881 research outputs found

    Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Full text link
    Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise, coherent laser sources with broad, tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation spanning 70 THz in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides significant spectral broadening and engineered spectra targeted at specific mid-infrared bands. We use this coherent light source for dual-comb spectroscopy at 5 um.Comment: 26 pages, 5 figure

    Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression

    Get PDF
    This study describes the design and experimental verification of the ridge gap waveguide, appearing in the gap between parallel metal plates. One of the plates has a texture in the form of a wave-guiding metal ridge surrounded by metal posts. The latter posts, referred to as a pin surface or bed of nails, are designed to give a stopband for the normal parallel-plate modes between 10 and 23 GHz. The hardware demonstrator includes two 90° bends and two capacitive coupled coaxial transitions enabling measurements with a vector network analyser (VNA). The measured results verify the large bandwidth and low losses of the quasi-transverse electromagnetic (TEM) mode propagating along the guiding ridge, and that 90° bends can be designed in the same way as for microstrip lines. The demonstrator is designed for use around 15 GHz. Still, the ridge gap waveguide is more advantageous for frequencies above 30 GHz, because it can be realised entirely from metal using milling or moulding, and there are no requirements for conducting joints between the two plates that otherwise is a problem when realising conventional hollow waveguides. © 2011 The Institution of Engineering and Technology.Kildal, P.; Zaman, AU.; Rajo Iglesias, E.; Alfonso Alós, E.; Valero-Nogueira, A. (2011). Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves Antennas and Propagation. 5(3):262-270. doi:10.1049/iet-map.2010.0089S26227053Kildal, P.-S., Alfonso, E., Valero-Nogueira, A., & Rajo-Iglesias, E. (2009). Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 8, 84-87. doi:10.1109/lawp.2008.2011147Kildal, P.-S.: ‘Waveguides and transmission lines in gaps between parallel conducting surfaces’, (European Patent Application EP08159791.6)7 July 2008Rajo-Iglesias, E., Zaman, A. U., & Kildal, P.-S. (2010). Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 20(1), 31-33. doi:10.1109/lmwc.2009.2035960Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Kildal, P.-S. (2009). Experimental Demonstration of Local Quasi-TEM Gap Modes in Single-Hard-Wall Waveguides. IEEE Microwave and Wireless Components Letters, 19(9), 536-538. doi:10.1109/lmwc.2009.2027051Lier, E. (1990). Analysis of soft and hard strip-loaded horns using a circular cylindrical model. IEEE Transactions on Antennas and Propagation, 38(6), 783-793. doi:10.1109/8.55573Sievenpiper, D., Lijun Zhang, Broas, R. F. J., Alexopolous, N. G., & Yablonovitch, E. (1999). High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2059-2074. doi:10.1109/22.798001Silveirinha, M. G., Fernandes, C. A., & Costa, J. R. (2008). Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins. IEEE Transactions on Antennas and Propagation, 56(2), 405-415. doi:10.1109/tap.2007.915442Lindell, I. V. (2000). Ideal boundary and generalised soft and hard conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 147(6), 495. doi:10.1049/ip-map:20000827Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586Šipuš, Z., Merkel, H., & Kildal, P.-S. (1997). Green’s functions for planar soft and hard surfaces derived by asymptotic boundary conditions. IEE Proceedings - Microwaves, Antennas and Propagation, 144(5), 321. doi:10.1049/ip-map:19971335CST Microwave Studio 2008. Available at: www.cst.comKehn, M. N. M., & Kildal, P.-S. (2005). Miniaturized rectangular hard waveguides for use in multifrequency phased arrays. IEEE Transactions on Antennas and Propagation, 53(1), 100-109. doi:10.1109/tap.2004.840519Malcolm Ng Mou Kehn, M. N. M., Nannetti, Cucini, Maci, & Kildal. (2006). Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide. IEEE Transactions on Antennas and Propagation, 54(12), 2275-2282. doi:10.1109/tap.2006.879198Grbic, A., & Eleftheriades, G. V. (2003). Periodic analysis of a 2-D negative refractive index transmission line structure. IEEE Transactions on Antennas and Propagation, 51(10), 2604-2611. doi:10.1109/tap.2003.817543Eleftheriades, G.V., and Balmain, K.G.: ‘Metamaterials for controlling and guiding electromagnetic radiation’, (US Patent 6859114 – Filed 2 June 2003)McKinzie, W.F.: ‘Circuit and method for suppression of electromagnetic coupling and switching noise in multilayer printed circuit boards’, (US Patent No. 7,215,007 B2)Schellenberg, J. M. (1995). CAD models for suspended and inverted microstrip. IEEE Transactions on Microwave Theory and Techniques, 43(6), 1247-1252. doi:10.1109/22.390179Anderson, T. N. (1956). Rectangular and Ridge Waveguide. IEEE Transactions on Microwave Theory and Techniques, 4(4), 201-209. doi:10.1109/tmtt.1956.1125063Pozar, D.: ‘Microwave engineering’, 3rd(Wiley 2005), p. 139Bosiljevac, M., Sipus, Z., & Kildal, P.-S. (2010). Construction of Green’s functions of parallel plates with periodic texture with application to gap waveguides – a plane-wave spectral-domain approach. IET Microwaves, Antennas & Propagation, 4(11), 1799. doi:10.1049/iet-map.2009.0399Zaman, A. U., Rajo-Iglesias, E., Alfonso, E., & Kildal, P.-S. (2009). Design of transition from coaxial line to ridge gap waveguide. 2009 IEEE Antennas and Propagation Society International Symposium. doi:10.1109/aps.2009.5172186Sharp, E. D. (1963). A High-Power Wide-Band Waffle-Iron Filter. IEEE Transactions on Microwave Theory and Techniques, 11(2), 111-116. doi:10.1109/tmtt.1963.1125611KIRINO, H., OGAWA, K., & OHNO, T. (2008). A Variable Phase Shifter Using a Movable Waffle Iron Metal Plate and Its Applications to Phased Array Antennas. IEICE Transactions on Communications, E91-B(6), 1773-1782. doi:10.1093/ietcom/e91-b.6.177

    Design And Optimization Of Nanostructured Optical Filters

    Get PDF
    Optical filters encompass a vast array of devices and structures for a wide variety of applications. Generally speaking, an optical filter is some structure that applies a designed amplitude and phase transform to an incident signal. Different classes of filters have vastly divergent characteristics, and one of the challenges in the optical design process is identifying the ideal filter for a given application and optimizing it to obtain a specific response. In particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an overall device package without requiring exotic fabrication steps, extremely sensitive alignments, or complicated conversions between optical and electrical signals. This dissertation explores three classes of nano-scale optical filters in an effort to obtain different types of dispersive response functions. First, dispersive waveguides are designed using a sub-wavelength periodic structure to transmit a single TE propagating mode with very high second order dispersion. Next, an innovative approach for decoupling waveguide trajectories from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response while minimizing fabrication limitations. Finally, high Q-factor microcavities are coupled into axisymmetric pillar structures that offer extremely high group delay over very narrow transmission bandwidths. While these three novel filters are quite diverse in their operation and target applications, they offer extremely compact structures given the magnitude of the dispersion or group delay they introduce to an incident signal. They are also designed and structured as to be formed on an optical wafer scale using standard integrated circuit fabrication techniques. A number of frequency-domain numerical simulation methods are developed to fully characterize and model each of the different filters. The complete filter response, which includes the dispersion and delay characteristics and optical coupling, is used to evaluate each filter design concept. However, due to the complex nature of the structure geometries and electromagnetic interactions, an iterative optimization approach is required to improve the structure designs and obtain a suitable response. To this end, a Particle Swarm Optimization algorithm is developed and applied to the simulated filter responses to generate optimal filter designs

    Topology Optimization for Transient Wave Propagation Problems

    Get PDF

    Design and Fabrication of Photonic Crystal Materials and Components

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationPhotonic integration circuits (PICs) have received overwhelming attention in the past few decades due to various advantages over electronic circuits including absence of Joule effect and huge bandwidth. The most significant problem obstructing their commercial application is the integration density, which is largely determined by a signal wavelength that is in the order of microns. In this dissertation, we are focused on enhancing the integration density of PICs to warrant their practical applications. In general, we believe there are three ways to boost the integration density. The first is to downscale the dimension of individual integrated optical component. As an example, we have experimentally demonstrated an integrated optical diode with footprint 3 Ã- 3 m2, an integrated polarization beamsplitter with footprint 2.4 Ã- 2.4 m2, and a waveguide bend with effective bend radius as small as 0.65 m. All these devices offer the smallest footprint when compared to their alternatives. A second option to increase integration density is to combine the function of multiple devices into a single compact device. To illustrate the point, we have experimentally shown an integrated mode-converting polarization beamsplitter, and a free-space to waveguide coupler and polarization beamsplitter. Two distinct functionalities are offered in one single device without significantly sacrificing the footprint. A third option for enhancing integration density is to decrease the spacing between the individual devices. For this case, we have experimentally demonstrated an integrated cloak for nonresonant (waveguide) and resonant (microring-resonator) devices. Neighboring devices are totally invisible to each other even if they are separated as small as /2 apart. Inverse design algorithm is employed in demonstrating all of our devices. The basic premise is that, via nanofabrication, we can locally engineer the refractive index to achieve unique functionalities that are otherwise impossible. A nonlinear optimization algorithm is used to find the best permittivity distribution and a focused ion beam is used to define the fine nanostructures. Our future work lies in demonstrating active nanophotonic devices with compact footprint and high efficiency. Broadband and efficient silicon modulators, and all-optical and high-efficiency switches are envisioned with our design algorithm

    Development of III-nitride-based waveguides for application in all-optical integrated circuits at 1.55 [my]m

    Get PDF
    El desarrollo de una nueva tecnología todo-óptica para el procesado de datos en las futuras redes de telecomunicación está generando un gran interés desde hace una década. Esta tecnología está encaminada al total aprovechamiento del gran ancho de banda que proporciona la fibra óptica, evitando la conversión entre los dominios óptico y eléctrico necesaria en cada nodo de las redes de comunicaciones actuales. Esta nueva tecnología todo-óptica requiere de diferentes componentes ópticos que puedan ser controlados ópticamente. Estos dispositivos se obtienen a partir de distintos materiales semiconductores y se implementan de forma miniaturizada en un circuito todo-óptico integrado operando a 1.55 [my]m, mejorando de esta forma la fiabilidad del sistema y reduciendo su coste. Teniendo en cuenta que los nitruros del grupo III son materiales que han demostrado un gran potencial para aplicaciones en comunicaciones ópticas a 1.55 [my]m, el objetivo de este trabajo es el desarrollo de nuevos dispositivos todo-ópticos basados en éstos para su futura implementación en circuitos fotónicos integrados ultrarrápidos operando a longitudes de onda de telecomunicación. Durante esta Tesis se han desarrollado varios dispositivos de guía de onda basados en diferentes estructuras de nitruros del grupo III sobre substratos de zafiro y funcionando a 1.55 [my]m. En primer lugar, se han optimizado diferentes guías de onda ópticas basadas en pozos y puntos cuánticos de GaN/AlN para trabajar como absorbentes saturables a través de sus transiciones intersubbanda. Estas guías de onda podrían utilizarse en procesos de conmutación todo-óptica. En segundo lugar, se ha optimizado el crecimiento de AlN por sputtering de radiofrecuencia permitiendo su uso para la fabricación de guías de onda pasivas. El comportamiento óptico lineal de las guías de AlN por sputtering muestra su idoneidad para actuar como interconectores pasivos de bajo coste en un circuito todo-óptico integrado. Por último, se han optimizado dos tipos de guías de onda basadas en InN por sputtering para funcionar como absorbentes saturables inversos mediante procesos de absorción de dos fotones. La respuesta óptica no lineal de ambas guías abre la posibilidad de utilizar estos dispositivos para aplicaciones en limitación todo-óptica a longitudes de onda de telecomunicación
    corecore