271 research outputs found

    Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

    Get PDF
    The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated MAP estimate of an n-dimensional vector "decouples" as n scalar postulated MAP estimators. The result is based on applying a hardening argument to the replica analysis of postulated posterior mean estimators of Tanaka and of Guo and Verdu. The replica-symmetric postulated MAP analysis can be readily applied to many estimators used in compressed sensing, including basis pursuit, lasso, linear estimation with thresholding, and zero norm-regularized estimation. In the case of lasso estimation the scalar estimator reduces to a soft-thresholding operator, and for zero norm-regularized estimation it reduces to a hard-threshold. Among other benefits, the replica method provides a computationally-tractable method for precisely predicting various performance metrics including mean-squared error and sparsity pattern recovery probability.Comment: 22 pages; added details on the replica symmetry assumptio

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Distribution dependent adaptive learning

    Get PDF

    Measures of effectiveness for data fusion based on information entropy

    Get PDF
    This thesis is concerned with measuring and predicting the performance and effectiveness of a data fusion process. Its central proposition is that information entropy may be used to quantify concisely the effectiveness of the process. The personal and original contribution to that subject which is contained in this thesis is summarised as follows: The mixture of performance behaviours that occur in a data fusion system are described and modelled as the states of an ergodic Markov process. An new analytic approach to combining the entropy of discrete and continuous information is defined. A new simple and accurate model of data association performance is proposed. A new model is proposed for the propagation of information entropy in an minimum mean square combination of track estimates. A new model is proposed for the propagation of the information entropy of object classification belief as new observations are incorporated in a recursive Bayesian classifier. A new model to quantify the information entropy of the penalty of ignorance is proposed. New formulations of the steady state solution of the matrix Riccati equation to model tracker performance are proposed

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity
    • …
    corecore