-tail queue

TABLE 1
..__.. Comparison -...-... ... I .

of FIFO queue - and ~ burs9 loss model simufation results
I ~ -

FIFO queue j Bursty loss model i ._______.__.___._______________.__.___.__.__.______._________..... ~ ____.___._,......... * ___.__._____.__.______.._____..__.__......,
Number of i
i Flows i

. P i Q I W j Q / w
... __._____ ~ + .__._____________._,.______.______.__.__.. +

i 10 j0.010622 I 0.001 14.093 0.917 12.783
; 20 iO.024579 0.076 i 9.197 0.935 8.388 i
i 30 i0.039481 j 0.116 7.311 0.951 j 6.653 j
i 40 !0.051843 0.198 j 6.648 0.963 5.825

used. Assume there are N concurrent TCP flows. The bottleneck
queue buffer size (at the output link from router go to gl) is set
to 100 packets. Table 1 summarizes the results under “FIFO
queue,” where the dropping probability p has been normalized
to represent the probabiltiy of loss event (loss occurring in the
same round are counted as a single loss event). For comparison
with the FIFO queue results, another set of simulations based on
the bursty loss model are done using the same set of p , The
network simulated is still the network in Fig. 5, but there is only
one senderkeceiver pair. The bursty error model is placed
before the output queue of the link from go to gl , and all the
queue buffers are set large enough to avoid congestion loss. The
results are shown under “Bursty-loss model” in Table 1. We see
that there are significant differences between the values of Q in
the two tables. The above comparison assumes that the
influence of drop-tail FIFO queue to TCP connections can be
represented solely by loss probability. Although the drop-tail
FIFO queue also adds queue delay, its influence to timeout
probability should be negligible.

The discrepancy in the timeout probability results shows that
the bursty loss model does not capture rhe loss characteristics of
TCP under drop-tail FIFO queues well. Considering the
significant influence of timeout on TCP performance, using this
burstyjoss model to analyze the performance of TCP is indeed

................................. ~ ~ ~
[I] J. Padhye. V. Rroiu, D. F. Towsley and J. E Kurose, “Modeling TCP

Reno Petformnce: A Sinple Model and Its Empirical Validation,”
IEEIYACM Trans on Networkmg, pp.133-145, ~ 0 1 . 8 ~ 1 . 2 , Apr. 2000.
B. Sikdar, S. Kalyanaram and K.S. Vastola, “Analytic models for the
latency and steady-state Woughput of TU’ Tahoe, Reno, and SACK,”
IEEE/ACM Trans. on Networking, vol.ll,1.6, Dec. 2003.
D. Zheng, G.Y. Lazarou and R. Hu, “A stochastic model for short-lived
TCPflows,“ in hoc. IEEE ICC2003, pp. 76-81, vol. 1 , May 2003.
S . Fortin and B. Sericola,”A model of TCP in wide area networks,” in

N. Crdwell, S . Savage and T. Anderson, “Modeling TCP latency,” in hoc
INFOCOM2000, pp. 1742-1751, vo1.3. Mar. 2000.
B. Sikdar. S. Kalyanaramn and K.S. Vastola, “An integrated model for
the latency and steady sfate throughput of TU? connecitons.” Perform.
Eval., vo1.46, no. 2-3, pp.139-154, Sep. 2001.

[7] T. J. Ott, T. V. Lakshmn, and L. H. Wong, “SRED: Stabilized RED’, in
Roc. INFOCOM1999, pp. 1346-1355, voi.3, March 1999.

[SI M. Allman, V. Pmon and W. Stevens, ‘TCP Congesiton Control,” in
RFC2.581, Apr. 1999.

191 V. Paxson and M. Ahnan, “Computing TCP’s Retxmsmission Timer,” in
RpcZ988, Nov. 2000.

[lo] H. Handley, S. Floyd, I. Padhye and J. Widmr, ‘TCP Friendly Rate
Control (TFRC): Protocol Specification.” in RFC3448, Jan. 2003.

[l l] UCBLBNWINT network simlator - ns (version 2).
[I21 K. ClaEy et al., “The nature of the beast: Recent traffic masuremnts

froman lntemet Backbone,” In hoc . of INEr’98. July 1998.
[I31 E. Aftman, K. Avrachenkov, and C. Barakat, “A Stochastic Model of

TCPlIP with stationary random losses,” ACM Computer Comnication
Review, vo1.30, no. 4, pp. 231-242,Oct.2000.

[Z]

[3 j

[4]

IS]

[6]

ROC. MASCOTSZOOZ, pp-453-462, Oct. 2002.

0-7803-8924-7/05/520.00 (cy005 IEEE. 2%

