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Resumé (in Danish)

Topologioptimering anvendt p̊a

transiente bølgeudbredelsesproblemer

Studiet af elastiske og optiske bølger sammen med intensiv materialeforskning
har revolutioneret hverdags- samt avanceret teknologi i det sidste århundrede.
Derfor er det vigtigt at fortsætte det undersøgende arbejde for at forbedre s̊avel
eksisterende som ny innovativ teknologi, ved at designe nye materialer og deres
layout.

Afhandlingen præsenterer en generel ramme for anvendelsen af topologiopti-
mering til design af materialelayouts for transiente bølgeudbredelsesproblemer.
I modsætning til det høje niveau for modellering i frekvensdomænet, er topolo-
gioptimering i tidsdomænet stadig i en opbygningsproces. Et generelt optimer-
ingsproblem formuleres med en objekt-funktion, der kan være felt-, hastigheds-
og accelerationsafhængig, ligesom den ogs̊a kan afhænge af filtrerede signaler [P3].
De analytiske designgradienter findes ved hjælp af adjoint metoden.

Bølgeudbredelseproblemer foreg̊ar oftest i åbne domæner. Det numeriske
simuleringsdomæne bør derfor afgrænses ved at indføre absorberende randbetingelser.
Til dette formål er udviklet en finite element formulering baseret p̊a en perfekt
matchede lag metode for tidsafhængige skalare og elastiske bølgeudbredelsesproblemer
[P2], [P4]. For at reducere de beregningsmæssige omkostninger i forbindelse med
gradientbaseret optimering i tidsdomænet, introduceres parallel databehandling
til de mest tids- og hukommelseskrævende dele af den iterative optimeringspro-
cedure.

Ved hjælp af den opstillede model og den udviklede software betragtes to slags
optimeringsproblemer, der involverer optiske bølger i nano-fotoniske komponen-
ter. Først optimeres en optisk taper og et notch filter ved energimaksimering [P2],
dernæst to slags strukturer, der henholdsvis omformer pulse [P3] og understøtter
ikke-dispersivt langsomt lys [P5].
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Abstract

The study of elastic and optical waves together with intensive material research
has revolutionized everyday as well as cutting edge technology in very tangible
ways within the last century. Therefore it is important to continue the inves-
tigative work towards improving existing as well as innovate new technology, by
designing new materials and their layout.

The thesis presents a general framework for applying topology optimization
in the design of material layouts for transient wave propagation problems. In
contrast to the high level of modeling in the frequency domain, time domain
topology optimization is still in its infancy. A generic optimization problem is
formulated with an objective function that can be field, velocity, and acceleration
dependent, as well as it can accommodate the dependency of filtered signals
essential in signal shape optimization [P3]. The analytical design gradients are
derived by use of the adjoint variable method.

Many wave propagation problems are open-region problems, i.e. the outer
boundaries of the modeling domain must be reflection-less. The thesis contains
new and independent developments within perfectly matched layer techniques
for scalar as well as for vectorial elastic wave propagation problems using finite
element analysis [P2], [P4]. The concept is implemented in a parallel computing
code that includes efficient techniques for performing gradient based topology
optimization.

Using the developed computational framework the thesis considers four opti-
mization problems from nano-photonics : First, an optical taper [P1] and a notch
filter [P2] – both optimized by energy maximization. The last two cases demon-
strate pulse shaping and delay in one [P3] and two [P5] dimensions. Whereas
the test problem in [P3] is rather academic, the example considered in [P5] op-
timizes structures that accommodate non-dispersive slow light, with important
applications for optical buffering devices.
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Resumé iii

Abstract v

Publications vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Time domain modeling of propagating waves 5
2.1 Elastic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Optical waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Finite element time domain formulation . . . . . . . . . . . . . . 7

2.3.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Time discretization and integration . . . . . . . . . . . . . 9

2.4 Absorbing boundary conditions . . . . . . . . . . . . . . . . . . . 11
2.5 Perfectly matched layer . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Scalar wave equation [P2] . . . . . . . . . . . . . . . . . . 13
2.5.2 Elastic wave equation [P4] . . . . . . . . . . . . . . . . . . 14

2.6 Parallelizing the finite element solver . . . . . . . . . . . . . . . . 17
2.7 Transmission/reflection spectra . . . . . . . . . . . . . . . . . . . 18

3 Topology optimization for transient wave propagation problems 21
3.1 Topology optimization applied to wave propagation problems . . . 22
3.2 Design parametrization and material interpolation . . . . . . . . . 24

ix



CONTENTS

3.3 Formulating the optimization problem . . . . . . . . . . . . . . . 26
3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 The linear wave equation . . . . . . . . . . . . . . . . . . . 29
3.4.2 Localizing functions . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Parallel computing applied to topology optimization . . . . . . . . 31

4 Designing optical devices for applications 35
4.1 Two-dimensional photonic crystals . . . . . . . . . . . . . . . . . 35
4.2 Topology optimization of an optical taper [P1] . . . . . . . . . . . 37
4.3 Topology optimization of a photonic crystal notch filter [P2] . . . 38

4.3.1 Temporal coupled-mode theory and the Q factor . . . . . . 40
4.3.2 Formulation and method . . . . . . . . . . . . . . . . . . . 42
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Topology optimization of slow light devices [P3], [P5] . . . . . . . 50
4.4.1 Slow light structures characteristics . . . . . . . . . . . . . 51
4.4.2 Formulating a pulse shaping and delaying problem . . . . . 53
4.4.3 Method and results . . . . . . . . . . . . . . . . . . . . . . 56

5 Concluding remarks 63
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 65

Errata [P2] 77

Errata [P4] 79

x



List of Figures

2.1 Computational domain . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 PML-truncated elastic half-space . . . . . . . . . . . . . . . . . . 14
2.3 Transient responses . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Snapshots of the displacement field magnitude . . . . . . . . . . . 16

3.1 Design problem diagram . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Optimization flowchart . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Mesh decomposition diagram . . . . . . . . . . . . . . . . . . . . 32

4.1 The projected band structure . . . . . . . . . . . . . . . . . . . . 36
4.2 The optical taper . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 PhC filter feature diagram . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Notch filter optimization setup . . . . . . . . . . . . . . . . . . . . 43
4.5 Monopole cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Dipole cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Dipole notch filter performance . . . . . . . . . . . . . . . . . . . 48
4.8 H3 field pattern for dipole notch . . . . . . . . . . . . . . . . . . . 49
4.9 Slow light optimization setup . . . . . . . . . . . . . . . . . . . . 50
4.10 Slow light start design . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 Pulse delay strategy . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12 Symmetry conditions for the ’active’ design set . . . . . . . . . . . 55
4.13 Pulse delayed slow light designs . . . . . . . . . . . . . . . . . . . 57
4.14 Group index versus normalized frequency . . . . . . . . . . . . . . 58
4.15 Pulse delayed-shaped slow light design . . . . . . . . . . . . . . . 59
4.16 Transmission (|T |2), reflection (|R|2) and energy balance (|T |2+|R|2)

spectrum for the optimized slow light device . . . . . . . . . . . . 60
4.17 Transmission spectrum for the optimized slow light device . . . . 61
4.18 H3 field pattern for slow light device . . . . . . . . . . . . . . . . 62

xi





List of Tables

2.1 Non-blocking communication strategy . . . . . . . . . . . . . . . . 17

4.1 Q factors for the photonic crystal notch filter . . . . . . . . . . . . 47

xiii





Chapter 1

Introduction

1.1 Background

True technological revolutions and innovations in history have evolved from a
curiosity to comprehend the physical properties of materials. The discovery of
new materials that the Earth provides has triggered a desire amongst engineers
to tinker with their properties, hoping to produce substances with even better,
e.g. mechanical and/or optical properties.

The study of elastic and optical waves has been vital to the engineering of
new materials. Combined with intensive research in materials, manufacturing
and design techniques, the discovery and understanding of new wave types with
different features has led to the fabrication of structures down to nano-scale.
This has resulted in an endless list of significant applications ranging from sonar,
ultrasound scanning, to lasers engineering, high-speed computing, spectroscopy,
fiber-optic cables, and integrated optics – just to mention a few – among which
some have revolutionized the telecommunication industry. In the design process
of new material layouts and structures one could use Edisonian approaches, or,
more systematically shape and geometry optimization, or optimization techniques
relying on free distribution of material such as topology optimization (Bendsøe and
Sigmund, 2004).

The aim of this thesis is to study transient propagation of elastic and optical
waves and to develop a general framework for optimizing structures subjected
to these types of waves, by using the methodology of topology optimization.
Topology optimization is a gradient-based iterative optimization technique that
has proven very efficient in the design of mechanical structures subjected to static
and dynamic loading (Bendsøe and Sigmund, 2004), and for optimizing optical
devices subjected to time-harmonic waves (Jensen and Sigmund, 2011). Very
recently, topology optimization has been applied to one-dimensional (1D) elastic
transient wave propagation problems based on the finite element time domain
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1.2 Thesis structure

(FETD) method (Dahl et al., 2008; Jensen, 2009). Also, based on the finite
difference time domain (FDTD) technique, topology optimization has been used
to design 1D optical filters (Yang et al., 2009) as well as three-dimensional (3D)
dielectric antennas (Nomura et al., 2007).

Here, we extend the recently developed 1D finite element based framework to
elastic and optical problems in two dimensions (2D). Going from 1D to 2D is not
straightforward because waves are suddenly allowed to propagate freely within the
plane. This imposes requirements on the numerical techniques used to render the
boundaries of the computational transparent in the transient simulations of open-
region problems. In a FETD framework, efficient mesh truncation techniques
can be quite tricky to implement. Furthermore, gradient-based time domain
optimization of problems in general involving a large number of design variables
appear to be a challenge with respect to computing efforts.

We apply the developed framework to design optical material structures. The
first two problems optimize the performance of an optical taper and a photonic
crystal (PhC) notch filter respectively, and the third problem optimizes structures
that slow down the speed of light. All simulations are performed by our own-
developed FE code implemented in Fortran. It supports parallel computing to
lower the computational burden associated with time domain optimization and
thereby allows us to optimize within a reasonable time frame for large problems.

1.2 Thesis structure

This thesis serves as a general introduction to the work that has been carried
out during the Ph.D. study. Apart from an introduction to the employed theory
it also provides an overview and, where it has been found necessary, a detailed
description of the developed methods and obtained results presented in the five
publications [P1]-[P5].

We start out in chapter 2 by introducing the governing equations for elastic
and optical waves, from which we derive the FE model used in the numerical
analysis of the inhomogeneous material hosts throughout the thesis. To treat
open-region problems efficiently we develop a FE formulation based on the per-
fectly matched layer technique.

In chapter 3, topology optimization is introduced to transient wave prop-
agation problems. Since time domain topology optimization is still relatively
unexplored, we will formulate a generic optimization problem that is believed
to cover a wide range of topology optimization problems for transient responses.
We derive the sensitivity analysis and subsequently present our thoughts in the
process of parallelizing the topology optimization procedure.

In chapter 4, we present three typical time domain optimization problems.
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1.2 Thesis structure

The first two problems consider maximization of the energy response, used in the
design of an optical taper and a notch filter. For the third problem we formulate
a pulse shaping and delaying strategy to optimize slow light devices.

Finally, in chapter 5, we will state some concluding remarks.
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Chapter 2

Time domain modeling of
propagating waves

In this chapter time domain modeling of elastic and optical waves is introduced.
First, we present the governing equations on continuous form and formulate the
boundary value problem (section 2.1-2.2). The latter is subsequently discretized
in space by the finite element method and in time by finite differences (section
2.3). To allow for arbitrary propagation characteristics and directions inside
the truncated modeling domain we introduce an efficient absorbing boundary
technique (section 2.4). Then, we explain how to parallelize the finite element
solver (section 2.4), and finally the computation of transmission and reflection
spectra is addressed (section 2.7).

2.1 Elastic waves

An elastic wave is a class of mechanical wave that propagates in elastic or vis-
coelastic materials. As long as the a material is not stressed in tension or compres-
sion beyond its elastic limit, it is the restoring forces between particles, combined
with inertia of particles, that lead to the oscillatory motions of the medium after
vibratory disturbances, and thereby accommodates a propagating wave.

In the present work we consider propagation of elastic waves in 2D structures.
The medium inside the structures is assumed to occupy a composite of regions
of homogenous linear elastic material as a function of the plane position vector
r = (x1, x2)T (with (·)T denoting the transverse of a vector) in the solution do-
main ΩS with boundary ∂ΩS = ΓS. Combining the equations of motion with
the constitutive law and the linear kinematic conditions, governs the propaga-
tion of elastic waves in anisotropic media by the following system of equations
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2.2 Optical waves

(Achenbach, 1975)

(Eq. of motion) ∇ · σ + ρp = ρ
∂2u

∂t2
(2.1a)

(Constitutive law) σ = C : ε (2.1b)

(Strain-displ.) ε = 1
2

[
∇u+ (∇u)T

]
(2.1c)

where u = (u1, u2)T and p = (p1, p2)T are the displacement and body force
vectors, respectively. Further, ρ is the mass density, σ, ε and C are stress,
strain and constitutive tensors, respectively, and ∇ = (∂/∂x1, ∂/∂x2)T is the
divergence operator. For 2D isotropic elastic media the constitutive tensor entries
are determined by

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.2)

with µ and λ denoting the Lamé coefficients, and where δij is Kronecker’s delta.
The above set of equations (2.1)-(2.2) can model three fundamental types of
elastic waves: Shear (S-) waves with oscillations transverse to the propagation
direction. Pressure (P-) waves, whose polarization is always longitudinal, and
surface (Rayleigh) waves. Where S- and P-waves are body waves, surface waves
can, as the name also indicates, only exist on the surface with an exponential
decay into the bulk. For example, sound propagates through air as P-waves, seis-
mic waves can propagate as S-, P- and surface waves, and water waves propagate
as surface waves.

2.2 Optical waves

Optical waves were probably described for the first time in 1705 when Isaac
Newton released Opticks about the nature of light and colors and the diffraction
of light based on phenomenological observations.

It took more than 150 years, before J.C. Maxwell (1865) combined a set of
equations into the Maxwell’s equations that form the basis theory of classical
electrodynamics and optics in the modeling the propagation of electromagnetic
waves. In contrast to elastic waves, electromagnetic waves can both travel in
matter and vacuum. Here, we will consider the propagation of light in isotropic
dielectric media containing no free charges and currents, for which the macro-
scopic behavior of light is generally governed by

∇×H = ε0εr
∂E

∂t
(2.3a)

∇×E = −µ0
∂H

∂t
(2.3b)
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2.3 Finite element time domain formulation

where E = (E1, E2, E3)T and H = (H1, H2, H3)T are the electric and magnetic
fields, respectively, εr is the relative permittivity, and ε0 and µ0 is vacuum permit-
tivity and permeability, respectively, that can be combined to yield the vacuum
speed of light c = 1/

√
ε0µ0.

Throughout the thesis we will assume wave propagation inside 2D structures
with infinite extension in the third dimension. Consequently, any modes are
invariant under reflection through the plane of propagation and this mirror sym-
metry allows us to uncouple the modes into two distinct polarizations (Jackson,
1999). Transverse-electric (TE) modes have an in-plane electric vector field, and
out-of-plane scalar magnetic field component. Transverse-magnetic (TM) modes
have the reverse. If we combine equations (2.3a) and (2.3b) into one for either
H or E, it can be shown that the scalar fields in the solution domain ΩS are
governed by the generic scalar wave equation

∂

∂x1

(
A
∂u

∂x1

)
+

∂

∂x2

(
A
∂u

∂x2

)
−B∂

2u

∂t2
= 0 (2.4)

where u = H3, A = 1/εr and B = c−2 for TE modes, and u = E3, A = 1 and
B = εc−2 for TM modes.

As a remark it should be emphasized that the scalar wave equation (2.4) can
be applied in the modeling of a certain class of elastic waves and acoustic waves
with the right choice of material parameters for A and B. In the elastic case the
solution will be displacement, and pressure in the acoustic case. In order to find a
solution to the wave equation (2.4) we need to combine it with a set of boundary
conditions on ΓS. By means of the Robin boundary condition, given by

n · (A∇u) +
√
AB

∂u

∂t
= 2
√
AB

∂u0

∂t
(2.5)

with n = (n1, n2)T denoting the outward unit vector normal to the boundary, we
can specify sections from which the waves should be excited with amplitude u0

and/or sections through which normal incident waves only ought to be transmit-
ted without reflections. The last condition is known as the first-order absorbing
boundary condition.

2.3 Finite element time domain formulation

Throughout the thesis we will in general deal with inhomogeneous materials for
which no analytical solution exists to the elastic and scalar wave equations. To
obtain a numerical solution the finite element (FE) method is employed (Hughes,
2000; Zienkiewicz et al., 2005; Jin and Riley, 2009).
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2.3 Finite element time domain formulation

The FE method holds an unsurpassed capability for modeling complex geome-
tries and materials, and in the time domain it facilitates a simple switch between
an unconditionally or a conditionally stable formulation. Unconditional stability
is very important when parts of the geometry needs to be finely resolved to avoid
the limiting correlation between the smallest element size and the largest possible
time step dictated by the CFL1 condition (Courant et al., 1928).

The involved geometries in the present work allow for the use of square ele-
ments to discretize the computational domain. From an optimization perspective
this is desirable since the topology of the optimized design is not known in ad-
vance. Furthermore, the numerical advantages of using these elements comprise
high stability and efficiency in the time stepping and they are well-suited for par-
allel computing. It should be stressed that for regular grids the finite difference
time domain (FDTD) method (Taflove and Hagness, 2005) can be equally used
for both electromagnetic and elastic waves. However, the choice of the finite ele-
ment time domain (FETD) method relies on our experience with this numerical
technique.

For simplicity, we will only present the finite element analysis for the scalar
wave equation (2.4) combined with the first-order absorbing boundary condition
in equation (2.5). More efficient absorbing boundary conditions are treated in
details in section 2.4.

2.3.1 Spatial discretization

To solve the approximate boundary value problem defined by equations (2.4) and
(2.5), we multiply equation (2.4) by an appropriate testing function T , integrate
over the 2D solution domain ΩS with boundary ∂ΩS = ΓS and obtain the weak
form representation

∫∫

ΩS

[
∇T · A∇u+ TB

∂2u

∂t2

]
dΩ +

∫

ΓS

[
T
√
AB

∂u

∂t
− TU

]
dΓ = 0 (2.6)

where U = 2
√
AB∂u0/∂t is the boundary source on Γinc ⊆ ΓS. The weak-form

derivation can be found in various books about the finite element method, see
e.g. Zienkiewicz et al. (2005); Jin and Riley (2009).

To seek the finite element solution of equation (2.6) we subdivide the solution
domain into M square finite elements with edge size h = ∆x1 = ∆x2, and by
expanding the considered scalar field u(r, t) at any point within each element
using nodal bilinear basis functions, it can be expressed as

u(r, t) ≈
4∑

k=1

Ni(r)uek(t) (2.7)

1Courant-Friedrichs-Lewy
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2.3 Finite element time domain formulation

where uek denotes the value of u at node kth of element e, and Nk is the basis
function corresponding to the kth node. Substitution of equation (2.7) into (2.6)
and using the same Nk as the testing function T yields the system of second-order
ordinary differential equation

Mü + Cu̇ + Ku = f (2.8)

where ˙(·) = d/dt, and (̈·) = d2/dt2 . M, C, and K represent sparse, symmetric,
and positive definite matrices that are assembled from their respective element-
level constituent square 4 × 4 matrices Me, Ce, and Ke whose entries are given
by

M e
ij =

∫∫

Ωe

BNiNjdΩ (2.9a)

Ce
ij =

∫

Γe

√
ABNiNjdΓ (2.9b)

Ke
ij =

∫∫

Ωe

A∇Ni · ∇NjdΩ (2.9c)

Additionally, u = [u1, u2, . . . , uNnode
]T where Nnode denotes the total number of

nodes, and the entries of the element contribution to the excitation vector f =∑
f e are given by

f ei =

∫

Γe⊆Γinc

NiUdΓ (2.10)

For the elastic wave equation (2.1) the principle of virtual work is used to obtain
the weak-form representation. The resulting discrete equation is identical to
that in equation (2.8), albeit with element square matrices of size 8× 8 instead.
Further, the scalar entries in equations (2.9) transform into sub-matrix entries,
and the vector ∇Nk converts to the so-called strain-displacement matrix, see e.g.
(Zienkiewicz et al., 2005) or [P4].

2.3.2 Time discretization and integration

We approximate the first- and second-order time derivatives in the FE discretized
wave equation (2.8) by the differencing formulae derived from the Newmark-beta
time integration scheme (Newmark, 1959), i.e.

u̇ ≈ un+1 − un−1

2∆t
(2.11)

ü ≈ un+1 − 2un + un−1

∆t2
(2.12)

9



2.3 Finite element time domain formulation

where ∆t is the time-step. The non-derivatives are approximated using a weighted
average

u ≈ βun+1 + (1− 2β)un + βun−1 (2.13)

f ≈ βfn+1 + (1− 2β)fn + βfn−1 (2.14)

where β is a parameter that takes a value between 0 and 1. If we substitute
equations (2.11)-(2.14) into (2.8) the time marching of the elastic field becomes

(
1

∆t2
M +

1

2∆t
C + βK

)
un+1 =

(
2

∆t2
M− (1− 2β)K

)
un

−
(

1

∆t2
M− 1

2∆t
C + βK

)
un−1 + βfn+1 + (1− 2β)fn + βfn−1 (2.15)

When β = 0, the formula reduces to explicit time integration and the time-step is
constrained by the spatial discretization through the CFL condition. In addition,
if we apply the mass lumping rule De

ii =
∑

j Me
ij, Dij = 0 for i 6= j, the time

marching can be performed without solving a matrix system at each time step.
Conversely, unconditionally stable time integration is obtained for β ≥ 1/4 with
second-order accuracy preserved (Chilton and Lee, 2007). In this case, the choice
of ∆t depends solely on the accuracy with which the temporal variation of the
field needs to be reproduced. However, the price for this assurance is solving a
matrix system at each time step. For large models, direct solution methods are
not feasible anymore to complete this task, and iterative methods are instead
required.

For the scalar wave equation an efficient integration technique tailored to
increase the dispersion error accuracy to fourth-order of low-order square finite
elements is employed. The accuracy of this integration scheme is achieved by
modified integration rules for the mass and stiffness matrix proposed by Yue
and Guddati (2005). The efficiency is obtained by rendering the mass matrix
M diagonal when inversion is needed, and in the case of multiplication a linear
combination of the consistent and diagonal mass matrix is used, which leaves the
integration explicit. The semi-discrete formula of equation (2.8) for this scheme
is written as

Du̇n+1/2 = Mδv
n−1/2 (2.16a)

Dv̇n = fn −Kun (2.16b)

where Mδ = (1 − δ)D + δM. The optimal combination factor is δ = (τ 2 − 1)/2
to obtain the fourth-order accuracy, where τ = ∆tcv/∆x with ∆tc denoting
the critical time step that follows the CFL condition and v the phase velocity.
Half-step approximations are used for central time differences, i.e. u̇n+1/2 =
(un − un−1)/∆t and v̇n = (un+1/2 − un−1/2)/∆t.

10



2.4 Absorbing boundary conditions

2.4 Absorbing boundary conditions

Solving open-region elastodynamic and electromagnetic problems implies that the
infinite region exterior to the radiating/scattering object has to be truncated with
some type of artificial boundary, such that the computational domain becomes
limited. Hence, a boundary condition that absorbs waves, leaving the computa-
tional domain independent of direction and frequency, needs to be introduced.
Such a condition serves, as far as possible, as a transparent boundary that should
yield perfect transmission of the scattered/radiated field and thereby minimize
the non-physical reflections from the boundary. Several absorbing boundary con-
dition (ABC) techniques have been developed to complete this task. It comprises
non-local conditions (i.e. an exact representation of the infinite medium) which
are difficult to implement, and local conditions, such as the first-order absorbing
boundary condition in equation (2.5), that only exhibit good performance under
tailored circumstances (frequency dependent, specific angles of incidence). The
introduction of the perfectly matched layer (PML) in 1994 revolutionized absorb-
ing boundaries for wave equations because it was designed to efficiently absorb
outgoing electromagnetic waves regardless of their propagation characteristics
and directions.

It is highly recommendable to use an efficient ABC such as the PML in topol-
ogy optimization of wave propagation problems since distribution of material
intrinsically leads to material heterogeneity and thus propagation characteristics
and directions not known a priori.

In the following section 2.6 the PML technique is introduced to the time
domain version of the scalar wave equation and to the second order elastic wave
equation. Both approaches have been developed as a part of the present work
since they, to the authors’ knowledge, do not exist for the second order wave
equation in the form we use and discretize it by the FE method. For further
details consult [P2], [P4].

2.5 Perfectly matched layer

The concept of the transparent perfectly matched interface, proposed by Berenger
(1994) to electromagnetic waves, is an interface between two half-spaces, one of
which is dispersive, i.e. lossy, and this is known as the perfectly matched layer.
By construction, the PML is a local ABC and renders the interface reflection-
less in the continuous case, while outwardly propagating waves are attenuated
exponentially independent of frequency, angle of incidence and polarization.

The key concept of the PML interpretation is a coordinate transformation in
which the spatial variables are mapped independently onto the complex space by

11



2.5 Perfectly matched layer

s1 = s2 = s′ + s′′ s1 = s2 = s′ + s′′

s1 = s2 = s′ + s′′s1 = s2 = s′ + s′′

s2 = s′ + s′′

s2 = s′ + s′′

s2 = s′ + s′′

s2 = s′ + s′′

s1 = 1

s1 = 1

s1 = 1

s1 = 1

ΩS

ΩPML

θ

d1

d2

x1

x2

x0
1

x0
2

Figure 2.1: Computational domain - truncated by PML layer. A penetrating
wave with angle θ is depicted.

a complex stretching function. In particular, this mapping replaces propagating
waves with exponentially decaying waves as soon as the waves pass the PML
interface located at x1 = x0

1 along the spatial direction x1, see figure 2.1. The at-
tenuation occurs over the PML layer width d1, and continues after the remainder
of the wave has been reflected from the PML boundary at x1 = x0

1 + d1.
In the 2D PML region ΩPML the original spatial coordinate variables xi (i =

1, 2) are replaced in each distinct spatial direction by a stretched coordinate, that
is defined as (Chew and Weedon, 1994)

x′i =

∫ xi

0

si(x̃i, ω)dx̃i, i = 1, 2 (2.17)

The apostrophe (·)′ indicates the stretched version of the subtended function,
ω is the angular frequency, and si (i = 1, 2) are the complex frequency shifted
stretched-coordinate metrics proposed by Kuzuoglu and Mittra (1996)

si(xi, ω) = κi(xi) +
βi(xi)

αi(xi) + jω
, i = 1, 2 (2.18)

where j denotes the imaginary unit. In equation (2.18) βi ≥ 0 (i = 1, 2) is a
coordinate-wise real function that controls the attenuation of the propagating
waves. The coordinate-wise real functions κi ≥ 1 and αi ≥ 0 (i = 1, 2) serve to
enhance attenuation of evanescent and near-grazing waves.
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2.5 Perfectly matched layer

Due to the fact that the PML represents a dispersive and lossy medium it is
well-suited for implementation in the finite element frequency domain (FEFD)
method. However, the FETD implementation becomes more involved since the
given frequency dependency in the stretching function in equation (2.18) trans-
forms into convolution in the time domain for the second order wave equation.

2.5.1 Scalar wave equation [P2]

The basic concept of the PML is introduced to the 2D scalar wave equation
(2.4) by considering its frequency domain counterpart in the stretched coordinate
metrics. It can be shown that based on the original coordinates, the field inside
the PML satisfies [P4]

∂

∂x1

(
s2

s1

A
∂û

∂x1

)
+

∂

∂x2

(
s1

s2

A
∂û

∂x2

)
+ ω2s1s2Bû = 0 (2.19)

where the caret (̂·) designates the frequency counterpart of the subtended func-
tion. If we, for simplicity, assume that propagating waves only need to be atten-
uated, i.e. αi = 0 and κi = 1 (i = 1, 2), the time domain version of equation
(2.19), by using the inverse Fourier transform, becomes [P2]

∂

∂x1

(
LA,1(t)A

∂u

∂x1

)
+

∂

∂x2

(
LA,2(t)A

∂u

∂x2

)
− LB(t)Bu = 0 (2.20)

In equation (2.20) the operator L1(t) is given by

LB(t) =
∂2

∂t2
+ (β1 + β2)

∂

∂t
+ β1β2 (2.21a)

and the operator LA,i(t) is given by

LA,i(t) = 1− aie−βitū(t)∗, i = 1, 2 (2.21b)

with a1 = β1−β2 and a2 = β2−β1. In equation (2.21b), ū(t) denotes the Heaviside
step function and ∗ stands for temporal convolution. Note that if βi = 0 (i = 1, 2)
the governing equation (2.20) is also valid inside the physical simulation domain
ΩS. There exists different strategies for choosing βi and the choice depends on
the physical origin and type of the waves considered. For electromagnetic waves
see e.g. (Koshiba et al., 2001) and [P2]. For elastic waves consult [P4].

The dispersive and lossy material behavior in the PML enters the governing
equation through the operators LA,i(t) (i = 1, 2) and LB(t) and thereby modifies
the weak-form representation in equation (2.6). This gives rise to a dissipative
term, modification of the stiffness matrix, as well as a temporal convolution term
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2.5 Perfectly matched layer

in the FE discretized wave equation (2.8) [P2]. Normally, the computational
efforts associated with the evaluation of discrete convolution are high, since in-
tegration of the entire solution history is needed at each time step. However,
due to the exponential form of the convolution kernel in equation (2.21b), it
can be evaluated recursively (Luebbers and Hunsberger, 1992). This only re-
quires information about the field from the previous time step. Two different
recursive convolution techniques are presented in [P2] and [P4], and the latter is
recommended since it demonstrates the highest stability properties for long time
simulations.

2.5.2 Elastic wave equation [P4]

Compared to the scalar wave equation, the derivation of the time domain ver-
sion of the elastic wave equation in the PML is more complex. In essence, the
introduction of the stretched coordinate metric modifies the isotropic constitu-
tive tensor in equation (2.2) to become anisotropic, and thus alternates the PML
interpretation from initially being based on complex coordinate stretching to an
anisotropic material model.

In the present work a novel convolutional PML formulation for elastic waves
is developed that results in a FETD algorithm of high computational efficiency.
It offers a simple switch between implicit and explicit time integration exhibiting
remarkable long time stability behavior. We leave the derivation of the governing
equations to [P4], and instead provide an example illustrating the efficiency of
the suggested method.

We have chosen an experiment that addresses the issue when an evanescent
wave field is generated in the PML layer as a result of propagating waves at
near-grazing incidence. We launch an explosive vertical directional point-source
inside a 2D semi-infinite elastic half-space consisting of a homogeneous material

150m150m

150m

730m 995m 1725m

225m

18.75m ΩS

ΩPML

R1

R2
R3

x1

x2

(xc
1,xc

2)

Figure 2.2: PML-truncated elastic half-space - subjected to a vertically
downward point-source located at (xc1, x

c
2) driven by an explosive Ricker wavelet.

R1, R2, and R3 indicate the location of the receivers at which the wave response
is recorded.
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2.5 Perfectly matched layer
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Figure 2.3: Transient responses - CFS-PML, standard PML, and analytical
transient response comparison of the horizontal u1 (left) and the vertical u2 (right)
at three receiving positions: (a)-(b) R1, and (c)-(d) R3 located at (862.5m, -
112.5m), and (1650.0m, 112.5m), respectively. Note, that the response based on
two C-PML models are recorded at R1: one with (C-PML 1) evanescent scaling
active, i.e. κi > 1, and one without (C-PML 2).

distribution and with a free surface. Since the host consists of homogeneous
material the medium is not contaminated with refracted, reflected and diffracted
waves, and it also means that an analytical solution exists. The Fortran code
EX2DDIR of Berg et al. (1994) has been used to compute the exact analytical
solution of the responses u = (u1, u2)T .

The material properties of the elastic isotropic half-plane considered are: den-
sity ρ = 2000kg/m3, longitudinal wave velocity cp ≈ 774.6m/s, and shear wave
velocity cs = cp/2 in a state of plane strain. The explosive point-source is driven
by a Ricker wavelet with a dominant frequency fc = 1Hz.

To accommodate the scenario of waves at near-grazing incidence we have re-
duced the semi-infinite domain with a free surface to a 3450m× 225m elongated
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2.5 Perfectly matched layer

0 0.0001 0.0002 0.0003

Figure 2.4: Snapshots of the displacement field magnitude - defined as
the norm ||u|| =

√
u2

1 + u2
2 at time steps: (a) 1.0s, (b) 3.0s, (c) 5.0s, and (d) 8.5s.

The waves are driven by a Ricker wavelet source located at (xc1, xc2) = (-937.50m,
-93.75m).

domain truncated by a 150m thick PML layer, as illustrated in figure 2.2. Both
regions are discretized by square elements with edge size ∆x1 = ∆x2 = 4.6875m
and we run the simulation for 20s with a mass lumped explicit time integration
scheme. At the chosen source frequency the size of the computational domain
in vertical direction is comparable to one wavelength. The Ricker wavelet source
is located near the bottom-PML, i.e. at (-937.50m, -93.75m), and we have allo-
cated three receivers at (-862.5m, -112.5m), (-1706.25m, 93.75m), and (-1650.0m,
112.5m) to track u1 and u2 responses. In figure 2.3 the response records display
perfect agreement with the analytical solution when βi > 1 and αi > 0 (i = 1, 2)
are activated in the stretching function (2.18). If they both remain inactive or
only αi > 0 (i = 1, 2) is active the pressure wave will be affected by energy reen-
tering the domain as spurious reflected evanescent waves, see the inset of figure
2.3a.

The near-bottom PML location of the source implies that surface waves form
as soon as pressure and shear waves have interacted with the surface. If we
consider the snapshots of the displacement magnitude at different time steps in
figure 2.4, and simultaneously compare figure 2.3a, -c to 2.3b, -d, respectively, we
notice that Rayleigh waves will dominate. The location of the source also gives
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2.6 Parallelizing the finite element solver

rise to an inclined wave vector away from the surface at 3.0s as illustrated in 2.4b.
The direction of the wave vector eventually becomes parallel to the free surface,
see 2.4c-d, and the propagating waves are efficiently absorbed in the PML.

To this end it should be emphasized that the high stability and efficiency are
achieved by imposing homogeneous Direchlet conditions on the outer boundary
(Cohen, 2002). Alternatively, the PML could be backed by ABCs, such as the
first-order ABC, to enhance the performance even further. The total reflection
then becomes RPML−ABC = RPML ·RABC (Jin and Riley, 2009).

2.6 Parallelizing the finite element solver

Time domain analysis of optical waves often requires hundreds of thousands of
time steps. Since we will use iterative gradient-based optimization techniques
that typically require several hundred optimization steps to reach convergence,
all computational efforts will be predominantly related to solving the state field
in the evaluation of the objective function and its design gradients. Consequently,
parallelization of the state field solver will induce significant speedup in the op-
timization process.

In the parallelization of the explicit time integration scheme we employ a non-
blocking strategy to overlap computation and all interprocessor communications.
The algorithmic primitives of the strategy, that follow the pseudo-code in table
2.1, provide communication robustness and efficiency (Krysl and Bittnar, 2001),
and it can be implemented by using the message passing interface (MPI) library
(Snir et al., 1995). The explicit time integration scheme in equation (2.16) used
for the scalar wave equation requires two half-step evaluations to proceed to
the next time step t + ∆t. This means that data synchronization needs to be
performed twice. The explicit version of the Newmark-beta scheme in equation
(2.15) can suffice with one synchronization step. However, this gain in efficiency
sacrifices the dispersion accuracy in the time stepping.

Table 2.1: Pseudo code.

Non-blocking communication algorithm
1. Compute RHS of equation (2.15), (2.16) for boundary elements
2. Post receive requests
3. Send boundary information from step 1 to the buffer
4. Compute RHS of equation (2.15), (2.16) for interior elements
5. Wait for receive requests completion
6. Check that messages have been sent
7. Update state field
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2.7 Transmission/reflection spectra

To fully exploit the advantages of non-blocking communication, load-balancing
is crucial and should therefore allow all processing units to complete their por-
tion of the work simultaneously, at the next global synchronization point. Load-
balancing is the primary concern in the mesh partitioning. Secondly comes min-
imization of communication requirements between the processors. Due to fast
infiniband network connections on the market today the influence hereof dimin-
ishes. For the wave propagation problems presented in this thesis all geometries
are represented by regular square elements for which reason it is straightforward
to partition the mesh in load-balance without using commercial software such as
Metis (Karypis and Kumar, 2009).

2.7 Transmission/reflection spectra

It is common to map the performance of a scattering object by the frequency
response of the transmitted and reflected power flux. Instead of computing the
flux for each frequency component short pulse excitation in a single time domain
simulation offers an efficient way to compute a broad spectrum response. The
power through a surface S is determined by the surface integral of the time
averaged Poynting vector P

ω
(x)

P (ω) =

∫

S

n · P ω
(x)dS (2.22)

where ω is the angular frequency and n is the unit normal vector. The entries
of the time averaged Poynting vector for elastic waves is, in tensor notation,
expressed by (Royer and Dieulesaint, 2000)

P
ω

j (x) =
1

2
Re
[
−σωij(x)∗u̇ωi (x)

]
(2.23a)

for j = 1, 2, 3. For electromagnetic waves the Poynting vector is determined by
(Jackson, 1999)

P
ω
(x) =

1

2
Re [Eω(x)∗ ×Hω(x)] (2.23b)

with (·)∗ designating the complex conjugate, and (·)ω indicating the frequency
dependency. For a short input pulse it might be tempting to compute the power
integral P (t) of the instantaneous Poynting vector, and subsequently employ the
Fourier transform to obtain the frequency counterpart. This is incorrect, however,
since we need the frequency response of the power flux cf. equations (2.23) and
this is not a linear function of fields. The correct approach is to first compute
the frequency dependent fields by accumulating the Fourier transformed field
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2.7 Transmission/reflection spectra

contribution for every point in the flux plane at each time step while progressing
in time. The Fourier transform is approximated by

h(ω) =
1√
2π

∑

n

ejωh(n∆t)∆t ≈ 1√
2π

∫ T

0

ejωth(t)dt (2.24)

Once time stepping is completed, the power flux P (ω) can then be computed by
equation (2.22). To resolve the necessary details in the response, it is important
to bear in mind that the desired frequency resolution of the response should be
less or equal to the intrinsic resolution ∆f = 1/T with T denoting the total
simulation time.

Transmission is defined by the ratio of the transmitted power Pt(ω) and the
incident power Pin(ω), i.e. |T (ω)|2 ≡ Pt(ω)/Pin(ω). In practice, to take nu-
merical artifacts into account, such as numerical dispersion, the transmitted and
incident power are determined through the same surface with and without the
scattering object, respectively. Thus, two simulations are required to construct
the transmission spectrum.

The reflection spectrum is slightly more tricky to compute. The reflected
power cannot simply be evaluated by the surface integral of the Poynting vector
in backward direction, since this contains both reflected and incident power. Es-
sentially, the Fourier transformed incident field(s) obtained at the surface without
the scatterer are subtracted from the registered field. Hence, for electromagnetic
waves the reflected Poynting vector is given by

P
ω

r (x) =
1

2
Re
{

[Eω(x)−Eω
in(x)]∗ × [Hω(x)−Hω

in(x)]
}

(2.25)

Again, two simulations are needed, one without the scatterer in which we need
to store the Fourier transformed fields in each spatial integration point located
on the surface S, and subsequently one with the scatterer in which we subtract
the incident field components. The reflection spectrum is then computed by
|R(ω)|2 ≡ Pr(ω)/Pin(ω).
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Chapter 3

Topology optimization for
transient wave propagation
problems

Topology optimization is an iterative optimization procedure that seized the day
some 20 years ago when Bendsøe and Kikuchi (1988) introduced the method as a
homogenization technique to design continuum structures for minimum compli-
ance. Shortly after, Bendsøe (1989) proposed the SIMP1 model to obtain struc-
tures with well-defined material phases, and his pioneering work has established
the basis for a structural optimization methodology that has grown in popular-
ity ever since both in academia and in the industry as a preferred design tool.
For some classes of problems commercial software exists e.g. provided by Altair
Engineering and FE-Design.

As design method topology optimization seeks to meet prescribed target de-
sign response functions, by distributing material freely within a design space, for
a given sets of loads and boundary conditions. With this method one may per-
ceive the optimized geometry as a gray-scale image, in which each pixel indicates
the density of a material parameter, such as Young’s modulus in solid mechanics.
Hence, the free pixel-like distribution of material densities in which white and
black pixels render void and solid material, respectively, does not restrict the
optimized design to attain any particular geometry with fixed boundaries. This
inevitably leaves topology optimization as a serious alternative to size and shape
optimization methods, and not least Edisonian approaches, in terms of improving
the performance of a given structure.

Since its introduction, the method has been subject to extensive research
activity which has broadened the areas of applications significantly. This com-

1Solid Isotropic Material with Penalization
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3.1 Topology optimization applied to wave propagation problems

prises the design of compliant mechanism (Sigmund, 1997; Bruns and Tortorelli,
2001; Pedersen et al., 2001; Li et al., 2004), the crashworthiness of automotive
structures subjected to transient loads (Pedersen, 2004; Forsberg and Nilsson,
2007), material with extremal properties (Sigmund, 1994, 1997, 2000; Gibiansky
and Sigmund, 2000), and time-harmonic dynamic problems by eigenvalue opti-
mization for free vibrations (Diaz and Kikuchi, 1992; Pedersen, 2000) as well as
optimization of the structural dynamic compliance for single and multiple oper-
ating frequencies (Ma et al., 1995; Du and Olhoff, 2007).

Topology optimization has also been applied to problems from other (multi)-
physical branches such as Stokes flow problems (Gersborg-Hansen et al., 2005;
Borrvall and Petersson, 2003), microfluidic mixers (Andreasen et al., 2009), MEMS1

devices (Larsen et al., 1997; Sigmund, 2001a,b), fluid-structure interaction prob-
lems (Andreasen and Sigmund, 2010; Kreissl et al., 2010) and a wide range of wave
propagation problems in acoustics and electromagnetism that will be reviewed in
the following section 3.1. A comprehensive and detailed overview of the theory,
method, and applications of topology optimization is provided by Bendsøe and
Sigmund (2004).

3.1 Topology optimization applied to wave prop-

agation problems

Around the beginning of this century Cox and Dobson (1999, 2000) introduced
for the first time a material distribution technique to maximize band gaps of 2D
photonic crystal (PhC) structures. The idea was later adopted and generalized
in a pioneering work by Sigmund and Jensen (2003) that applied the framework
of classical topology optimization to elastic wave propagation problems in the
systematic design of 2D phononic band gap materials and structures. Their
study has formed a firm basis for applying topology optimization to all sorts of
wave propagation problems, an ongoing research activity that receives a great
deal of attention today.

Shortly after its introduction to 2D elastic wave propagation problems, topol-
ogy optimization has been applied to the design of phononic crystal plate struc-
tures (Halkjær et al., 2005) for elastic bending waves, and the optimized designs
have also been experimentally verified by Halkjær et al. (2006). For the same type
of waves vibration suppressing and energy transporting, non-periodic plate struc-
tures have been obtained by Larsen et al. (2009). Different studies for in-plane
shear and pressure waves have applied topology optimization to design struc-
tures exhibiting minimal absorption and transmittance (Jensen, 2007b) as well

1Micro Electro-Mechanical Systems
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3.1 Topology optimization applied to wave propagation problems

as non-linear tunable elastic structures with waveguide functionalities (Evgrafov
et al., 2008a). The usefulness of the design freedom associated with topology op-
timization has also been demonstrated on three-dimensional (3D) phononic band
gap filter and waveguide devices that support the propagation of surface-acoustic
waves (Rupp et al., 2007), and to design structures that accommodate maxi-
mal eigenfrequency separation (Jensen and Pedersen, 2006). The performance
of acoustic devices ranging from an acoustic horn (Wadbro and Berggren, 2006;
Wadbro et al., 2010), sound barriers (Duhring et al., 2008) to devices with struc-
tural (Yoon et al., 2007) and optical (Duhring, 2009) interaction included in the
analysis has been improved drastically by utilizing topology optimization.

Simultaneously to the studies involving elastic waves, electromagnetic wave
propagation problems have been considered. In the microwave regime, an effi-
cient skin-depth resolving methodology for distributing conducting material has
been developed by Aage et al. (2010) to optimize energy harvesting metallic
devices. Erentok and Sigmund (2011) use a different approach to design 3D
sub-wavelength antennas by topology optimization. Prior to these recent stud-
ies, topology optimized patch antennas were obtained by Kiziltas et al. (2003,
2004). Optical wave propagation design problems, in particular involving pho-
tonic crystal (PhC) structures, have recently been treated extensively by topology
optimization to improve the functionality of nano-photonic devices (Jensen and
Sigmund, 2011). The research activity within this field encompasses optimization
of various PhC devices for E- and H-polarized light, such as geometrical properties
for mirrors (Sigmund and Hougaard, 2008), bends (Jensen and Sigmund, 2004;
Tsuji et al., 2006; Watanabe et al., 2007), splitters (Jensen and Sigmund, 2005;
Watanabe et al., 2006), and waveguide terminations (Frei et al., 2005) with min-
imal losses. Amalgamation of these devices should ultimately accommodate the
full control of light in integrated optical circuits, and experimental verifications of
the topology optimized devices have disclosed remarkable improvements in their
optical performance (Borel et al., 2004, 2005). In addition to that, topology opti-
mization has proven very useful in tailoring dispersion properties of optical fibers
(Riishede and Sigmund, 2008), and PhC waveguides with enhanced slow light
behavior initially formulated by (Stainko and Sigmund, 2007) and very recently
extended by Wang et al. (2011) to include robustness against manufacturability
uncertainties. The design of metamaterials has also been addressed by Sigmund
(2009); Diaz and Sigmund (2010) as well as the design of grating couplers for
surface plasmons (Andkjær et al., 2010).

Common for all the above mentioned studies, reviewed comprehensively by
Jensen and Sigmund (2011), is their frequency domain analysis of time-harmonic
waves. Essentially, it implies that one analysis is associated with one driving fre-
quency. A frequency range can be covered by multiple analyses or alternatively
by Padé approximations (Jensen, 2007a). Conversely, time domain optimiza-
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3.2 Design parametrization and material interpolation

tion can be employed to handle broadband signals by short pulse excitation with
a single analysis cycle. In addition, it also allows for signal shaping and the
treatment of nonlinear material resulting in local frequency permutations. Due
to these promising features topology optimization of transient wave propagation
problems has recently attracted increasing awareness. Reported in the litera-
ture to this date, are topology optimization of one-dimensional filters and pulse
modulators (Dahl et al., 2008; Jensen, 2009) based on the FETD method, and,
conducted by FDTD analyses, optimization of 3D broadband antennas (Nomura
et al., 2007) as well as 1D signal shaping devices (Yang et al., 2009). Compared
to frequency domain approaches, topology optimization of transient wave prop-
agation problems has clearly received very little attention. General time domain
topology optimization has been applied to design structures under dynamics loads
by Min et al. (1999), transient heat conduction problems by Turteltaub (2001),
and thermally actuated compliant mechanisms by Li et al. (2004).

In the present work, the method of topology optimization is extended to 2D
transient wave propagation problems analyzed by the FETD method. Two prob-
lems belonging to the optical regime are considered, with the first one formulated
as a maximum stored energy optimization problem, and the second one recast as
a signal shaping problem. This chapter contains an introduction to the continu-
ous design parametrization (section 3.2), followed by a formulation of a generic
time domain optimization problem (section 3.3) and the associated sensitivity1

analysis (section 3.4). The last part (section 3.5) describes how the computing
effort of time domain optimization can be lowered by parallel computing.

3.2 Design parametrization and material inter-

polation

Topology optimization is here applied to the design of structures subjected to
transient waves. A simulation domain ΩS with the boundary ΓS = ∂ΩS is excited
either by a radiative source located at xr ∈ ΩS or an incoming plane wave specified
on the boundary Γinc ⊆ ΓS. The aim is then to find a material distribution
consisting of air and solid in a prescribed design domain ΩD such that given
design response functions are optimized/satisfied in an evaluation domain ΩE,
see figure 3.1.

For the design parametrization each element in the design domain is linked
to a unique design variable ξe for e ∈ ΩD that controls the material phases, such

1Sensitivity is here used as the synonym for first-order gradients.

24



3.2 Design parametrization and material interpolation

that

ξe =

{
0, if air
1, if solid material

(3.1)

Hence, the optimization is intrinsically rendered discrete to obtain pure mate-
rial phases. To facilitate the use of gradient-based optimization algorithms, and
thereby ease the optimization process significantly, the discrete element vari-
ables are translated into continuous (density) equivalents satisfying 0 ≤ ρe ≤ 1
for e ∈ ΩD. For convenience, we assemble them in the global design vector
ρ = (ρ1, . . . , ρM)T with M denoting the number of design variables.

It has been demonstrated for transmittance type problems, that density vari-
ables entering a material interpolation scheme linearly, can be successfully adopted
to represent material properties of the specific element in wave propagation prob-
lems (Sigmund and Jensen, 2003)

A(ρe) = A1 + ρe(A2 − A1) (3.2)

Here, A1 and A2 denote pure air and solid phases, respectively, and A designates
the distributed material property. For optical waves it concerns permittivity,
and for elastic waves mass density and Young’s modulus (or Lamé coefficients).
However, the continuous design parametrization suffers from the drawback that it
allows for ”intermediate” or ”gray” densities to appear in the optimized designs,
corresponding to neither of the desired material phases. From a structural point
of view the manufacturer needs optimized designs with well-defined boundaries.
Hence, in order to steer the optimization process towards 0− 1 designs some sort
of penalization is required. Here, if necessary, we use a technique that introduces

Γinc
ΓS = ∂ΩS

ΩD

ΩE

ΩS

xr

Figure 3.1: Design problem diagram - the simulation domain ΩS contains
a design region ΩD and a design response evaluation region ΩE. The structure
is subjected to transient propagating waves excited either by a radiative source
located at xr or an incoming plane wave at Γinc ⊆ Γ. On the outer boundary Γ
absorbing boundary conditions are imposed.
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3.3 Formulating the optimization problem

artificial damping (”Pamping”) in intermediate material regions to remove the
gray elements from here (Jensen and Sigmund, 2005).

The minimum length scale of the design features is controlled using a density
filter that operates on the design as follows (Bourdin, 2001; Bruns and Tortorelli,
2001)

ρ̃e =

∑

i∈Ne

w(xi)viρi

∑

i∈Ne

w(xi)vi
(3.3)

where Ne is the neighborhood of element e specified by the elements that have
centers within a given filter radius R of the center element e. Further, w(xi) is the
cone-shaped weighting function given by w(xi) = R − ||xi − xe||, and vi denotes
the volume of element i in the neighborhood with spatial (center) location xi.

After density filtering we remove gray elements in the transition region be-
tween solid and void by single or dual projection of the material phase with the
minimum length scale preserved (Guest, 2009; Sigmund, 2007), or by a single pro-
jection with no minimum length scale conserved (Xu et al., 2010). Even though
the latter eliminates the minimum length scale, it has proven useful in obtaining
well-defined optimized design (Wang et al., 2011).

3.3 Formulating the optimization problem

The motivation for using topology optimization is to optimize an objective sub-
jected to a number of constraints by distributing material freely in a prescribed
design domain ΩD.

For time domain optimization in general, a given design functional G can
be a function of signal displacement u, velocity u̇, and acceleration ü. We also
incorporate the option for using various signal processing convolution operations
on u such as the Hilbert transform, high- and low-pass filters, etc., which we, for
convenience, designate û.1 Based on this we define an objective function as

Φ(ρ) =

∫ T

0

G(u, u̇, ü, û,ρ)dt (3.4)

where T is the termination time of the transient simulation, and u ≡ u(ρ, t)
where the design dependence is implicit, and ρ is the design vector. The problems
considered in this thesis only involve at most two constraints g0(ρ) and g1(ρ), of
which g1(ρ) is assumed to have a similar form as the design response in equation

1Filter convolution is defined by û(t) =
∫∞
−∞ u(s)H(t− s)ds where H(t) is the filter kernel.
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3.4 Sensitivity analysis

(3.4). Thus recast on a generic form, a time domain optimization problem can
be formulated as

min
ρ∈RM

Φ(ρ)

s.t.: Governing equation (2.8)

g0(ρ) = V (ρ)/V ∗ − 1 ≤ 0

g1(ρ) ≤ 0

0 ≤ ρe ≤ 1, e ∈ ΩD

(3.5)

where g0(ρ) is the so-called volume constraint in which V is the volume occupied
by present material, and V ∗ is the upper bound on the allowable material usage
in the design domain ΩD. In wave propagation problems, unless strictly imposed,
the volume constraint is not necessarily active. However, when the optimiza-
tion problems involve several local minima the optimized design will be strongly
dependent on the choice of V ∗.

We will consider two types of design functionals G can attain: 1© stored energy
in a prescribed output domain ΩE, and 2© signal shaping at multiple points in
ΩE.

The optimization problem in equation (3.5) is solved by the globally con-
vergent method of moving asymptotes (GCMMA) proposed and implemented in
Fortran 77 by Svanberg (2002), hereafter referred to as the optimizer. This is
a gradient-based method that can solve non-linear mathematical programming
problems. The algorithm employs design information from previous optimization
steps and current gradient information based on which it efficiently carries out
the design update satisfying global convergence of the objective and constraint
functions. The GCMMA is efficient for a large number of design variables and
constraints which is typically required in topology optimization problems.

3.4 Sensitivity analysis

For the continuous optimization problem we need to compute the design sensi-
tivities of the objective and the constraint functions in order to facilitate the use
of gradient-based optimization algorithms. Essentially, the sensitivities contain
information on how much a function will change upon an infinitesimal design
variable perturbation.

For a large number of design variables the adjoint variable method (AVM)
(Michaleris et al., 1994; Tortorelli et al., 1990, 1991; Tortorelli and Michaleris,
1994; Cardoso and Arora, 1992; Tsay and Arora, 1990; Arora and Haug, 1979)
offers a clever and computationally efficient alternative to the direct differenti-
ation method (DDM) (Greene and Haftka, 1991; Hsieh and Arora, 1985, 1984).
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3.4 Sensitivity analysis

In particular, AVM evaluates the sensitivities with computational costs indepen-
dent of the number of design variables by introducing an auxiliary problem that
is always linear.1 Sensitivity computation is therefore usually comparable to the
cost of solving for the state field once. However, the benefits of AVM are only
useful when the objective and constraint functions are recast on integral form.

The explicit design sensitivity expression is derived by considering the design
response defined in equation (3.4). To make the approach general we proceed
by expressing the sensitivities in terms of the residual for the equation governing
the state field as a function of the displacement u, velocity u̇ and accelerations
ü and the design ρ, i.e. r ≡ r(u, u̇, ü,ρ). Based on equation (3.4) we form the
augmented design response

ΦA =

∫ T

0

G(u, u̇, ü, û,ρ)dt+

∫ T

0

λT r(u, u̇, ü,ρ)dt (3.6)

where the adjoint (Lagrange multiplier) vector λ ≡ λ(ρ, t) depends implicitly
on the design and explicitly on time. The augmented design response is always
equal to the original design response in equation (3.6), since r = 0 is ensured from
the primal transient analysis when solving equation (2.8). This means that their
associated sensitivities must be identical, i.e. dΦ/dρ = dΦA/dρ. By a clever
choice of λ, which can be chosen freely since r = 0, the sensitivity analysis can
be considerably simplified as shown in the following.2

Differentiation of equation (3.6) with respect to each element design variable
ρe for e ∈ ΩD by the chain rule, and subsequently utilization of integration by
parts yields

dΦA

dρe
=

[(
∂F

∂ü
+ λT

∂r

∂ü

)
du̇

dρe

]T

0

+

[(
∂G

∂u̇
− d

dt

∂G

∂ü
− λ̇T ∂r

∂ü
+ λT

∂r

∂u̇

)
du

dρe

]T

0

+

∫ T

0

(
λ̈T

∂r

∂ü
− λ̇T ∂r

∂u̇
+ λT

∂r

∂u
− ∂G

∂u
+

d

dt

∂G

∂u̇
− d2

dt2
∂G

∂ü
− (−1)p

∂̂G

∂û

)
du

dρe
dt

+

∫ T

0

λT
∂r

∂ρe
dt+

∫ T

0

∂λT

∂ρe
rdt (3.7)

where p = {0, 1}, depending on the ordinate symmetry of the kernel function in
the filter convolution operations. When the kernel holds even symmetry p = 0,

1This is independent of what type the primal state problem is: linear or non-linear.
2In the non-linear case the accuracy of the sensitivities obtained from AVM depends on the

precision with which we solve for r = 0.
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3.4 Sensitivity analysis

and odd p = 1. The implicit system derivatives du/dρe and du̇/dρe are an-
nihilated from the sensitivity expression in equation (3.7) by selecting the ap-
propriate λ. If we assume that the field is not design dependent at t = 0, i.e.
u(0) = u̇(0) = 0, the adjoint response is obtained by solving the following termi-
nal value problem

λ̈T
∂r

∂ü
− λ̇T ∂r

∂u̇
+ λT

∂r

∂u
=
∂G

∂u
− d

dt

∂G

∂u̇
+

d2

dt2
∂G

∂ü
+ (−1)p

∂̂G

∂û
(3.8a)

λ(T )T
∂r

∂ü
(T ) = −∂G

∂ü
(T ) (3.8b)

−λ̇(T )T
∂r

∂ü
(T ) + λ(T )T

∂r

∂u̇
(T ) = −∂G

∂u̇
(T ) +

d

dt

∂G

∂ü
(T ) (3.8c)

Clearly, the terminal value problem above is always linear with respect to λ. Once
the adjoint response has been found the sensitivities are subsequently computed
by the time integral

dΦ

dρe
=

∫ T

0

(
∂G

∂ρe
+ λT

∂r

∂ρe

)
dt (3.9)

that can be evaluated by using the trapezoidal integration rule.

3.4.1 The linear wave equation

Throughout the thesis we consider linear wave propagation problems for which
the residual is given by

r(u, u̇, ü,ρ) = f − (Mü + Cu̇ + Ku) (3.10)

where the system matrices M, C, and K are assumed design dependent, time-
invariant, and symmetric. If we additionally introduce the time shift t = T − τ
and solve for the residual in equation (3.10), the adjoint terminal value problem,
based on λ̄(τ), simplifies to

M ¨̄λ+ C ˙̄λ+ Kλ̄ = fa(T − τ) (3.11a)

λ̄(0)TM = −∂F
∂ü

(T ) (3.11b)

˙̄λ(0)TM + λ̄(0)TC = −∂G
∂u̇

(T ) +
d

dt

∂G

∂ü
(T ) (3.11c)
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with the adjoint load

fa(t) =

(
∂G

∂u
− d

dt

∂G

∂u̇
+

d2

dt2
∂G

∂ü
+ (−1)p

∂̂G

∂û

)T

(3.11d)

since d/dt = −d/dτ . Thus, the original terminal value problem has been trans-
formed into an initial value problem. We recover the original adjoint variable by
substituting λ(T − τ) = λ̄(τ), and the sensitivities are subsequently evaluated
by equation (3.9).

In the situation where the design functional G only depends on the state
field u and û the initial conditions in equations (3.11b)-(3.11c) reduce to λ(0) =
λ̇(0) = 0. Nonetheless, the result in equation (3.11a) is an adjoint problem whose
form is identical to that of the primal transient analysis in equation (2.8), albeit
with the adjoint load, cf. equation (3.11d), acting as the excitation term. Hence,
the same integration scheme can be used to find the adjoint response.

The evaluation of the sensitivities by AVM proceeds as follows: After the
transient primal analysis for the state field is concluded, the adjoint response λ is
computed at the exact same time steps by reusing the exact same ABC setup from
the primal analysis (Chung et al., 2000). While integrating the adjoint response
in time, the integrand in equation (3.9) is evaluated and the contribution to the
sensitivities is added by using the trapezoidal integration rule. Consequently,
when time marching of the adjoint equation (3.11a) is completed the sensitivities
are obtained. This process requires storage of u from which, when needed, ü and
u̇ are computed by equations (2.11)-(2.12).

If density filtering techniques have been used to regularize the topology op-
timization problem, the sensitivities are based on the filtered design variable ρ̃e.
However, the design update needs the originally intended sensitivities dΦ/dρe.
We recover those from ∂Φ/∂ρ̃e by using the chain-rule

dΦ

dρe
=
∑

i∈Ne

∂Φ

∂ρ̃i

dρ̃i
dρe

(3.12a)

with

dρ̃i
dρe

=
w(xe)ve∑

j∈Ni

w(xj)vj
(3.12b)

for the standard density filter in equation (3.3).
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3.5 Parallel computing applied to topology optimization

3.4.2 Localizing functions

In practical problems point-wise constraints and the need for controlling con-
straints and the objective in a localized time interval very often occur. On inte-
gral form the point-wise constraint can be incorporated by introducing the Dirac
delta function (Tortorelli and Haber, 1989). We suggest that a time interval
[T1, T ] ⊆ [0, T ] can be specified by the Heaviside step function ū(t − T1) as an

alternative to splitting the time integral in equation (3.4) into
∫ T
T1

=
∫ T

0
−
∫ T1

0

which requires two adjoint analyses. As a result, the design response function
becomes

Φ(ρ) =

∫ T

0

G(u, u̇, ü, û,ρ)L(t)dt (3.13)

where L(t) denotes the localizing function which modifies the adjoint load in
equation (3.11d) to fa(t)L(t).

3.5 Parallel computing applied to topology op-

timization

The iterative nature of the topology optimization method implies the necessity
for repeating the state field and the sensitivity analysis (e.g. by the FE method)
to succeed each design update until convergence is reached. The flowchart of
the optimization procedure appear in figure 3.2. For wave propagation prob-

Preprocessing
initial design finite element final design

Filter design

Filter design Design analysis Postprocessing

Correcting
sensitivities

Design update

Sensitivity
analysis

optimizer

Converged?

No

Yes

Figure 3.2: Optimization flowchart - for the design problems encompassed
by the generic formulation in equation (3.5). The gray boxes indicate parallelized
steps in the optimization process.
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Private elements

Ghost elements
shared in density filtering

Private elements on
neighboring processor

Shared nodes in the
finite element analysis

Private nodes

Figure 3.3: Mesh decomposition diagram - based on a node-cut partitioning
through the red nodes. The center processor (containing yellow elements) with one
element thick ghost layer share boundary nodes with eight adjacent processors.
The ghost layer is shared in the ”Correcting sensitivity” step in the optimization
flowchart c.f. figure 3.2.

lems it is not uncommon that the optimization process requires several hundreds
of optimization steps in order to converge. We saw in the previous section 3.4
that sensitivity evaluation in time domain optimization is associated with high
demands on memory storage, since the field from the primal forward analysis
needs to be stored in order to be reused in the adjoint load in equation (3.11d)
and in the computation of the sensitivities by the time integral in equation (3.9).
Additionally, to allow for detailed structural features in the optimized designs
high element resolution is required. On this basis topology optimization inher-
ently calls for the use of parallel computing, and recently it has been applied to
topology optimization of different types of steady-state problems, see Borrvall
and Petersson (2001); Kim et al. (2004b); Mahdavi et al. (2006); Evgrafov et al.
(2008b); Aage and Lazarov (2011).

The intrinsic element-based density concept behind topology optimization ren-
ders the optimization method a natural subject to a parallel computing strategy
that relies on a node-cut partitioning of the mesh. As depicted in figure 3.3 this
partition method means cuts through finite element edges and faces connected
by the (red) border nodes. Sharing of nodes amongst the processors requires very
little duplication of computing effort. Advantageously, data locality is thereby
retained, and it aligns with the diagonal nature of the mass matrix in our explicit
time integration scheme permitting the FE equation for the nodal degrees of free-
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3.5 Parallel computing applied to topology optimization

dom to be solved independently of one another. The node-cut mesh partitioning
holds superior candidacy since all computing efforts in our case, i.e. explicit time
integration of the FE equations, density filtering, and sensitivity analysis, are
associated with element based calculations (Krysl and Bittnar, 2001; Danielson
and Namburu, 1998).

When parallelizing the topology optimization procedure there are three as-
pects to consider: density filtering, the state field solver, and the optimizer.
According to Amdahl’s Law (Amdahl, 1967) speedup that scales linearly with
the number of processors is only achieved for a large number of processors if all
three functions are parallelized. However, we only parallelize the first two, still
yielding linear scaling for a maximum number of 288 processors available. The
design is updated on the root processor to which sensitivity information from each
contributing processor is sent. The updated design is subsequently broadcasted
back to the relevant processors.

Parallelization of the density filtering process follows naturally as a result of
node-cut partitioning of the mesh. However, to facilitate the use of density filters
we need to add a ghost layer to each partition, see figure 3.3. The thickness of
the layer corresponds to the filter radius measured in an element number metric.
Here, it is important to stress that the elements in the ghost layer become shared
with the neighboring processors in the ”Correcting sensitivity” (chain rule) step
of the optimization flowchart, cf. figure 3.2, due to the implications of the chain
rule in equation (3.12b) when the original sensitivities dΦ/dρe for e ∈ ΩD have
to be retrieved. Hence, global synchronization of the processing units is required
here.
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Chapter 4

Designing optical devices for
applications

In this chapter three optical components are designed by the use of topology opti-
mization. The first problem optimizes an optical taper (4.2). This is followed by
optimization of a photonic crystal notch filter (4.3), and the final design problem
of the chapter considers optimization of slow light devices (4.4). However, we
start out by introducing the concept of photonic crystals.

4.1 Two-dimensional photonic crystals

Photonic crystals (PhC) are periodic optical nano-structures that are designed
to control and manipulate the motion of photons (light modes) in a number
of desirable ways (John, 1987; Yablonovitch, 1987). They serve as the optical
analogue to the periodicity of a semiconductor crystal that can manipulate the
motion of electrons on a microscopic level if atoms and molecules are replaced
by macroscopic media with differing dielectric constants of high contrast. Similar
to how a periodic potential of semiconducting material can inhibit the motion
of electrons, one can, by a periodic distribution of dielectric, construct photonic
crystals with photonic band gaps (PBGs), preventing light from propagating in
certain directions with specified frequencies. Conversely, a photonic crystal can,
if properly designed, accommodate propagating modes in PhC waveguides (WGs),
and it can also support resonant localized modes inside microcavities (MCs).

The advantage of PhCs is their ability to provide strong light-matter interac-
tion while keeping the size of the optical components greatly reduced. Amalga-
mation of the PBG mirror, PhC-WG, and PhC-MC as the basic components has
for instance been utilized to design various PhC devices such as filters, bends,
and splitters for various applications (Joannopoulos et al., 2008). Additionally,
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4.1 Two-dimensional photonic crystals

the unique tunable dispersion properties of PhCs allow for the generation of slow
light, leaving a PhC as an obvious candidate for engineering in the realization of
on-chip integration of slow-light devices (Baba, 2008).

Even though 3D PhCs exist, we here limit the study to 2D crystals. This
implies that the PhC is periodic along two of its axes and homogeneous along
the third axis. In the inset of figure 4.1, a supercell sample consisting of a tri-
angular lattice of air holes embedded in dielectric material with a line defect is
shown, and we imagine the specimen to be infinitely tall. For certain geometrical
configurations this crystal can have a PBG in the x1x2 plane, comprised by the
light gray rectangular region of the band diagram in figure 4.1. Inside the band
gap guided modes can live if defects are introduced in the perfect lattice.

As described in section 2.2, electromagnetic waves can be separated into two
distinct polarizations in the 2D case; TE and TM modes, for which the band
structures can be fundamentally different. Here, we consider TE modes, because
their band gaps are favored in triangular lattices compared to TM band gaps.
They are governed by the scalar wave equation (2.4) with u = H3, A = 1/εr
and B = c−2. Because we only model the transverse fields it is adequate to use
nodal-based finite elements in order to satisfy the electromagnetic field continuity
equations (Jin and Riley, 2009).

Since we consider macroscopic systems containing dielectric material we utilize

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

ak

Wavenumber k (a/2π)

N
o

rm
a

liz
e

d
 f

re
q

u
e

n
c
y
 (

a
/λ

)

Figure 4.1: The projected band structure - of the line defect (inset) formed
by filling a row of air holes in a perfect crystal plotted versus the wave vector
component k along the waveguide axis. The extended modes in the crystal become
continuum regions (gray), whereas inside the band gap (light gray rectangular
region) a defect band is introduced. The pitch/lattice constant of the photonic
crystal is denoted a.
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4.2 Topology optimization of an optical taper [P1]

that no fundamental length scale exists by introducing (x′1, x
′
2) = (x1, x2)/a to

the scalar wave equation (2.4) where a is a characteristic length, typically the
pitch (or lattice constant) of the PhC (Joannopoulos et al., 2008). This will lead
to the scaled time t′ = tc/a, and scaled angular frequency ω′ = ωa/c whereby the
master equation becomes scale invariant. In the remainder of this chapter the
scaled parameters are used, unless otherwise stated, and it is straightforward to
switch between these and the non-scaled parameters as soon as a is known.

4.2 Topology optimization of an optical taper

[P1]

The optical taper is an essential component when several optical functions have
to be integrated into one chip. This is e.g. the case if two waveguides have to be
seamlessly joined.

A possible application could be to guide light from an external dielectric ridge
waveguide (WG) into a PhC-WG, which will be considered in section 4.4. Here,
however, we start out by optimizing a tapering device with dielectric contrast
εr = 11.56 coupling two monomodal1 ridge waveguides with the setup given in
figure 4.2a. The goal is to distribute dielectric material inside the design domain
ΩD such that waveguide tapering from 2 µm to 0.5 µm over a 0.5 µm distance is
achieved without backscattering effects by maximizing the output energy. This
leads to the following optimization formulation

min
ρ∈RM

Φ(ρ) = −
∫ T

0

∑

e∈Γout

uTQeudt

s.t.: Governing equation (2.8)

0 ≤ ρe ≤ 1, e ∈ ΩD

(4.1)

where u holds the discrete values of the transverse magnetic field, H3, and Qe is
a diagonal matrix with non-zero entries for the degrees of freedom at Γout.

For the incoming waves we use a Gaussian distributed wave packet with domi-
nant frequency ω0a/2πc = 0.37 and a full width at half maximum (FWHM) band-
width equal to 0.2. For the spatial and time discretization ∆x1 = ∆x2 = a/20
and ∆t = 0.9∆x1/c, respectively, have been used.

The initial material distribution is not based on prior knowledge of potential
well-performing geometries, such as the parabolic taper (Luyssaert, 2005). The
optimization is started from a homogenous material distribution corresponding

1A monomodal waveguide only supports one guided mode.
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Figure 4.2: The optical taper - (a) The design setup with ΩD as the design
domain of length 0.5 µm. The monomodal wave is specified at Γin in the inlet
waveguide Ωin of width 2 µm, and exits in the outlet waveguide of Ωout of width
0.5 µm. Energy is maximized at the ouput port Γout. (b) Optimized taper design.

to ρe = 0.5 for e ∈ ΩD. In the region with inactive elements, the in- and out-
let regions consist of dielectric material, the remainder is free space. We have
introduced a minimum length scale by the standard density filter with radius
R = 2.5∆x1 cf. equation (3.3).

The result of the optimization is the taper design in figure 4.2b that exhibits
almost zero-backscattering. Hence, if we compare this taper design to e.g. a linear
taper, which is a commonly used geometry for optical tapers, the performance
has been significantly improved, for further details see [P1].

4.3 Topology optimization of a photonic crystal

notch filter [P2]

In signal processing, a band-stop or band-rejection filter is a frequency-selective
device that discriminates among the various frequency components of an input
signal. By proper design of the filter we can create a device that passes most
frequencies unaltered and simultaneously attenuates the input signal within a
specified frequency range to very low level.
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4.3 Topology optimization of a photonic crystal notch filter [P2]

Among the class of band-stop filters, the notch filter is characterized by having
a narrow stop band. Optical notch filters are essential devices in Raman spec-
troscopy. Here, they are used to remove the incoming laser signal from the de-
tected signal such that Raman shifted satellite peaks, with energy closely related
but several orders of magnitude weaker than that of the laser, are not eclipsed
by the stray light and the molecule informations of the given subject under in-
vestigation can be clearly discerned (Somerville et al., 2010). Furthermore, notch
filters are standard components in digital live sound reproduction systems and
in instrument amplifiers used to trim or hinder signal feedback without affecting
the rest of the transmission spectrum.

We will realize the notch filter by using a 2D PhC composed of a triangular
lattice of air holes in the high-contrast dielectric material GaAs, in which we
introduce a line defect waveguide and a point defect cavity. By using the hole
radius r/a = 0.35 the PhC supports a complete TE band gap in the normalized
frequency range a/λ = 0.21 − 0.33, where λ denotes the wavelength in vacuum.
The dielectric contrast between GaAs and air is εr = 11.4 for wavelengths around
1.5 µm. A schematic drawing of the filter is shown in figure 4.3. Based on this
rather abstract diagram of the energy flow inside the system, we will use temporal
coupled-mode theory to predict quantitative features about the filter functional-
ity, and subsequently employ these predictions as inspiration to formulating the
optimization problem.

A

τe

τ0

s+1 s+2

s−1 s−2
Port 1 Port 2

d

Figure 4.3: PhC filter feature diagram - a single-mode waveguide with in-
put/output s+1/s−1 and s+2/s−2 at port 1 and 2, respectively; and a resonant
single-mode of field amplitude A (thus with stores energy |A|2) and frequency ω0

coupled to the waveguide with lifetime τe, and with loss lifetime τ0 to the PhC.
The dashed lines indicate the reference planes.
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4.3 Topology optimization of a photonic crystal notch filter [P2]

4.3.1 Temporal coupled-mode theory and the Q factor

The main idea behind temporal coupled-mode theory (CMT) proposed by Haus
(1984) is to describe the coupling between a set of distinct idealized components,
i.e. the cavity and the waveguide in our case, and thereby make analytical pre-
dictions about the physical features of the coupled system in figure 4.3. The key
assumption in CMT is slow energy exchange between the involved components,
that will result in a weak coupling. For the present system we guarantee that by
surrounding the cavity with a sufficient number of PhC layers.

As a result of the PBG the light can only live inside the cavity and in the
waveguide, for which reason the remainder of the PhC is neglected in the analy-
sis. The standing mode in the cavity, whose amplitude A has time dependence
exp(−jω0t), has a resonant frequency ω0. In the waveguide, the amplitudes of
the incoming (outgoing waves) are denoted by s+1 (s−1) and s+2 (s−2). Thus,
s+1 and s−2 are amplitudes in the forward direction, whereas s−1 and s+2 are
amplitudes in the backward direction. Associated power is determined by the
absolute value of the amplitudes squared.

In the present system the cavity has two loss mechanisms: The mode decays
with lifetime τe and τ0 into the waveguide and the surrounding PhC, respectively.
The net lifetime is then given by 1/τ = 1/τe + 1/τ0. Input energy from s+1 in
the waveguide can potentially couple into the cavity, be reflected back to s−1, or
transmitted to s−2 (the opposite scenario with an incoming wave from s+2 also
exists). Consequently, the CMT equations governing the amplitude evolution of
the cavity mode in time are given by (Haus, 1984)

dA

dt
=

(
−jω0 −

1

τ0

− 1

τe

)
A+ κ1s+1 + κ2s+2 (4.2)

s−1 = e−jγd(s+2 − κ∗2A) (4.3)

s−2 = e−jγd(s+1 − κ∗1A) (4.4)

where j denotes the imaginary unit. In equation (4.2), 1/τ0 is the decay rate
due to losses, 1/τe is the rate of decay into the waveguide, κ1 and κ2 are the
input coupling coefficients associated with forward and backward propagating
modes. In equations (4.3)-(4.4), γ is the propagation constant of the waveguide
mode, d is the distance between in- and output ports, and (·)∗ stands for complex
conjugation. Based on power conservation, see Manolatou et al. (1999), we obtain
the coupling equations

κi =

√
1

τei
ejθi , i = 1, 2 (4.5)

with 1/τe1 and 1/τe2 defined as the decay rates into the waveguide in the forward
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4.3 Topology optimization of a photonic crystal notch filter [P2]

and backward direction, respectively, satisfying 1/τe1 + 1/τe2 = 2/τe.
1 Further,

θi are the respective phases which have been necessary to introduce, in order
to meet a potential phase mismatch between the cavity and waveguide mode,
and the reference planes (shown as dashed lines in figure 4.3). Assuming an
incoming wave at port 1 (i.e. s+2 = 0) whose associated field s+1 has a e−jωt time
dependence, the field everywhere in the system, due to linear material behavior,
must also oscillate equivalently (i.e. dA/dt = −jωA). If we define the transmitted
frequency response as T (ω) ≡ s−2/s+1, then at steady state, by substituting
equation (4.2) into (4.4), we obtain

s−2

s+1

≡ T (ω) = −e−jγd
(

1−
1
τe1

−j(ω − ω0) + 1
τ0

+ 1
τe

)
(4.6)

Instead of the decay rates, it is more convenient to measure the performance of the
PhC notch filter based on the dimensionless quality factor, and by definition the
unloaded and the external quality factors relate to the decay rates by Q0 = ω0τ0/2
and Qe = ω0τe/2, respectively. The loaded (total) in-plane Q factor of the system
is determined by

1

Qin

=
1

Qe

+
1

Q0

(4.7)

In terms of the Q factors, the filter transmission spectrum is given by

|T (ω)|2 = 1−
1

4Q2
e

(
1 + 2Qe

Q0

)

(
ω−ω0

ω0

)2

+ 1
4Q2

in

(4.8)

This response will produce a Lorentzian peak at the resonance frequency ω0 with
the fractional width ∆ω/ω0 at half maximum given by 1/Qin. At resonance, i.e.
ω = ω0, it simplifies to

|T (ω0)|2 =
Q2

in

Q2
0

≈ Q2
e

Q2
0

+O([Qe/Q0]3) (4.9)

where the rightmost expression is for the usual case Q0 >> Qe, i.e. when the
energy decay rate from the isolated cavity is several orders of magnitude smaller
than the decay rate from the cavity into the waveguide (Kim et al., 2004a). We
learn from equation (4.9) that Qin ≈ Qe which means that the energy decay in-
side the cavity is only determined by the coupling power between the waveguide

1Since the cavity mode consists of a pure standing wave it decays equally into backward
and forward propagating waveguide modes, with no net power flux in either direction inside
the cavity.
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4.3 Topology optimization of a photonic crystal notch filter [P2]

and the cavity. It leaves Qe as the limiting factor on the total performance Qin of
the PhC notch filter. Another intriguing property in this physical limit is main-
tenance of strong coupling (i.e. very low transmission), even upon considerable
improvement of Qe.

Similarly for the reflected frequency response defined by R(ω) = s−1/s+1, we
find that the reflected energy at resonance is given by

|R(ω0)|2 =
1

(1 + Qe

Q0
)2
≈ 1− 2

Qe

Q0

+O([Qe/Q0]3) (4.10)

if Q0 >> Qe. This shows us that energy is conserved at resonance, i.e. |R(ω0)|2 +
|T (ω0)|2 = 1, where transmitted energy drops to zero and all light is reflected back
towards the waveguide entry.

To measure the coupling performance of the notch filter, one may record the
transient decay of the stored energy U0, reached at time Tmax inside the cavity
given by (Jackson, 1999)

U(t) = U0e
−ω0t/Qin (4.11)

from which Qin can be computed. We previously learned about the present system
that Qe ≈ Qin, c.f. equation (4.9). Hence, once Qin is known Qe can be directly
obtained. The functionality of a notch filter is improved if the energy decay to
the waveguide is delayed as much as possible. This corresponds to narrowing the
Lorentzian peak in the transmission spectrum. Therefore, the goal is to enhance
the external quality factor Qe.

4.3.2 Formulation and method

The purpose of the presented method is to distribute air and dielectric material
in the design domain ΩD around the cavity such that the stored energy in the
cavity core region ΩE is maximized within the decaying regime of the transient
energy response. Including the Heaviside step function in the objective allows us
to specify the elapsed time T1, after which the energy should be maximized. By
choosing T1 large enough the optimization should favor cavity designs with lower
decay rate, and the choice of T1 is expressed in multiples of Tmax.

The optimization problem with the setup given in figure 4.4 can be formulated
as

min
ρ∈RM

Φ(ρ) = − log10

[∫ T

0

∑

e∈ΩE

uTQeuū(t− T1)dt

]

s.t.: Governing equation (2.8)

g0(ρ) = V (ρ)/V ∗ − 1 ≤ 0

0 ≤ ρe ≤ 1, e ∈ ΩD

(4.12)
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d1

d2

a

3a/2

ΩPML

ΓabsΓabs

Γabs

Γabs

Γinc Γout

ΩS

ΩT

ΩD

ΩE

Γ K

M

Figure 4.4: Notch filter optimization setup - Γ − K directional PhC-WG
coupled to a PhC-MC. The solution domain ΩS and the transition domain ΩT are
truncated by the PML region ΩPML. The circle encloses design domain ΩD. In ΩE

the energy is maximized. The PhC is built by blocks of size a/2 ×
√

3a/2, with
ΩT ∪ ΩS containing 30× 14 building blocks, and ΩPML elongated 24 and 4 blocks
on both sides in direction Γ−K and Γ−M, respectively.

where u holds the discrete values of the transverse magnetic field, H3, and the
entries of the element matrix Qe are determined by equation (2.9a). The loga-
rithm has been introduced to the objective function to ensure better numerical
scaling. We obtain a continuous design parametrization through a linear inter-
polation of 1/εr between the two candidate materials, c.f. equation (3.2). The
objective integral in equation (4.12) is smoothen to avoid the introduction of any
unnecessary numerical resonance artifacts in the adjoint load. The strategy can
be found in [P2].

As illustrated in figure 4.4 we include the nearest neighboring holes to the
cavity in the design domain ΩD, since it has been demonstrated that alternating
their geometry can improve the Q factor significantly (Painter et al., 1999; Kim
et al., 2004a). The field inside the device is generated by the Gaussian modulated
source

g(t) = e−(t−t0)2/T 2
0 sin[2πω0(t− t0)] (4.13)

where ω0 denotes the dominant angular frequency. The 1/e-intensity half width
of the Gaussian distribution is set to T0 = 180a/c centered around t0 = 500a/c.
These settings produce a pulse with FWHM that, in the band gap range, corre-
sponds to approximately 60− 100 wave periods (or wavelengths in vacuum). For
the spatial and time discretization we use ∆x1 = ∆x2 = a/14 and ∆t = 0.9∆x1/c,
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4.3 Topology optimization of a photonic crystal notch filter [P2]

respectively.
The solution of the resonant type optimization problem in equation (4.12)

suffers from strong non-uniqueness that will lead to multiple local minima. Some
of them are results of the possible existence of degenerate modes (Joannopoulos
et al., 2008), others arise from local resonance effects yielding poor performance
away from the target frequency (Jensen and Sigmund, 2005). Resonance type
optimization problems are inherently sensitive because very small design changes
in a tangle of local minima can easily deteriorate the physical performance at
resonance. Therefore, to prevent the optimization algorithm from roaming around
among different local minima in the beginning of the optimization process, we
have found it necessary to employ a globally convergent algorithm, such as the
GCMMA.

In order to avoid any non-manufacturable geometry features in the optimized
designs we combine the standard density filter in equation (3.3) with two inversely
related projection schemes, one linked to each material phase to control the length
scale of void and dielectric simultaneously. This type of multiphase projection will
lead to intermediate design variables in the transition regions between void and
solid. We penalize this trend by introducing artificial mass proportional damping
(”Pamping”) in gray elements (Jensen and Sigmund, 2005).

The design process is executed in a sequence of three consecutive steps: First,
based on a trial and error radius variation of nearest neighboring holes to the
cavity, we find a well-performing geometry. This serves as an initial guess in
the optimization of the isolated cavity, and if the performance is improved, the
optimized cavity is subsequently used to start the optimization of the coupled
device.

4.3.3 Results

In the search for a cavity geometry that supports a high Q mode as initial guess,
we have found the geometry in figure 4.5a. It pulls down a monopole H3 mode
from the air band at the frequency ω0a/2πc = 0.3030 with Q0 = 2.2 × 105. We
retrieve the corresponding mode in figure 4.5c by the inverse Fourier transform.
For the numerical simulations the solution domain ΩS is surrounded by a two cell
sizes thick PML.

The design region ΩD used for the coupled system in figure 4.4 is also adopted
for the isolated cavity. In the cavity center we excite the monopole mode by
a point source with a temporal variation given in equation (4.13), and run the
simulation for T = 100, 000∆t. The objective has been evaluated in a circular
region with radius 3a/14 in the cavity center. It should be emphasized that
the choice of T1 in the objective function is not critical here, since the isolated
cavity has only a single loss mechanism. To enhance manufacturability we impose
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(a) (b)
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(c) (d) (e) (f)

air dielectric

Figure 4.5: Monopole cavity - isolated cavity with (a) initial geometry and
(b) optimized geometry, and (c) corresponding mode distribution. (d)-(f) coupled
system designs for (d) T1 = 0, (e) T1 = Tmax, and (f) T1 = 4Tmax.

vertical and horizontal symmetry conditions through the cavity center, and do
not constrain the amount of dielectric material, i.e. V ∗ =

∑
e ve with ve denoting

the element volume.
The optimized design reached after 311 design iterations appears in figure

4.5b. As expected it does not include any structural features that violate the
minimum length scale prescribed by the density filter with radius R = 2.5a/14,
and the blending region between air and dielectric material corresponds to the
thickness of one finite element. The Q factor of the associated mode is computed
to be Q0 = 4.8 × 105. Clearly, the initial design as well as the mode pattern in
figure 4.5 have been altered significantly to achieve the doubling of the Q factor.
An overview of all calculated Q factors can be found in table 4.1 below.

In practical applications of the PhC notch filter the initial geometry and
corresponding mode cannot be chosen uncritically. The influence of leaky modes
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(a) (b)

pos

neg

(c) (d) (e) (f)

air dielectric

Figure 4.6: Dipole cavity - isolated cavity with (a) initial geometry and (b)
optimized geometry, and (c) corresponding mode distribution. (d)-(f) coupled
system designs for (d) T1 = 0, (e) T1 = Tmax, and (f) T1 = 4Tmax.

above the light line in the dispersion diagram (see e.g. the band diagram in figure
4.10) needs to be taken into consideration. Unlike the monopole mode, we have
identified a dipole mode at the frequency ω0a/2πc = 0.2480 that is not leaky.
Due to the change of mode it has been necessary to increase the radius of the
evaluation domain for the objective function to 6a/14.

The system is now excited by two point sources located in the eye of the
dipole with opposite signs. In contrast to the optimization for the monopole
mode, it has now been necessary to constrain the amount of dielectric material
to V ∗ = 0.8

∑
e ve to avoid ending up in local minima bearing degenerate modes.

The optimized geometry reached after 592 design iterations is displayed in figure
4.6b. Compared to the mode in figure 4.6c for the initial geometry with Q0 =
9.9 × 104, the Q factor of the optimized cavity mode is slightly improved to
Q0 = 11× 104. Similar to the improved monopole mode, the topological features
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4.3 Topology optimization of a photonic crystal notch filter [P2]

of the optimized dipole design prevent the mode energy from escaping into the
PhC above and below the cavity.

For the coupled system in figure 4.4 we have considered both modes despite
the limited practical application of a notch filter supporting the monopole mode.
Now, we increase the design freedom by imposing only a vertical symmetry restric-
tion through the cavity center. In a distance sufficiently away from the coupling
region we have excited the system from a line source with the same temporal
variation as before and run the simulations for T = 120, 000∆t. Since the cou-
pled system accommodates multiple loss mechanisms, the localizing time T1 in
the objective cannot be chosen freely with respect to optimizing Qin(≈ Qe). Here,
we have chosen the three cases T1 = 0, T1 = Tmax, and T1 = 4Tmax to investigate
the significance. We compute Qin by utilizing that ω0/Q equals the FWHM of
resonant shape in the transmitted power |T |2 for the coupled device.

The optimized designs are displayed in figure 4.5d-f and 4.6d-f, respectively.
We first notice that all the designs comply with the minimum length scale intro-
duced by the density filter. For the monopole mode the optimization has caused
minor redistribution of the dielectric material to adjust the cavity mode to the
coupling. According to table 4.1, none of the obtained Qin for the optimized
coupled system for the monopole mode have been improved compared to how the
optimized isolated cavity performs in the coupling. However, the results in table
4.1 indicate, that for higher values of T1 above the Tmax-limit will increase Qin and
thereby delay the energy decay. Conversely, for T1 < Tmax the energy will, once
it has coupled into the cavity, decay rapidly back into the waveguide, yielding a
strong interaction between the waveguide and the cavity. This behavior suggests
that achieving high Q devices in principle counteracts strong coupling. Using
the analytical expression for the transmission in equation (4.9) for the obtained
Q factors leads to the result that all monopole notch filter designs exhibit prac-
tically zero transmission at resonance [P2]. It confirms what the CMT analysis
predicts, that strong coupling is retained even after radical improvement of Qin.

Table 4.1: Q[103] Factors for Coupled System Configurations.

Monopole Dipole

Qin Qe Q0 Qin Qe Q0

Initial cavity 16 17.3 220 2.1 2.1 99
Optimized cavity 60 68.3 474 4.1 4.2 110
T1 = 0 2.1 2.1 139 2.0 2.0 90
T1 = Tmax 7 7.3 168 3.3 3.4 100
T1 = 4Tmax 16 17.2 239 6.0 6.2 140
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4.3 Topology optimization of a photonic crystal notch filter [P2]

Consequently through specification of T1, the optimization formulation makes it
possible to control the counteracting relation between strong coupling and high
Q performance. One should also expect that optimization of the isolated cavity
will result in the highest Q0. According to table 4.1 this is also the case for the
monopole mode. However, the dipole mode favors the largest Q0 for the unsym-
metrical cavity design, obtained for the coupled system when T1 = 4Tmax. We
believe this to be a result of the imposed two-planes symmetry conditions for
the isolated cavity optimization, or alternatively a consequence of the enforced
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Figure 4.7: Dipole notch filter performance - (a) logarithmic envelope of
the stored energy decay U(t). Transmission spectrum for (b) initial design, (c)
isolated cavity, coupled system (d) T1 = 0, (e) T1 = Tmax, and (f) T1 = 4Tmax.
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volume constraint that could lock the optimization inside a local minimum.
The transmission spectra in figure 4.7 show that the original and the opti-

mized cavity geometries for the dipole mode in figure 4.6 exhibit almost zero
transmission. Also, the transmitted energy in the vicinity of the resonance shows
almost perfect agreement with the prediction from the CMT analysis in equation
4.8. The isolated cavity optimization only improves Qin by a factor of two. In
contrast to the monopole mode, optimizing for T1 = 4Tmax further increases Qin

by 50% as a result of minor design changes (compare figure 4.6b and -f), yielding
a total improvement of 185%. The design result for T1 = 0 in figure 4.6d shows
substantial material redistribution in the interaction region in order to enhance
coupling. However, the envelopes of the energy decay in figure 4.7a only display
marginal changes among the various designs in the coupling performance. As
expected the H3-field plot in figure 4.8 of the best dipole candidate (T1 = 4Tmax)
shows nearly zero transmission at resonance.

We should finally mention, that the use of 2D PhC of infinite height omits
the influence of the out-of-plane energy losses which constitute a limiting factor
with regards to improving the total Q factor in PhC slabs. Thus, improving the
in-plane Q does not necessarily imply the same trend for the out-of-plane Q (Kim
et al., 2004a). Furthermore, we cannot take the third dimension into account by
the effective index method, since it holds limited accuracy for high index-contrast
structures or near cut-off. However, the experience from previous studies (Borel
et al., 2004; Frandsen et al., 2004; Borel et al., 2005; Jensen et al., 2005), is that
2D optimized designs in general yield good behavior in 3D as well.

neg pos

Figure 4.8: H3 field pattern for dipole notch - the optimized candidate for
T1 = 4Tmax, and the material distribution is shown with 0.6 threshold. (Almost)
Zero transmission is seen at the waveguide outlet.
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4.4 Topology optimization of slow light devices

[P3], [P5]

It is well-known that the speed of light is an upper bound for waves conveying
matter, energy or information (Diener, 1996). However, after the discovery of the
slow-light phenomenon as a result of material dispersion, it seems that no lower
limit for the group velocity at which light can travel exists (Hau et al., 1999; Kash
et al., 1999). Since then, this promising technology has attracted much atten-
tion, as the application prospects are numerous, e.g. in future optical networks
and information processing systems. To mention a few remarkable properties,
slow-light offers the opportunity for accurate time-domain processing of optical
signals, low power consumption in optical switching devices (Baba, 2008), optical
buffering (Tucker et al., 2005), and enhancement of weak linear as well as nonlin-
ear light-matter interaction processes (Eggleton et al., 1999; Soljacic et al., 2002;
Soljacic and Joannopoulos, 2004; Krauss, 2007).

In the present work we realize the slow light device by exploiting the unique

ΩIO ΩSC

a

√
3a

8a

√
3a

x1

x2

Γinc

ΩPML

ΩS

ΩD
ΩEΨ(x2)

Figure 4.9: Slow light optimization setup - Ridge wave guide optimization
setup. The computational domain contains a solution region ΩS, PML region
ΩPML, and design region ΩD encapsulated by the dashed boundary. The ’active’
design set consists of x2 mirrored in-/outlet region ΩIO and a supercell ΩSC that
are both mapped to ΩD. Whenever an optimized design is presented we only show
the material distribution in ΩIO and ΩSC. The waveguide mode is excited on Γinc

with an analytically given amplitude profile Ψ(x2). The objective is measured in
point(s) ΩE.
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tunable dispersion properties of the W1 PhC waveguide (PhC-WG) in figure 4.9,
where a single row of holes has been removed. As illustrated, the waveguide has
in- and outlet connections to straight ridge waveguides. Equivalent to the notch
filter from the previous section, the surrounding crystal is formed by perforated
air holes in the dielectric material GaAs, but now with the hole radius altered to
r/a = 0.30. This yields a band gap in the normalized frequency a/λ = 0.21−0.30,
see figure 4.1. We will assume that the pitch of the lattice is 370nm.

The goal of the presented method is to improve the performance of slow light
devices by the use of topology optimization. We start from a W1 waveguide and
formulate an optimization problem that delays the pulse as the objective while its
shape is conserved through a relaxed signal shaping constraint. Essentially, this
leaves us with an optimization problem in which the in-/outlet region is designed
to remove the possible mismatch between the ridge and the PhC waveguide mode,
while the interior material distribution is changed to delay the probe pulse as
much as possible. It is shown that allowing for distortion of the pulse shape
yields designs with an enhanced slow down effect. We subsequently employ a
pulse shaping formulation to minimize the dispersion of the resulting probe signal
for the maximized time delay.

4.4.1 Slow light structures characteristics

There are different ways to determine if a (PhC) structure for a given geometry or
material distribution exhibits slow light behavior. A common method is to study
the dispersion relation ω(k) from which the group velocity can be computed by

vg ≡
dω

dk
=

c

ng
(4.14)

where k is the wave number. In the rightmost expression the dimensionless group
index ng is introduced as an alternative measure for the slow light behavior, and
we can obtain that by numerical differentiation, once ω(k) is known.

We have performed an eigenvalue analysis to obtain the dispersion characteris-
tics for the supercell structure in figure 4.10a. In conjunction with the dispersion
diagram in the left part of figure 4.10b, the group index versus normalized fre-
quency plot in figure 4.10c reveals that inside the band gap a/λ = 0.21−0.30, the
waveguide mode exhibits (semi)-slow light behavior with very little group velocity
dispersion at group velocity vg ≈ c/(40±10%). The useful bandwidth of the struc-
ture (i.e. the range over which the group index remains constant within ±10%) is
BFWHM ≈ 12nm centered around the normalized frequency a/λ = 0.2163. Con-
sequently, the given supercell structure serves as a suitable starting guess the for
optimization process. The geometry has been found via a parameter search in
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Figure 4.10: Slow light start design - (a) The rotated supercell used in the
eigenvalue computation to obtain the (b) band diagram. This shows the normalized
frequencies versus normalized wave vectors for an even (solid) and odd (omitted
here) PhC-WG mode in the band gap, and the dashed line indicates the light line
above which leaky modes live. The inset of the graph magnifies the dispersion
properties of the guided mode where the dotted lines confine a region with low
dispersion. (c) Group index ng versus normalized frequency.

which the radius of the three nearest neighboring holes to the waveguide has been
varied (Frandsen et al., 2006; Schulz et al., 2010).

For time domain simulations it is not that straightforward to retrieve the dis-
persion characteristics as they appear in the band diagram (Oskooi et al., 2010).
Another reliable way to detect slow light behavior is to analyze the transmis-
sion spectrum, which we construct by exciting the inlet ridge waveguide with a
short pulse. We obtain the transmission spectrum by integrating the frequency
dependent Poynting flux over a vertical line located after the PhC-WG. Since
the PhC-WG sample has a PhC mirror mechanism: the PhC-WG and the non-
optimized in- and outlet, it functions as a so-called Fabry-Pérot (F-P) cavity.
This leads to F-P fringes in the transmitted energy, and the group velocity can
be determined by (Letartre et al., 2001).

vg = c
2Lc∆λ

λ2
(4.15)
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where ∆λ is the free spectral range between adjacent F-P peaks, and Lc is the
length of the (closed) cavity. The transmission spectrum in the right part of
figure 4.10b reveals F-P oscillations in the normalized frequency a/λ = 0.21 −
0.25, thus insinuating slow light behavior. Furthermore, the spectrum shows an
unambiguous correlation between the eigenvalue analysis and our FETD data.

Where the above techniques require frequency information, the time-of-flight
(ToF) method, see e.g. Inoue et al. (2002); Jacobsen et al. (2005), relies on time
observations of the pulse delay η as it traverses through the PhC-WG to compute
the group velocity by

vg =
η

L
(4.16)

where L is the length of the PhC-WG. For the device in figure 4.9 the time delay
η can be determined by recording the probe pulse at a given point in the exit
ridge waveguide with and without PhC-WG. For a precise measure we extract
the envelope of the probe pulses and define the delay as the temporal distance
between the envelope peaks. It is important to be sufficiently downstream in the
ridge waveguide to avoid potential near-field disturbances from surface modes
living along the in-/outlet interface.

The definition in equation 4.16 gives us a quantitative measure, namely the
delay η, which can be adopted in the formulation of a time domain optimization
problem.

4.4.2 Formulating a pulse shaping and delaying problem

The optimization problem with the setup given in figure 4.9 is based on pulse
shaping of the probe signal envelope r(t) registered at ΩE in the ridge waveguide.
The Hilbert transform is used to retrieve the envelope

r(t) =
√
u(t)2 + û(t)2 (4.17)

where u(t) is the signal, and û(t) is its corresponding Hilbert transform. The aim
of the optimization is to obtain signals at multiple registration points with an
envelope following a prescribed envelope, obtained from the same input signals
propagating in a straight ridge waveguide. The pulse conforming measure is
defined as [P3]

f =

∫ T

0

∑

i∈ΩE

[ri(t)− αpi(t− η)]2dt

∫ T

0

∑

i∈ΩE

α2pi(t)
2dt

(4.18)

where pi(t) is the prescribed envelope function delayed η and scaled by α, and
T is the termination time of the transient simulation. To render a physically
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Figure 4.11: Pulse delay strategy - for pulses with a group delay 0 and η.
The parameter η is introduced as a design variable. The g∗-parameter controls the
temporal spreading of the output pulse envelope. The α-parameter mainly specifies
the transmitted energy, i.e. the amplitude decrease.

interpretable measure, we have normalized with respect to the prescribed pulse
envelope area(s).

To formulate a pulse delaying strategy, we introduce η′ = η/s as a design
variable with s denoting a scaling factor. The shape of the pulse is controlled
by treating the design response measure in equation (4.18) as a constraint. The
objective is to maximize the delay, which we formulate as

min
ρ∈RM ,η′∈R

−η′

s.t.: Governing equation (2.8)

g1(ρ, η′) = f(ρ, η′)/g∗ − 1 < 0

0 ≤ ρe ≤ 1, e ∈ ΩD

0 ≤ η′ ≤ 1

(4.19)

where 0 < g∗ ≤ 1 has been introduced to allow for broadening and distortion
of the delayed pulse in figure 4.11 after traversing the PhC-WG. The maximum
allowable distortion is obtained for g∗ = 1 (i.e. the initial pulse shape has been
completely destroyed) and is gradually diminished when g∗ → 0 (i.e. the output
pulse shape is perfect). The gradients of g1 with respect to the structurally
related design variables are found through the adjoint sensitivity analysis method
presented in chapter 3. The sensitivity of g1 with respect to the time related
design variable η′ is given by

∂g1

∂η′
=

∫ T

0

∑

i∈ΩE

−2 [ri(t)− αpi(t− sη′)]α∂pi(t−sη
′)

∂η′ dt

g∗
∫ T

0

∑

i∈ΩE

α2pi(t)
2dt

(4.20)
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where the change of variable Π = t − sη′ yields ∂pi/∂η
′ = −s∂pi/∂Π which we

approximate by finite differences. It is important to stress that the delay variable
η = sη′ is several orders of magnitudes larger compared to the structurally related
design variables that vary between 0 and 1. Hence, the sensitivity expression in
equation (4.20) has to be scaled adequately through s in order to gain a well-
posed optimization problem. A strategy for choosing the scaling parameter is
0 ≤ η/s ≤ 3 yielding η′max = 3.

Once a material distribution is obtained for a maximum delay and a given
allowable distortion g∗, we will start from the resulting design and use the pulse
shaping response function in equation (4.18) as the objective, now with a fixed
η, to minimize the pulse distortion. The optimization problem is now formulated
as

min
ρ∈RM

f(ρ, η′)

s.t.: Governing equation (2.8)

0 ≤ ρe ≤ 1, e ∈ ΩD

(4.21)

Hence, the optimization is completed in two consecutive steps: 1© a pulse delay
step, followed by 2© a pulse restoring step. The pulse shaping constraint in
the delay formulation is applied in a single point in the ridge waveguide center
sufficiently downstream. To achieve perfect transmission for the output signal in
the subsequent restoring step, we apply the pulse shaping objective in multiple
points along a vertical wall, such that the ridge waveguide mode profile will be
inherited automatically in the registered output signal.

ΩIO

ΩSC

(a) (b)

Figure 4.12: Symmetry conditions for the ’active’ design set - x1 symmetry
is imposed for ΩIO, and x1-x2 symmetry is imposed for ΩSC. This reduces the
number of active design variables further.
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4.4.3 Method and results

Similar to the optimization of the notch filter, the purpose is again to distribute
air and dielectric material in the design domain ΩD, such that the probe pulse
at ΩE is delayed as much as possible. As illustrated in figure 4.9, the design
domain includes, in addition to the waveguide, the three nearest neighboring
rows of holes on both sides of the waveguide. To retain a certain periodicity
and symmetry of the final design, we only allow for design freedom in the x1

mirrored part of in-/outlet region ΩIO as well as in the x1-x2 mirrored part of
the supercell ΩSC distributed periodically downstream over the lattice distance
17a (see the symmetry details in figure 4.12). Even though the actual design
update is carried out only in a small part of the design domain, we still need
to compute the sensitivities in the entire design domain, and subsequently map
and sum those properly for the ’active’ design variables. In figure 4.9 the active
design set ΩIO ∪ΩSC is highlighted in relation to the entire design domain ΩD. It
should be combined with figure 4.12 to understand the symmetry conditions.

The geometrical restrictions will reduce the optimization design space whereby
potentially well-performing designs are disregarded because nothing dictates that
a symmetric and periodic structure should be the best performing. However,
by limiting the optimization to the in-/outlet region and the supercell, we can
directly determine the dispersion characteristics of the resulting structure by a
simple eigenvalue analysis of the supercell. The periodicity also enhances man-
ufacturability, that is further boosted by standard density filtering of the design
variables with filter radius R = 2.5∆x combined with material phase projection
(Sigmund, 2007). Even though the applied projection function does not preserve
the minimum structural length scale for some settings (Wang et al., 2011), it
results in well-defined designs, see e.g. figure 4.13a, -b, -c and 4.15b. It should
be emphasized, that whenever an optimized design is presented we only illustrate
the in-/outlet region together with the supercell structure.

The structure is excited by a ridge waveguide mode along the entire vertical
interface separating the solution domain and the PML region. The mode pro-
file is analytically known and the temporal variation of the source follows the
Gaussian modulated distribution in equation (4.13) with ω0a/2πc = 0.2163 (∼
1710nm wavelength) as dominant frequency. We have chosen to optimize for a
6nm FWHM bandwidth which requires an 1/e-intensity T0 = 700a/c (∼ 1ps) of
the Gaussian envelope centered around t0 = 2000a/c. This choice is less than
the useful 12nm bandwidth of the initial design.1 For the spatial discretiza-
tion, the computational domain is composed of square elements with edge size
∆x1 = ∆x2 = a/14. We run the simulations for T = 8000a/c (∼ 10ps) with a

1Conversion from FWHM bandwidth to Gaussian 1/e width is given by T0 =√
4 ln 2/(πBFWHM)
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Figure 4.13: Pulse delayed slow light designs - TOP: Transient intensity
response of the ridge waveguide pulse peaking at t = 0ps, and time delayed pulse for
g∗ = 0.001, 0.005, and 0.05 peaking at t = 1.5ps, 2.0ps, and 3.0ps, respectively. In/-
outlet and supercell design for (a) g∗ = 0.001, (b) g∗ = 0.005, and (c) g∗ = 0.05.

time step ∆t = 0.90∆x1/c.
The first part of the optimization has been dedicated to investigate the design

as well as the time delay response to three different values for the relaxation
parameter g∗ = 0.001, 0.005, and 0.05 of the prescribed pulse envelope area
in the pulse shaping constraint. The designs and time delays appear in figure
4.13. For the lowest relaxation factor g∗ = 0.001 the pulse is delayed 1.5ps
which doubles to 3ps for g∗ = 0.05. However, the price for the largest delay is a
considerable broadening of the pulse and amplitude distortion which corresponds
to an unfavorable reduction of the useful bandwidth of the device. In practice
heavy distortion implies that some of the information carried by the pulse has
been lost, and for signal processing devices it is important to preserve the pulse
shape to a certain degree. Further, the peak intensity reduction of a pulse makes
it less effective for driving nonlinear effects.

Based on an eigenvalue analysis of the optimized supercell structures the group
index versus normalized frequency plot in figure 4.14 confirms that the maximized
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Figure 4.14: Group index versus normalized frequency - (a) the optimized
design obtained from the delay formulation in equation (4.19) for three different
values for the pulse relaxation: g∗ = 0.001, 0.005, and 0.05. (b) A comparison
between the pulse delayed design (g∗ = 0.001) and the pulse delayed-shaped design.

delays give rise to increased group indices. However, the bandwidth in which the
optimized devices can be considered useful for slow light purposes is simulta-
neously decreased. The enhanced time delays induce very strong wavelength
dependence of the group index. In particular, we see that the ’flat-band’ region
for the initial guess evolves into an s-shaped kink whose center is moving towards
northwest, causing bandwidth shrinkage. For the largest relaxation value the
average group index is ng ≈ 160, for which, however, the 10% criterion is not sat-
isfied. This points to the fact, that a bandwidth extension is only obtained at the
cost of the group index. Frankly, this detrimental effect is inherently associated
to slow light systems, leaving the designer of such systems with a difficult task.

All the optimized designs have reached convergence1 within 300 optimization
iterations. In addition to changing the supercell layout, the geometry of the in-
/outlet region has been altered to lower the interface penalty losses, when coupling
the access waveguide mode into the PhC-WG. For real applications it is important
to terminate the PhC properly, since coupling losses, together with backscattering
losses, as a result of fabrication disorders, will degrade the functionality of the
slow light device. Intriguingly, a comparison of the optimized supercell structures
in figure 4.13a, -b, -c and the initial supercell layout in figure 4.10a reveals that
the optimization has reduced the size of the air inclusions. We consider this a
logical action in order to reduce backscattering losses as they originate from the

1For the convergence criteria we use that the relative change of the objective function should
be less 10−4.
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Figure 4.15: Pulse delayed-shaped slow light design - TOP: Transient
intensity response of the initial envelope peaking at t = 0ps, and the optimized
envelope peaking at t = 1.5ps with and without pulse shaping. (a) Band diagram
for the optimized supercell structure and the transmission spectrum for the struc-
ture of finite length without optimized in-/outlets. (b) Optimized in-/outlet and
supercell structure.

overlap of the optical modes and the hole surfaces (Schulz et al., 2010).
In figure 4.14b it is seen that even for the lowest relaxation factor g∗ = 0.001

we obtain a supercell design with a group index variation around ng ≈ 70 that is
not confined to the allowable ±10% band for the specified 6nm bandwidth. To
tweak this unsatisfied behavior we have executed the pulse restoring step with the
design in figure 4.13a as initial design and the maximized delay as the fixed time
delay in the pulse shaping objective. Whereas the delay formulation typically
reaches convergence within 300 optimization iterations (it naturally depends on
the relaxation), the pulse shape formulation has required 1710 iterations for con-
verging to the design in figure 4.15b. We believe the reason for this rather high
number of iterations lies in the fact that the optimization has two concerns; while
modification of the supercell structure will result in a change of the waveguide
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Figure 4.16: Transmission (|T |2), reflection (|R|2) and energy balance
(|T |2+|R|2) spectrum for the optimized slow light device - (a) consisting
of the supercell structure in figure 4.15b without optimized in-/outlets. (b) The
structure with optimized in-/outlets in figure 4.18a.

mode, the in-/outlet needs to be simultaneously adjusted to eliminate coupling
losses. To meet and balance both regards, the optimization will then progress in
small increments.

As it appears in figure 4.14b, the optimized design yields a group index vari-
ation that satisfies the ±10% criterion. It is obvious to pose the question why
the pulse shaping optimization strategy does not result in a complete flat-band
region. Possible explanations could be that the optimization has ended up in
a local minimum or that a flat-band region is not physically obtainable. We
should also remember that as designers we are competing against the intrinsic
dispersion property of the PhC-WG, that the group index can only be increased
at the cost of the operational bandwidth. It is also noted in figure 4.14b that
the group index versus normalized frequency curve is shifted slightly to lower
frequencies compared to the start design. Based on a comparison of the supercell
designs in figure 4.13a and 4.15b showing that the amount of dielectric material
has increased moderately, the horizontal shift of group index curve is expected,
since the frequency of the guided mode scales by 1/

√
ε in a medium of dielectric
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Figure 4.17: Transmission spectrum for the optimized slow light device
- (a) consisting of the supercell structure in figure 4.15b without optimized in-
/outlets. The inset shows Fabry-Pérot oscillations near the upper band gap edge
(λ ≈ 1716nm) separated by ∆λ = 5nm yielding vg ≈ c/65. (b) The structure with
optimized in-/outlets in figure 4.18a.

constant ε (Wang et al., 2011).
The transmission, reflection1 and energy balance spectrum for the finite waveg-

uide structure assembled from the supercell design in figure 4.15b without the op-
timized in-/outlet regions are presented in figure 4.16a. They show clearly defined
Fabry-Pérot (F-P) fringes with decreased spacing towards the slow light wave-
length region. In the slow light region region near the band edge (λ = 1716nm)
the wavelength spacing is measured to ∆λ = 5nm that for an effective F-P cavity
length L = 13a yields vg ≈ c/65, see figure 4.17a. The transmission spectrum also
contains a dip at λ = 1375nm with almost zero transmittance. To explain this
we need to consider the band diagram for the optimized supercell in figure 4.15a,
showing that a guided mode (the upper curve in the rectangular band gap region)
has been pulled down from the air band. This mode has an odd profile and, apart
from living in the waveguide, it can also live in the upper/lower part of the de-
sign domain between the waveguide and the surrounding PhC. A comparison of
transmittance against the band diagram in figure 4.15a shows that anti-crossing
of the even (black curve) and the odd (red curve) modes at λ ≈ 1375 gives rise to
a mode gap inside the band gap, which explains the dip in transmission (Notomi
et al., 2001).

Finally, figure 4.16b and 4.17b show that almost perfect transmission, i.e.
|T |2 ≈ 0.98, is achieved in the wavelength range specified by the source, if we

1The reflected energy is recorded at a vertical line in front of the PhC-WG by using equation
(2.25) from which the energy balance can be computed.
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(a)

(b)

neg pos

Figure 4.18: H3 field pattern for slow light device - (a) The optimized
structure first by delaying and subsequently shaping the pulse. (b) The initial
geometry. The material distribution is shown with 0.6 threshold

include the optimized in-/outlet design. The associated H3 field pattern in fig-
ure 4.18a for the dominant source wavelength also confirms perfect transmission
compared to the poor performing start design with a field pattern given in figure
4.18b.
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Chapter 5

Concluding remarks

5.1 Conclusions

Since the introduction of topology optimization to mechanical problems in 1989,
the popularity of the method has almost exploded. It has become a subject of
intensive research, not only for mechanical problems, but also for a wide range
problems from other (multi)-physical branches such as fluid dynamics, acoustics,
electromagnetism, MEMS and many others.

Around the beginning of the century, a firm basis for applying topology op-
timization to wave propagation problems was established. The list of problems
that have been attacked until today is endless and it covers all possible types of
waves, i.e. electromagnetic, acoustic, and elastic waves. However, most of the
contributions consider time-harmonic waves, and there are only few that optimize
for transient waves.

The purpose of the present thesis has been to establish a general framework
for applying topology optimization to 2D transient wave propagation problems.
To treat waves with arbitrary directions and propagation characteristics we have
developed a finite element time domain formulation based on the efficient perfectly
matched layer technique [P2], [P4]. A generic optimization problem is formulated
which we believe will cover a wide range of transient wave propagation problems.
We have discussed how to apply parallel computing to lower the computational
costs associated with gradient-based time domain optimization.

The developed framework has been applied to three problems involving the
design of optical material structures. The first problem optimizes an optical ta-
per coupling two monomodal waveguides by maximizing the energy in the output
waveguide [P1]. The second problem optimizes a notch filter with respect to nar-
rowing the filter stop band. We have formulated that as a maximization problem
of the stored energy in the decaying regime [P2]. Finally, we have improved the
slow light performance of a photonic crystal waveguide by using a delaying strat-
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5.2 Future work

egy for the objective, while a pulse shaping constraint serves to control the pulse
distortion [P3], [P5].

5.2 Future work

Future research should be directed towards:

• Incorporating elasto-optical wave interaction in order to benefit from the
resulting change in refractive index.

• Solving advanced nonlinear optical problems, e.g. by including the instan-
taneous Kerr-nonlinearity.

• Implementing a robust formulation that includes material uncertainties.

• Solving large-scale 3D problems in order to e.g. include out-of-plane losses
in the numerical analysis.
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Errata [P2]

There are a couple typing errors in some of the formulas in reference [P2]. All
the produced results have, however, been obtained by using the correct formulas.
Hence, all figure data is correct and remains unaffected.

Equation (1) has a sign error and should read:

µL1(t)Hz −
[
∂

∂x

(
L2,x(t)

ε

∂

∂x

)
+

∂

∂y

(
L2,y(t)

ε

∂

∂y

)]
Hz = −∂JB,z

∂t

In the ’Finite-Element Implementation’-section the permittivity is missing in the
’stiffness’-related term in the weak-form representation in equation (7). It should
read: ∫∫∫

V

[
µTzL1(t)Hz(t) + ε−1∇Tz · ∇̃Hz(t) + Tz

∂JB,z
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]
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]
dS = 0

In the ’Sensitivity Analysis’-section the manipulated sensitivity expression in
equation (21) needs a ∂-sign in second term of the first line, such that the ex-
pression should read:

∂Φ

∂xe
=

[
λT

∂r

∂u̇

∂u

xe
+ λT

∂r

∂ü

∂u̇

∂xe
− λ̇T ∂r

∂ü

∂u

∂xe

]T

0

+

∫ T

0

(
∂F

∂u̇

∂u̇

∂xe
+
∂F

∂ü

∂ü

∂xe
+
∂F

∂xe

)
dt

+

∫ T

0

(
∂r

∂ü
λ̈− ∂r

∂u̇
λ̇+

∂r

∂u
λ− ∂F

∂u

)
∂u

∂xe
dt

+

∫ T

0

λT
∂r

∂xe
dt

After equation (30) τ = 180c/a should instead read τ = 180a/c. The theoretical
prediction for the transmission at resonance in equation (32) needs a squared-sign
in the second term in the denominator, i.e.

|T (ω)|2 = 1−
1

4Q2
e

(
1 + 2Qe

Q0

)

(
ω−ω0

ω0

)2

+ 1
4Q2

e

(
1 + Qe

Q0

)2

Finally in Fig. 8 and Fig. 10, ωr should be replaced by ω0 to denote the resonance
frequency.
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Errata [P4]

There are two typing errors in reference [P4]. All the produced results have,
however, been obtained by using the correct formulas. Hence, all figure data is
correct and remains unaffected.

Equation (17c) has an index error and should read:

C′ = C0 + L1(t)C1 + L2(t)C2

Equation (28a) has a sign error and should read:

h̃ei =
∑

j

(
Me

1,ij −
β2

1

P3,1

Ke
1,ij

)
u+

1,j +

(
Me

2,ij −
β2

2

P3,2

Ke
2,ij

)
u+

2,j

g̃ei =
∑

j

Ke
2,ijP4,1u

++
1,j + Ke

1,ijP4,2u
++
2,j
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Abstract

A tapering device coupling two monomodal waveguides is designed with the topology-
optimization method based on transient wave propagation. The gradient-based opti-
mization technique is applied to predict the material distribution in the tapering area
such that the squared output displacement (a measure for transmission) in the taper is
maximized. High transmission in a large frequency range is gained by use of incident
wave packets. To avoid nondiscrete properties in the design domain a density filtering
technique is employed.

Keywords: topology optimization, transient analysis, waveguide, the Helmholtz equa-
tion,wave packet, density filter.

1 Introduction

Recently, the topology optimization method has been applied to the design of struc-
tures and materials subject to harmonic wave propagation problems in the frequency
domain. The focus has been put on developing periodic band gap structures in phononic
and photonic applications (Sigmund & Jensen 2003 [14]). In light of the former
Halkjær et al. 2005 [4] maximize band gaps for bending waves in elastic plate struc-
tures. The reverse problem of the transmission-type has also been investigated. Low-
loss waveguide bends and a T-junction waveguide for electromagnetic waves are de-
signed by Jensen & Sigmund in [6] and [7], respectively, using the procedure of topol-
ogy optimization.

A disadvantage of using harmonic excitation is the need for several response analy-
ses at different frequencies to optimize for larger bandwidths. However, topology op-
timization based on frequency responses represented by Padé approximants is demon-
strated to be a very efficient way to obtain accurate approximations over wide fre-
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quency ranges (Jensen & Sigmund 2005 [7]; Jensen 2007 [8]).

Another way to excite a broad frequency range is to model wave propagation in
the time domain by selecting a proper input pulse. This only requires one analysis. In
the framework of topology optimization this has just very recently been employed in
antenna design by Nomura et al. (2007) [11], using the finite difference time difference
(FDTD) method. Another very recent work by Dahl et al. (2007) [2] presents a
topology optimization strategy for design of transient response of 1-D elastic and optic
waveguides, where the finite element time difference (FETD) method is used.

Even though the sensitivity analysis for transient problems has existed for two
decades (Haug & Arora 1978 [5]), topology optimization of mechanical problems
subject to transient dynamic loadings have only received attention within the last few
years. For instance, topology optimization of transport vehicles for crashworthiness
modeled by frame structures was carried out by Pedersen (2004) [12]. Turteltaub
(2005) optimized the performance of a two-phase composite under transient dynamic
loading.

In this paper, the topology optimization method is applied to transient wave propa-
gation problems in 2-D elastic media. The aim is to design a tapering device coupling
two monomodal waveguides that improves the transmission of a linear taper. The
modeling of elastic waves in 2-D media can be divided into two decoupled consider-
ations: in-plane transverse and longitudinal waves and out-of-plane transverse waves
(acoustic mode), respectively. This paper focuses on the latter. The wave propagation
is modeled by the Helmholtz equation, which is discretized using the FETD method.
The formulation can readily be applied to optical wave propagation in dielectric media
by changing the material parameters. In order to model the wave propagation properly
from a practical point of view we introduce standard absorbing boundary condition for
normal incidence.

The paper is conducted in the following way. In Section 2 the Helmholtz equation
is first presented in the continuous and in the corresponding finite element form. Sub-
sequently, design variables and material interpolation scheme are established leading
to the setup of the optimization problem. The sensitivity analysis is then carried out
and the implementation is finally illuminated. In Section 3, the method is applied to
design a tapering device for a large bandwidth.

2 Topology optimization of 2-D elastic structures
subject to wave propagation

Out-of-plane wave propagation in a non-homogenous media is governed in the time
domain by

∇ · A(x)∇u(x) − B(x)ü(x) = f(t), in Ω (1)

where (̈ ) = ∂2/∂t2. In eq. (1) u(x) is the unknown field in the plane x = (x, y), A(x)
and B(x) are the spatial-dependent material parameters, f(t) is the time-dependent
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Ωfix

Ωin

Ωout

ΩD

Γabs

Γin
Γout

Figure 1: Computational domain Ω decomposed in four subregions: ΩD is the design
domain, Ωfix contains fixed elements, Ωin and Ωout are in- and outlet regions, respec-
tively with dielectric material. Absorbing boundaries are specified on ∂Ω = Γabs. A
wave input is provided on Γin.

dynamic loading and Ω designates the modeling domain. For elastic waves A = µ(x)
and B = ρ(x), where µ is the shear modulus and ρ the density. The optimized design
found by topology optimization is a distribution of phase 1 and phase 2 materials
characterized by (A1, B1) and (A2, B2), respectively.

It is convenient to introduce the following dimensionless parameters and variables

Ã = A−1
1 A, B̃ = B−1

1 B, x̃ = a−1x, t̃ = a−1ct, ω̃ = ac−1ω (2)

where c is the wave speed for phase 1 material and a is a characteristic length. Con-
sequently, eq. (1) can be reused simply by replacing real physical quantities with the
dimensionless ones. The Helmholtz equation does also apply for optical waves in di-
electric media having transverse electric (TE) and transverse magnetic (TM) polarized
fields perpendicular to one another.

When designing the tapering device we focus on the TE-polarization resulting in
Ã = ε−1

r and B̃ = 1, where εr is the dielectric constants. Phase 1 material is cho-
sen to be air with a dielectric constant of unity, phase 2 material to be silicon with
εr = 11.56, the speed of light is c = 3 · 108m/s. To simulate traveling waves we
impose the standard absorbing boundary conditions for normal incidence (eq. Krenk
& Kirkegaard 2001 [9])

∂u

∂n
+

1

c

∂u

∂t
= 0 (3)

where n is length the outward-pointing normal vector and c is the wave speed in light.
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A Galerkin finite-element procedure is applied to discretize the Helmholtz equa-
tion, yielding the system of second order ordinary differential equations

[M]{d̈} + [C]{ḋ} + [K]{d} = {f} (4)

where {d} is a vector of discretized nodal values of u(x). On element level the nodal
values are interpolated as u(x) = [N(x)]{d}, where [N(x)]1×4 is the bilinear shape
function column vector. This leads to the following form of the finite element-matrices

[M] =
∑

e∈Ω

B̃e[M
e], [Me] =

∫

Ωe

[N]T [N]dΩ

[C] =
∑

e∈Γabs

√
ÃeB̃e[C

e], [Ce] =

∮

Γe

[N]T [N]dΓ

[K] =
∑

e∈Ω

Ãe[K
e], [Ke] =

∫

Ωe

∂[N]T

∂x

∂[N]

∂x
dΩ +

∫

Ωe

∂[N]T

∂y

∂[N]

∂y
dΩ

{f} =
∑

e∈Γin

√
ÃeB̃e{fe}, {fe} =

∮

Γe

[N]T dΓ

where Ãe and B̃e are assumed element-wise constant. The discrete form in eq. (4)
is progressed in time using an explicit time stepping scheme. To obtain a very quick
time stepping, we use mass lumping in terms of the row sum method, given by [M ii] =∑

j[Mij ]. This result in a rather insignificant trade-off in accuracy.

2.1 Design variables and material interpolation

We let the design domain ΩD be a subregion of the modeling domain Ω (see Fig. 1). To
each finite element within ΩD one design variable xe is assigned, that either takes the
value of zero, corresponding to air, and one, corresponding to silicon; i.e. xe ∈ {0, 1}.

Unfortunately this discrete optimization problem is hard to solve, in particular for
large scale problems. Instead we utilize the SIMP interpolation scheme (Bendsøe
& Sigmund 2004 [1]) in which the material parameters vary linearly between the
parameters for the phase 1 and phase 2 materials, i.e.

Ae = A1 + xe(A1 − A2)

Be = B1 + xe(B1 − B2) (5)

This facilitates the use of gradient-based algorithms to find an optimized design. Un-
like in the discrete problem porous material is now able to appear. However, several
methods have been developed to suppress this tendency. Prominent methods are e.g.
pamping proposed by Jensen & Sigmund (2005), sensitivity filtering and different
density filtering techniques proposed by Sigmund (2007). Here, a density filter with a
linearly varying weighting function is applied. For further details, consult [15].
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2.2 The optimization problem and sensitivity analysis

The objective is to maximize the transmission in the taper. A suitable measure is the
squared output displacement on Γout evaluated as F (d, xe) =

∫ T

0
H(d, xe)dt where

H(d, xe) = −{d}T [L]{d}. Here T is the fixed final time and [L] is a zero matrix
with 1 in the diagonal entries corresponding to the DOFs of the object node. In the
standard formulation the optimization problem takes the form

min
xe

F (d, xe)

0 ≤ ρe ≤ 1, e ∈ ΩD

This optimization problem is solved with the mathematical programming tool, the
Method of Moving Asymptotes (Svanberg 1987 [16]), in combination with analytical
derived sensitivities of the objective function.

Since we are dealing with a large number of design and state variables, the deriva-
tion of the analytical sensitivities is based on the adjoint method (Haug & Arora 1978
[5]). Without going into details, the sensitivities are given by

∂F

∂xe
= −

∫ T

0

{λe}T

(
∂[Ke]

∂xe
{de} +

∂[Ce]

∂xe
{ḋe} +

∂[Me]

∂xe
{d̈e}

)
dt (6)

where the adjoint operator λ is obtained from the pseudo backward initial-value-
problem in time variable τ ≡ T − t

[M]{¨̄λ} + [Z]{ ˙̄λ} + [K]{λ̄} =

{
∂H

∂{d}(T − τ)

}T

(7)

with initial conditions {λ̄(0)} = 0 and { ˙̄λ(T )} = 0, and where 0 < τ < T . The
adjoint operator is finally obtained by λ(t) = λ̄(T − τ). Evidently, this backward
IVP is the same as the state problem in eq. 4, albeit with another forcing term
{∂H/∂{d}}T = −2[L]{d}. Hence we can use the same time stepping procedure.

2.3 Algorithm

The algorithm has been implemented in MATLAB 2007b. The flowchart for the opti-
mization algorithm is outlined in Table 1.

3 Design of tapering device

The coupling between waveguides with widths of 2µm and 0.5µm will now be studied
at the wavelength of 1.55µm. The optimization is repeated for various lengths L of the
coupling region in the range of 0.5µm to 3µm. To ensure an adequate representation
of the given wavelength, we strive to retain a resolution in the design domain corre-
sponding to at least 20 elements per wavelength in silicon. As input waves we use a
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i. Initialize mesh, load scenario
ii. Build neighbourhood Ne and weighting function w(xe) for e ∈ ΩD

iii. Initialize design variables ρ, counter loop=0,
changeρ = 1 and rel. changeF = 1

iv. do while changeρ > 0.01 or rel. changeF = 10−7

v. loop = loop +1
vi. Filter densities ρ → ρ̂

vii. Solve FE problem based on filtered densities ρ̂
viii. Compute sensitivities ∂F

∂ρ̂e
based on ρ̂

ix. Update sensitivities in a consistent way, i.e. ∂F
∂ρ̃e

→ ∂F
∂ρe

x. Update design variable ρnew using MMA
xi. Compute changeρ = ||ρ − ρnew||inf and

rel.changeF = |F (ρ̂new) − F (ρ̂)|/F (ρ̂)
xii. end do

xiii. post processing using the filtered densities ρ̂

Table 1: Flowchart for the optimization algorithm.

(a) Optimized design (b) Field at t = 17.1fs (c) Field at t = 19.1fs

Figure 2: (a) Optimized taper of length L = 0.5µm for coupling between 2µm
and 0.5µm. (b)-(c) depict the displacement field where the contours correspond to
material ρe > 0.90. The normalized objective function value is Fnorm = 3.35. Filter
with R = 2h has been used. Transmission efficiency is Ieff = 0.95. ndv = 4752
and there are approximately 40 elements pr. wavelength. Ω = [0, 0.9] × [0, 2.5]
is discretized in 80 × 112 elements. ΩD = [0, 0.5] × [0, 2.4]. Note that the entire
modeling domain is not displayed.
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Figure 3: Displacement fields for taper of length L = 0.5µm at different times. From
left to right the normalized times t correspond to 13.1fs, 15.1fs, 17.1fs and 19.1fs.

Gaussian wave packet with normalized center frequency fc = 0.37 (i.e. wavelength
Λ = 1.55µm), fractional bandwidth bw = 0.2 and threshold of −60dB. It is used due
to its wider frequency (and thereby wavelength) distribution compared to harmonic
excitation. The characteristic length is chosen to a = 0.58µm. Basically, the choice
of physical data is inspired from the work done by Luyssaert [10].

Initially we optimize without filtering the interpolation densities. Then, dependent
on the amount of gray material in the converged design, the optimization is repeated
for increasing filter sizes such that the converged design (hopefully) will steer towards
structurally interpretable black and white designs. Some specially selected (not nec-
essarily the best) designs are presented in Fig. 2, 5 and 6 based on the physical filtered
densities and together with the displacement field. The transmittance of all designs
is found in Fig. 4a. It turns out, that the bias of applying a density filter with a lin-
ear weighting function is a rather insignificant trade-off in a numerical decrease of the
objective function value. Even though a density filtering technique is utilized, the opti-
mization problem is difficult to solve. This means that a large number of optimization
steps are required to satisfy the convergence criteria.

The initial material distribution uses no prior knowledge of potential well-performing
geometry, such as the parabolic taper [10]. In all cases a homogenous material distri-
bution corresponding to xe = 0.5 for e ∈ ΩD is used as initial guess. In the region with
inactive elements, the in- and outlet are made of silicon; the remainder is vacuum.

The optimized design for the taper of length L = 0.5 is, according to Fig. 2a,
topologically well-defined and simple. The outer form is modified slightly to be more
curved compared to the linear taper in Fig. 3. However, the interior is fundamentally
different. Since material is freely distributed when using the SIMP approach, the op-
timization algorithm is allowed to generate so-called cavities within the taper. Unlike
parameter based optimization using a genetic algorithm, this is a major advantage of
topology optimization. Comparing the displacement field before and after the opti-
mization (cf. Fig. 3 and Fig. 2b-c) indicates that these cavities apparently have great

7



impact on reducing the reflection in the taper. Referring to Fig. 4 the transmission
efficiency improves from approximately 30% to 95%.

Independent of taper length, it is seen in Fig. 2a, 5a and 6a that the formation
of cavities is often seen in the optimized designs. Their size and geometry change
drastically for increasing taper length, and they result in various interfaces between
high and low refractive index material within the taper. It is not unlikely, that the
appearance of these interfaces accompanied by the reduced amount of reflection, will
result in strong resonant behavior. However, the transmission spectrum in Fig. 4b
for the optimized taper of length 0.5µm does not indicate strong fluctuations which is
a typical sign of resonance. Instead it shows a relative large frequency (wavelength)
range within the wave packet threshold in which the efficiency remains high and rather
flat. The author finds it puzzling that the maximum value of 92% in the transmission
spectrum does not correspond to 95% computed by the time-averaged Poynting vector
[13]. However, a reasonable explanation could be that the waves in the relative short
in- and outlet regions are not fully propagating. The contribution from the radiated
power is therefore missing in the energy estimate. So an extension of these regions in
the modeling will assure the waves to be fully propagating and thus a correct energy
estimate.

The complexity of the optimized design and the amount of intermediate material
grow for increasing length. Hence the need for filters and other penalization methods,
such as pamping, is essential to avoid nondiscrete design variables xe. The author
strongly believes that implementation of pamping would remove or replace gray ma-
terial based on the findings in [7] and [15]. Further, a density filter with a Modified
Heaviside weight function, proposed by Sigmund (2007) [15], also turns out to be
very useful in wave transmission problems. Reversely, it is also worth considering the
opportunity, that intermediate material might be favorable in design problems of the
transmission type; evidently for increasing transmission distances of the taper. From

Figure 4: Left: Transmission efficiencies for optimized tapers of various length.
Right: Transmission spectrum of the taper in Fig. 2. The dotted lines indicate the
-60dB wave packet threshold. The transmission spectrum has been generated by a
fast fourier transform of the instantaneous radiated power fraction from the in- and
outlet.
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(a) Optimized design (b) Field at t = 18.8fs

Figure 5: (a) Optimized taper of length L = 1.0µm for coupling between 2µm and
0.5µm. (b) depicts the displacement field where the contours correspond to material
ρe > 0.80. The normalized objective function is Fnorm = 3.56. Filter with R = 3h
is employed. Transmission efficiency is Ieff = 0.98. ndv = 3328 and the resolution
is approximately 24 elements pr. wavelength. Ω = [0, 1.5] × [0, 2.5] is discretized in
80 × 67 elements. ΩD = [0.25, 1.25] × [0, 2.4].

(a) Optimized design for R = 3h (b) Field plot at t = 30.4fs.

Figure 6: (a) Optimized taper of length L = 3.0µm for coupling between 2µm and
0.5µm. (b) depicts the displacement field where the contours correspond to material
ρe > 0.80. The normalized objective function value is Fnorm = 3.83. Filter with
R = 3h is employed. Transmission efficiency is Ieff = 0.99. ndv = 1940 and there
are approximately 14 elements pr. wavelength. Ω = [0, 3.5] × [0, 2.5] is discretized
in 80 × 29 elements. ΩD = [0.25, 3.25] × [0, 2.4].
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a manufacturing point of view this is not desirable. However, since the optimization
problem is non-convex, we know that other, potentially more applicable local maxima
(optimized designs) may exist.

Material not in direct contact with the main part of the taper is inclined to emerge
for increasing taper length. This is believed to serve as Bragg gratings that prevent
waves from escaping the domain. Even for resolution refinement of the design domain
the basic topology is retained. Another intriguing observation is that the form of the
outer contour for the taper of length 3µm approaches the linear form and thereby
endeavors adiabatic transmission.

It is interesting that the topology optimization method is able to improve the per-
formance of the taper. From a practical point of view the most well-defined and still
very well-performing design proposal (95% transmission) is fortunately gained for
the shortest taper length. For instance, joining two waveguides seamlessly in a chip
with several optical functions integrated namely requires that components like tapers
become sufficiently small without compromising their performance.

4 Conclusions

In this paper the topology optimization method is employed to maximize the trans-
mission in a tapering device by freely distributing silicon in the design domain. The
method has revealed its capability to reliably predict optimized (optimal) topologies.
The study has been carried out for various taper lengths. The topologically most well-
defined design is obtained for the shortest length of 0.5µm. This has improved the
transmission of the taper from approximately 30% of the linear taper to 95%.

The longer the taper gets, the more significant becomes the appearance of non-
discrete interpolation densities. Therefore filtering of the densities plays an important
role to obtain black and white designs. In general, problems of the transmission-type
are likely to steer towards designs with gray regions. The tendency in all designs is
formation of cavities within the taper. These cavities seem to be important in order to
enhance transmission and they do not give rise to resonant phenomena. The transmis-
sion for longer tapers is also improved considerably.

Future work includes implementation of the Modified Heaviside filter and pamping.
A way to improve the designs is to use the transmission in terms of the Poynting vector
as objective function instead of the minimum displacement objective function. This is
due to the fact that the former correctly estimates the transmitted energy by the flux,
whereas the energy estimate in the latter corresponds to elastic energy. Lastly, more
efficient absorbing boundaries that the ones for normal incidence should be used.

References
[1] Bendsøe, M. P. & Sigmund, O. (2004) Topology Optimization; Theory, Methods,

and Applications. Springer Verlag Berlin Heiddelberg New York, 2nd edition.

10



[2] Dahl, J., Sigmund, O. & Jensen, J.S. (2007) Topology optimization for transient
wave propagation problems in one dimension : Design of filters and pulse modu-
lators. Struct. Multidisc. Optim. (2007). Vol. 33:401-424. Springer-Verlag 2007

[3] Halkjær, S., Sigmund, O., Jensen, J.S. (2005) Inverse design of phononic crystals
by topology optimization. Z Kristallogr 220(9-10):895-905

[4] Halkjær, S., Sigmund, O., Jensen, J.S. (2006) Maximizing band gaps in plate
structures. Struct Multidisc Optim 32(4):263-275

[5] Haug, E. & Arora, J. (1978) Design sensitivity analysis of elastic mechanical
systems. Comput Methods Appl Mech Eng 15(1):35-62

[6] Jensen, J.S. & Sigmund, O. (2004). Systematic design of photonic crystal struc-
tures using topology optimization: low-loss waveguide bends. Appl Phys Lett
84(12):2022-2024

[7] Jensen, J. S. & Sigmund. O. (2005) Topology optimization of photonic crystal
structures: a high-bandwidth low-loss T-junction waveguide. J. Opt. Soc. Am.
B. Vol. 22, No. 6.

[8] Jensen, J.S. (2007). Topology optimization of dynamics problems with Padé ap-
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1. INTRODUCTION
In the field of information technology light plays a pro-
gressively important role as an information conveyor. One
of the keys to future information technology is the real-
ization of large-scale optical integrated circuits. Herein
photonic crystals (PhCs) are believed to be the leading
platforms. This is due to their unique capability of exhib-
iting very strong light-matter interaction while keeping
the size of the optical components greatly reduced [1,2]. It
is the photonic bandgaps of PhCs that yield this interac-
tion in which wave propagation at certain wavelengths is
prohibited. The introduction of PhC mirrors, waveguides
(WGs), and resonant microcavitites (MCs) as the three
basic PhC components has led to an increased attention
on the design of optical devices within the last decade
that may accomplish the complete control of light propa-
gation. Amalgamation of these components has been uti-
lized to designing various PhC devices such as filters,
bends, and splitters for various applications [3].

In the engineering of PhC devices, the use of inverse
problem techniques has recently been introduced as po-
tential designing tools to replace previous approaches
[4,5]. In this paper we demonstrate how topology optimi-
zation based on transient analysis can be used to tweak
the performance of a two-dimensional (2D) PhC filtering
device, consisting of a PhC-WG-side-coupled PhC-MC.
The aim is to achieve strong coupling between the
PhC-WG and -MC while maintaining a high Q factor for
the filtered mode residing inside the MC.

The methodology behind topology optimization has pre-
viously disclosed its usefulness in the design of various
2D PhC-WG components, e.g., a 90° bend [6], a T-junction
[7], and a termination [8]. Other relevant and efficient
PhC component designs have been obtained and experi-
mentally verified in [9–12]. The common goal for these op-
timization examples is the maximization of power trans-

mission of either transverse electric (TE-) or transverse
magnetic (TM)-polarized waves at multiple frequencies.
The optimized components reveal good performance and
agreement with experiments. The basis for the computa-
tional model is the finite-element frequency-domain
method. A consequence of using frequency-domain meth-
ods is that wideband optimization requires multiple fre-
quency analyses.

In the present paper the finite-element time-domain
(FETD) method will be employed. Time-domain methods
have the advantage of computing the response of a linear
system at many frequencies with a single time-domain
analysis. This idea has been used for antenna design us-
ing the finite-difference time-domain method [13], one-
dimensional filter and pulse modulator designs [14,15],
and simultaneous space-time optimization [16] in the set-
ting of the FETD method. Additionally, time-domain
methods can accommodate strongly nonlinear or active
(time-varying) media, whereas frequency methods have
difficulties with these physical regimes because the fre-
quency is no longer preserved. Two of the major chal-
lenges of the FETD method are the computational cost as-
sociated with the computation of the sensitivities and the
implementation of efficient absorbing boundary condi-
tions (ABCs), such as the perfectly matched layer (PML)
[17]. To the authors’ knowledge, a topology optimization
scheme based on the FETD method using PMLs as ABCs
has not been reported before.

Improving Q factors of MCs has previously been stud-
ied and subjected to optimization in a 2D PhC slab with a
triangular lattice pattern of air holes. These studies re-
veal that small mode volume and high Q factors are es-
sential in the realization of high-performing active light-
emitting devices such as zero-threshold lasers. Standard
designs of PhC-MCs exploit simple circular defects. A gen-
eral recipe relying on an analytically derived inverse
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problem approach is developed in [18] restricted to geom-
etries of circular shape. Alternatively, a more general in-
verse systematic approach based on a level-set approach
for shape optimization is suggested in [19] that yields op-
timized designs of arbitrary convex shapes. Meanwhile,
when considering the MC as side-coupled to a WG in fil-
tering devices, it acts as a passive component. Conse-
quently, the requirement for the mode volume becomes
secondary, and the interaction between the PhC-MC and
the PhC-WG is the primary target [20]. A detailed concep-
tual study of this interaction can be found in [21,22].

The purpose of this work is to utilize the free material
distribution technique provided by topology optimization
[23], and thereby not limiting the optimized design to any
particular geometrical shape. The optimization method is
formulated in the framework of the FETD method for TE-
polarized modes, and it uses PMLs as ABCs (Section 2).
We express the problem in a fashion that improves the Q
factor by maximizing the stored magnetic energy in the
exponentially decaying regime of the transient response
of PhC-MC monopole and dipole modes. In the optimiza-
tion process we consider a 2D PhC configuration with a
triangular lattice of air holes in the dielectric GaAs (Sec-
tion 3). The system is homogenous in the third dimension,
whereby the total Q factor only depends on the in-plane Q
factor. However, the method presented here is believed
also to be valid for optimization of the Q factor for equiva-
lent PhC slab devices, in which the out-of-plane Q factor
limits the total Q factor. It can also immediately be
adapted to TM modes. Finally (Section 4) by using tempo-
ral coupled-mode (CM) theory [24], the PhC filter with the
optimized PhC-MC is analyzed to verify that the spectral
performance of the filter is improved as desired.

2. FORMULATION OF THE TRANSIENT
TOPOLOGY OPTIMIZATION METHOD
Throughout this paper we consider propagation of TE
modes within 2D infinitely tall PhC structures. The me-
dium inside the structures is assumed to be invariant in
time and to occupy a composite of regions of a homoge-
neous dielectric material as a function of the plane (Car-
tesian) position vector r= �x ,y� in the solution domain �S.
Due to the infinite extension in the third dimension, it is
sufficient to solve the scalar wave equation for the trans-
verse component of the magnetic field, Hz�r , t�. The nu-
merical solution is sought by truncating �S with a PML
region �PML as a means to minimize the nonphysical re-
flection from the boundary ��S (see Fig. 1). Interpreting
the material behavior in �PML as anisotropic, dispersive,
and lossy, the governing equation for r��=�S��PML
takes the following general form [17]:

�L1�t�Hz + � �

�x�L2,x�t�

�

�

�x� +
�

�y�L2,y�t�

�

�

�y��Hz = −
�JB,z

�t
,

�1�

where �=��r� and �=��r� denote permittivity and perme-
ability, respectively.

On the right-hand side of Eq. (1), JB,z�r , t� is the mag-
netic charge current, serving here as the excitation term

in the case of a radiating source residing in �S. The op-
erator L1�t� in Eq. (1) is given by

L1�t� =
�2

�t2 +
�x + �y

�

�

�t
+

�x�y

�2 , �2�

and the other operator L2,p�t� is given by

L2,p�t� = 1 − ap exp�− bpt�ū�t� � , p = x,y, �3�

with ax= ��x−�y� /�, ay= ��y−�x� /�, and bp=�p /�. In Eq.
(3), ū�t� denotes the Heaviside step function, and � stands
for temporal convolution. The spatially dependent
coordinate-wise conductivities �x and �y attenuate the
field in �PML and are thus only nonzero in �PML. They are
expressed in terms of the PML profile ��r� that is chosen
here as [25]

��r� = �max� �

d�
m

,

�max = −
�m + 1�log10�R0�

2dZ0
. �4�

In Eq. (4), � denotes the perpendicular distance from the
PML interface, d is the width of the PML, m is the order
of the PML profile, R0 is the theoretical reflection coeffi-
cient at normal incidence (typically around the order of
10−5), and Z0 is the free-space material impedance. The
impedance matching condition between �S and �PML is
satisfied by requiring that the permittivity in �PML [cf.
Eqs. (2) and (3)] is determined by the value at the PML
interface (i.e., when �=0) [25,26]. For convenience it is
designated by �i=���=0�.

If the PML is backed with the first-order Silver–Müller
radiation boundary condition [27] on �abs���,

n · ��−1�̃Hz� − Y
�Hz

�t
= 0 on �abs, �5�

where n is the outward unit vector normal to the bound-
ary, and Y=	� /� is the surface admittance, the nonphysi-
cal reflections will be further diminished [17]. Here, we
have introduced �̃= �L2,x� /�x ,L2,y� /�y� to abbreviate the

a

√
3

2 a

d

d

ρ

ρ

ΩPML

ΩT

ΩS
ΩD

ΩE

Γabs

Γabs

Γabs

ΓabsΓ inc Γ out

M

Γ K

Fig. 1. Illustration of a �–K directional PhC-WG structure as
the computational domain. It consists of the solution domain �S
and the transition domain �T that are truncated by the PML re-
gion �PML. The circle encloses the scattering design region �D. In
�E (black circular region) the energy is maximized. The PhC is
built by blocks of size a /2�	3a /2, where �T��S contains 30
�14 building blocks, and �PML is extended with 24 and 4 blocks
on both sides in directions �–K and �–M, respectively.
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notation. Propagation of plane waves with direction � is
generated in �S by an incident field Hz

inc�r , t� that is in-
troduced on �inc���S as

n · ��−1�̃Hz� − Y�n · � − 1�H0,z
inc

�f

�t
= 0 on �inc, �6�

where H0,z
inc and f�t�, respectively, are the amplitude and

the time evolution of the incident field. When the waves
originate from a radiating point source in �S, the mag-
netic charge current becomes JB,z�r , t�=��r−r��g�t�,
where ��r� denotes the Dirac delta function, r� is the lo-
cation of the point source, and g�t� is the temporal evolu-
tion of the source.

A. Finite-Element Implementation
To seek the FETD solution of Eq. (1), we employ Galer-
kin’s method [17]. By introducing an appropriate testing
function Tz�r�, the weak-form representation becomes



 

V
��TzL1�t�Hz�t� + �Tz · �̃Hz�t� + Tz

�JB,z

�t �dV

+
 

S
�YcTz

�Hz

�t
+ TzUz�dS = 0, �7�

where Uz=Yc�n ·�−1�H0,z
inc� f /�t. Then, expanding the field

as

Hz�r,t� = �
i=1

N

Ni�r�ui�t�, �8�

where Ni is the ith interpolating shape function, and as-
suming that �, �, �x, and �y are constant within each el-
ement yields the corresponding finite-element discretiza-
tion as

�
e=1

M

�Teü + Reu̇ + Seu + ge − fe� = 0, �9�

where N and M denote the numbers of nodes and ele-
ments, respectively; � �˙ �d/dt; and � �¨ �d2/dt2. The square
matrices Te, Re, and Se are computed by

Tij
e = �Ni,Nj��e,

Rij
e = ���x + �y��i

−1Ni,Nj��PML
e + YcNi,Nj��ABS

e ,

Sp,ij
e = �−1�Ni/�p,�Nj/�p��e, p = x,y,

Sij
e = ��x�y�i

−2Ni,Nj��PML
e + Sx,ij

e + Sy,ij
e , �10�

where  , ��e and  , ��e mean integration over the volume
and surface, respectively, of an element, and u
= �u1 , . . . ,uN�T. Since we model only the scalar field Hz it
is adequate to consider Ni as the nodal based shape func-
tion of an element in order to satisfy the field continuity
equations. The convolution and the excitation vectors, ge

and fe, respectively, are given by individual vector compo-
nents:

gi
e = �

j
Sx,ij

e 	x,j + Sy,ij
e 	y,j, e � �PML,

fi
e = − Ni,�JB,z/�t��S

+ Ni,Uz��inc
e , �11�

In Eq. (11) the elements of 	p are expressed by

	p,j = ap exp�− bpt�ū�t� � uj�t�, p = x,y. �12�

In Subsection 2.B it is described how the computationally
cumbersome convolution term in Eq. (12) is resolved very
efficiently to reduce the computational costs.

The PhC in Fig. 1 is reproduced by using building
blocks of size a /2�	3a /2, where a is the basic step length
of the PhC, i.e., the lattice constant. These building blocks
are discretized in 7�12 elements yielding 14 elements
per inter-hole spacing in the computational mesh, which
corresponds to 14 elements per wavelength in the dielec-
tric material.

B. Time Integration
As a means to speed up the FETD solution in the iterative
topology optimization process, we benefit from explicit in-
tegration schemes, because they do not require the solu-
tion of a matrix system within each time step. Addition-
ally, they have a natural parallelizability. Here, we use a
technique that renders the T-matrix diagonal when inver-
sion is needed, and in the case of multiplication an aver-
aged T�-matrix is used. The integration of the T- and
S-matrices for a four-node rectangular bilinear element
follows modified rules that can be found in [28], such that
fourth-order dispersion error accuracy is achieved. A res-
olution of 14 elements per wavelength is found to be suf-
ficient to obtain acceptable dispersion error. The semi-
discrete version of Eq. (9) is given by

Tdu̇n+1/2 = T�vn−1/2,

Tdv̇n = − Ru̇n+1/2 − Sun − gn + fn, �13�

where Td,ii=�jTij, Td,ij=0, and T�= �1−��Td+�T. The op-
timal combination factor is �= �
2−1� /2 to obtain fourth-
order accuracy, where 
=�tcc /�x, with �tc denoting the
critical time step. It follows the Courant–Friedrichs–
Lewy (CFL)-condition, i.e., �tc�0.7071�x /c, where c is
the vacuum speed of light. However, we choose �t
=0.9�tc to avoid or delay numerical instabilities, such as
nonphysical oscillations and late-time instabilities in the
PML. Half-step approximation is used for central time
differences in this scheme, i.e., u̇n+1/2= �un−un−1� /�t and
v̇n= �vn+1/2−vn−1/2� /�t, and it is initiated by u0= u̇0=0 and
v1/2=�tTd

−1�f0−Su0� /2. The temporal derivatives (e.g., of
the primal response u or of the analytical excitation) are
evaluated by following the central second difference
scheme approximations:

ün =
un+1 − 2un + un−1

�t2 ,

u̇n =
un+1 − un−1

2�t
. �14�

The convolution term in Eq. (12) requires significant com-
putation time and memory since the entire solution his-
tory is needed in the convolution integral. However, it can
be recursively evaluated at time n�t instead as [17]
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	p,j
n = exp�− bp�t�	p,j

n−1 +
ap�t

2
�uj

n + exp�− bp�t�uj
n−1�.

�15�

Since ap and bp are assumed to be constant within each
element the recursive convolution relation in Eq. (15) is
most easily implemented when the matrix-vector multi-
plication is carried out element-wise in the time-
marching. In practice this means that we assign 	p

n sepa-
rately to each element and update this according to
Eq. (15).

C. Design Variables and Material Interpolation
In the design domain �D��S each finite element is asso-
ciated with one (density) design variable xe that varies
continuously between 0�xe�1. All design variables are
assembled into the global design vector x= �x1 , . . . ,xM�T.
By following the solid isotropic material with penalization
(SIMP) scheme [23] the design variable is then used to in-
terpolate between two candidate material phases, desig-
nated here as � �I for air and � �II for dielectric. Since rela-
tive magnetic permeability is very close to unity for
dielectric materials, explicit design dependence is only re-
stricted to the inverse of the relative permittivity. This is
successfully adopted by a linear interpolation [6],

�r
−1�xe� = �1 − xe���r

I�−1 + xe��r
II�−1. �16�

The continuous design parameterization above now facili-
tates the use of a gradient-based optimization algorithm
(referred to as the optimizer) to find an optimized design.
The shortcoming of the continuous material parameter-
ization is the possible scenario of intermediate design
variables appearing in the final design. In Subsection 2.E
it is described how design variables close to discrete (xe
=0 and xe=1) are efficiently obtained through penaliza-
tion schemes.

D. Sensitivity Analysis
In our continuous optimization problem we need to com-
pute the design sensitivities in order to use gradient-
based optimization solvers. For large numbers of design
variables the adjoint sensitivity approach offers a clever
and computationally efficient alternative to direct sensi-
tivity analysis [29]. As briefly described, the adjoint
method makes the central processing unit time associated
with the sensitivity analysis almost independent on the
number of design variables by introducing an auxiliary
problem (the adjoint problem) that needs to be solved
backward in time.

The development of an explicit design sensitivity ex-
pression proceeds as follows [30]. Consider a design func-
tional  that is defined here as a function of the design x:

�x� =

0

T

F�u,u̇,ü,x�dt, �17�

where T is the termination time of the transient simula-
tion, and u�u�x , t� where the design dependence is im-
plicit. Now, we continue by expressing the sensitivities in
terms of the residual of Eq. (9), given by

r�u,u̇,ü,x� = f − �Tü + Ru̇ + Su + g� = 0. �18�

Combining the integrand in Eqs. (17) and (18) defines the
augmented functional

F̂ = F�u,u̇,ü,x� + �Tr�u,u̇,ü,x�, �19�

where the adjoint operator (Lagrange multiplier) �
���x , t� depends implicitly on the design and explicitly on
time. The augmented design functional is identical to that
in Eq. (17) with F replaced with F̂, though, since r=0. By
a clever choice of �, which can be chosen freely since r
=0, the sensitivity analysis is significantly simplified as
shown in the following.

Now, differentiating Eq. (17) with respect to each com-
ponent xe�x by the chain rule yields the sensitivities

�

�xe
=


0

T � �F

�u

�u

�xe
+

�F

�u̇

�u̇

�xe
+

�F

�ü

�ü

�xe
+

�F

�xe
+

��T

�xe
r

+ �T� �r

�u

�u

�xe
+

�r

�u̇

�u̇

�xe
+

�r

�u

�ü

�xe
+

�r

�xe
��dt. �20�

Utilizing integration by parts and that r=0, Eq. (20) is
now rewritten as

�

�xe
= ��T

�r

�u̇

�u

xe
+ �T

�r

�ü

�u̇

xe
− �̇T

�r

�ü

�u

�xe
�

0

T

+

0

T � �F

�u̇

�u̇

�xe
+

�F

�ü

�ü

�xe
+

�F

�xe
�dt

+

0

T � �r

�ü
�̈ −

�r

�u̇
�̇ +

�r

�u
� −

�F

�u� �u

�xe
dt +


0

T

�T
�r

�xe
dt.

�21�

The implicit system derivatives �u /�xe are eliminated
from the sensitivity expression by selecting the appropri-
ate �. This process induces the adjoint problem

�r

�ü
�̈ −

�r

�u̇
�̇ +

�r

�u
� =

�F

�u
, �22�

where �F /�u designates the adjoint load. If we introduce
the time shift t�T−
 for 
� �0,T�, the adjoint problem in
terms of ��
� becomes

�r

�ü
�̈̄ +

�r

�u̇
�̇̄ +

�r

�u
�̄ =

�F

�u
, �23�

since � /�t=−� /�
. Then upon imposing u�0�= u̇�0�=0,

solving Eq. (23) with the terminal condition �̄�0�= �̇̄�0�
=0, and subsequently substituting ��T−
�= �̄�
�, the sen-
sitivity expression reduces to

�

�xe
=


0

T � �F

�xe
+ �T

�r

�xe
�dt. �24�

In our case �F /�u̇ and �F /�ü vanish since we only con-
sider problems in which F=F�u ,x�. The result is an ad-
joint problem whose form is identical to that of the primal
transient analysis in Eq. (9), albeit with another excita-
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tion term. Hence, the same time integration scheme can
be used to find the adjoint response.

The evaluation of the adjoint sensitivities proceeds as
follows: After the transient primal analysis is concluded,
the adjoint response � is computed at the exact same time
steps by reusing the exact same ABC setup from the pri-
mal analysis [30]. While integrating the adjoint response
in time, the contribution to the integral in Eq. (24) is com-
puted, which is plausible since � and u are already
known. Consequently, when integration of the adjoint re-
sponse is concluded the sensitivities are obtained. This
process only requires the storage of the primal response
u�t� from which, when needed, ü�t� and u̇�t� are computed
by Eq. (14).

More often, it is desirable to control the objective in a
localized time interval �T1 ,T�� �0,T� (see [31]). The lower
integration limit in Eq. (17) cannot simply be replaced
with T1, because then the brackets in Eq. (21) will not
vanish. Alternatively, the time integral in Eq. (17) could
be split into two integrals �T1

T =�0
T−�0

T1. However, this re-
quires two adjoint analyses. In order to reduce the com-
putational costs we suggest incorporating a localizing
function in the design functional instead. The Heaviside
step size function ū�t−T1� allows us to specify a time in-
terval, such that the design functional becomes

�x� =

0

T

F�u,u̇,ü,x�ū�t − T1�dt, �25�

which modifies the adjoint load to become ��F /�u�ū�t
−T1�.

E. Optimization Problem
In the present optimization formulation, the design func-
tional �x� is restricted to scalar measures. Here, we con-
sider magnetic energy given by ��E

1
2�Hz

2d�. Thus, F can
in general be expressed as uTQu, where Q is a matrix
with the components Qij

e = 1
2�Ni ,Nj��e for e��E. In

PhC-MC design problems the Q factor can be enhanced by
delaying the exponential energy decay [32]. To achieve
this, we suggest including the localizing function in F to
specify the elapsed time, after which the magnetic energy
should be maximized. The optimization problem is now
formulated as

maxx�RM �x� = log10�

0

T

uTQuū�t − T1�dt� ,

s.t.: Governing Eq. �9�

�
e

vexe � Vf�, 0 � xe � 1, e � �D. �26�

In the second constraint ve is the element volume, and V
is the total volume occupied by �D; hence V=�eve. The
constraint serves as a restriction on the available amount
of dielectric material, set by f� herein, that is to be distrib-
uted in �D. It is important to stress that it is not neces-
sarily active in this problem. The logarithm in the objec-
tive is introduced to ensure better numerical scaling. The
optimization process is initiated by a qualified design that

is found via the trial and error approach or previously re-
ported designs.

The solution of the optimization problem in Eq. (26)
suffers from strong non-uniqueness leading to multiple lo-
cal minima. Some of them are a result of the possible ex-
istence of degenerate modes [3]. Others stem from local
resonance effects yielding a poor performance away from
the target frequency [7]. Since the physics behind sharp
resonance phenomena induces very sensitive behavior
upon tiny design changes, we use a globally convergent
optimizer. Thereby we stay in the vicinity of the initial de-
sign and avoid undesirable minima. Based on an initial
design and the adjoint sensitivities, the design update is
carried out by the globally convergent method of moving
asymptotes that is suggested and implemented in Fortran
77 by Svanberg [33]. The Heaviside step function ū�t
−T1� in Eq. (26) is regularized in a neighborhood �T cen-
tered at T1 by

ū�t − T1� �
1

2

tanh�2��t − T1�/�T�

tanh���
+

1

2
�27�

to avoid numerical problems. The parameter � dictating
the curvature of the regularization and the size of �T are
chosen such that the fast Fourier transform of uTQuū�t
−T1� does not disclose any undesirable local resonance
peaks away from the target frequency of the mode.

In order to avoid any non-manufacturable features in
the structure we use density filtering techniques capable
of controlling the minimum length scale of void and di-
electric simultaneously [34,35]. However, this particular
type of multiphase projection leads to intermediate design
variables in the transition region between the material
phases. We use the so-called pamping method [7] that in-
troduces an artificial mass proportional damping contri-
bution Re=4qxe�1−xe��0Te and makes the existence of in-
termediate design variables expensive with respect to the
objective. This penalization procedure is, however, only
applicable in this form for maximization problems. Nu-
merical experiments have proven q=0.2�T−T1� /T to be
an adequate choice.

The state problem solver, providing the objective and
sensitivity evaluation, is parallellized by using Fortran 90
MPI for all interprocessor communications to avoid com-
putational bottlenecks in the storage of the primal re-
sponse. A non-blocking communication strategy is imple-
mented in the time integration to speed up the simulation
time. The design update is carried out on a single proces-
sor, to which all necessary data for the optimizer are sent.

3. DESIGN OF A SIDE-COUPLED RESONANT
CAVITY
The high index-contrast devices used in the present inves-
tigation are constructed by using a 2D PhC composed of a
triangular lattice of air holes embedded in the dielectric
material GaAs (see Fig. 1). By viewing the structures as
infinite in the third dimension and using the radius of the
air holes r /a=0.35, it supports a complete TEz bandgap in
the normalized frequency range a /�0=0.21–0.33, where
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�0 denotes the wavelength in vacuum. The dielectric con-
trast between GaAs and air is 11.4 for wavelengths
around 1.5 �m [3].

The side-coupled cavity in the 2D PhC with an infinite
height has two distinct loss mechanisms. One concerns
the leak of the cavity mode into the �–K directional WG,
and the other concerns that into the surrounding PhC.
Hence, the total in-plane Q factor is given by

1/Qin = 1/Qe + 1/Q0, �28�

where Qe is the quality factor of the cavity mode with re-
spect to the WG, and Q0 is the quality factor of the iso-
lated cavity. From Eq. (28) it is deduced that Qin increases
when the cavity is far away from the WG, albeit at the ex-
pense of poor coupling. In fact, Qin increases exponen-
tially with the distance [20]. Since the ultimate goal is
miniaturized integrated PhC circuit devices, the method
of topology optimization is utilized here to improve Qin for
short distances while maintaining strong coupling. The
first target in the design process is to improve Q0 by con-
sidering the isolated cavity.

A. Isolated Cavity Design
Although an arbitrary initial condition could be em-
ployed, it is reasonable to search for a cavity geometry
supporting a high Q mode by varying the radii of nearest
neighboring holes to the cavity. The geometry in Fig. 2(a)
that is surrounded by a two cell sizes thick PML pulls
down a monopole Hz-mode from the air band at the fre-

quency of �0a /2�c=0.3030 with Q0=2.2�105. We calcu-
late the Q factor by measuring the slope of the exponen-
tial decay of the energy of the cavity mode [32]

U�t� = U0 exp�− �0t/Q0�, �29�

where U0 represents the (initial) amount of energy stored
in the cavity that is reached at time Tmax. The correspond-
ing mode profile in Fig. 3(b) is extracted by the discrete
Fourier transform of the response that is excited by a ra-
diation point source in the center of the cavity with time
evolution

g�t� = exp�− �t − T0�2/
2�sin�2��0�t − T0��, �30�

where 
=180c /a and T0=500a /c.
The design region �D for the coupled system depicted

in Fig. 1 is also adopted for isolated MC optimization. In
the center hereof the objective is evaluated in a circular
region �E with radius 3a /14. We excite the system by re-
using the time evolution in Eq. (30), and the simulation
time is set to T=100,000�t. The choice of T1 is not critical
here since the isolated cavity has only a single loss
mechanism. Additionally, we impose vertical and horizon-
tal symmetry conditions through the center of the cavity
and do not constrain the amount of the dielectric mate-
rial, i.e., f�=1. The optimized design reached after 311 de-
sign iterations appears in Fig. 2(b). As expected it does
not include any structural features that violate the mini-
mum allowable length scale prescribed by the density fil-
ter with radius 2.5a /14, and the length scale of the blend-
ing region between dielectric and air corresponds to the
thickness of one finite element. Based on the normalized
logarithmic energy decay in Fig. 3(a) the Q factor of the
corresponding mode is computed to be Q0=4.8�105. Evi-
dently, the initial design has been altered significantly to
achieve this doubling of the Q factor, likewise the mode
profile in Fig. 3(c).

(a)

(b)

air dielectric
Fig. 2. Monopole mode. (a) Initial MC geometry. (b) Optimized
MC geometry.
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Fig. 3. (Color online) (a) Logarithmic envelope of normalized
stored energy for the monopole mode. (b),(c) Hz-field distribution
for the initial and optimized MC geometries, respectively. The
material distribution is shown with xe

t =0.6 as threshold.
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In practical applications of the side-coupled MC the ini-
tial geometry and corresponding mode cannot be chosen
uncritically. The influence of the light line in the disper-
sion diagram should then be taken into account. Unlike
for the monopole mode, we identify a dipole mode at the
frequency of �0a /2�c=0.2480 whose intersection point
with the WG mode is below the light line; see the disper-
sion diagram in Fig. 4. The corresponding MC geometry
appears in Fig. 5(a).

For the dipole mode �D remains unchanged, and the
radius of �E is now doubled to 6a /14. The system is ex-
cited by two point sources located in the eye of the dipole

with opposite signs. Now, however, it has been necessary
to constrain the amount of the dielectric material to f�

=0.8 to avoid ending up in local maxima bearing degener-
ate modes. The optimized geometry reached after 592 de-
sign iterations is displayed in Fig. 5(b). Compared to the
mode in Fig. 6(b) of the initial design with Q0=9.9�104

the Q factor of the optimized design is slightly improved
to Q0=11�104 [see Fig. 6(a)]. Similar to the monopole
mode, the topological features of the optimized design
prevent the cavity field in Fig. 6(c) from leaking into the
surrounding PhC above and below the cavity. Instead, the
leakage is only concentrated on the corners.

B. Coupled System Design
For the coupled system in Fig. 1 we consider, for the sake
of completeness, both cavity modes despite the limited
practical applicability of the monopole. Here, we impose
only a vertical symmetry condition through the cavity
center to increase the design freedom. The system is ex-
cited by a line source �inc located inside the PhC-WG with
an appropriate distance from the cavity and with tempo-
ral dependence given by Eq. (30). The entire structure is
surrounded by a PML into which the PhC features are
continued (see Fig. 1). The design process is initiated by
reusing the optimized isolated cavity designs with similar
�D and �E, and the simulation time is set to T
=120,000�t. Since the coupled system now supports mul-
tiple loss mechanism, the choice of T1 becomes crucial in
order to improve Qin. Here, the three cases T1=0, =Tmax,
and =4Tmax are considered. We compute Qin by utilizing
that �0 /Q equals the full width at half-maximum
(FWHM) of the resonant shape of the transmitted power
ratio �T�2�Pout/Pin for the coupled device. Similarly, how-
ever, by varying the separation between the PhC-WG and
-MC determines Qe. The power is computed by the Poyn-
ting vector at the flux plane �out, given by
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Fig. 4. Dispersion curve of the �–K directional PhC-WG. The
bandgap exists between the dielectric (lower) and air (higher)
bands in the normalized frequency range a /�0=0.21–0.33. The
horizontal lines represent the dipole mode frequency of 0.2480
and the monopole mode frequency of 0.3030.
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Fig. 5. Dipole mode. (a) Initial MC geometry. (b) Optimized MC
geometry.
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Fig. 6. (Color online) (a) Logarithmic envelope of normalized
stored energy for the dipole mode. (b),(c) Hz-field distribution for
the initial and optimized MC geometries, respectively. The mate-
rial distribution is shown with xe

t =0.6 as threshold.
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P��� =
1

2
Re�n ·


�out

E�
� � H�d�� , �31�

where � �� denotes complex conjugate, and � �� means dis-
crete Fourier transform of the time dependent field. By
removing the scattering cavity Pin can be determined at
�out. For a broadband analysis, the frequency span of the
incoming Gaussian wave packet corresponds to that of
the guided mode.

The optimized designs for the monopole and dipole
modes follow from Figs. 7 and 9, respectively, and none of
those contravene the similar minimum allowable length
scale as above. For the monopole mode, the results in
Figs. 7(b)–7(d) reveal that the optimization has caused
minor redistribution of the dielectric material. According
to Figs. 8(b)–8(f) the FWHM of the Lorentzian dip in
transmission indicates that Qin is deteriorated compared
to the performance of the isolated cavity design. An over-
view of all relevant Q factors is presented in Table 1. The
significance of choosing T1 is illustrated by the envelope
of the stored energy response inside the cavity in Fig.
8(a). When T1 approaches zero the WG energy attempts
to couple into the cavity immediately yielding a strong in-
teraction and a subsequent rapid decay inside the cavity
as a consequence of low Qin. As T1 grows beyond the
Tmax-limit, the energy decay is postponed, which suggests
that achieving high Q devices in principle counteracts
strong coupling. Nevertheless, in all cases almost zero
transmission is achieved independent of the difference in
Qin. This behavior can be understood by utilizing CM
theory [24] to obtain an analytical expression for the
transmission in the WG, given by

(a) (b)

(c) (d)

air dielectric
Fig. 7. Optimized designs for the monopole MC mode. (a) Iso-
lated MC. Optimized coupled system geometries for (b) T1=0, (c)
T1=Tmax, and (d) T1=4Tmax.
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Fig. 8. Monopole mode. (a) Logarithmic envelope of stored en-
ergy U�t�. Transmission spectrum for (b) initial design, (c) iso-
lated MC, coupled system (d) T1=0, (e) T1=Tmax, and (f) T1
=4Tmax.
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air dielectric
Fig. 9. Optimized designs for the dipole MC mode. (a) Isolated
MC. Optimized coupled system geometries for (b) T1=0, (c) T1
=Tmax, and (d) T1=4Tmax.
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�T����2 = 1 −

1

4Qe
2�1 + 2

Qe

Q0
�

�� − �0

�0
�2

+
1

4Qe
�1 +

Qe

Q0
�2 . �32�

At resonance, i.e., �=�0, it simplifies to

�T��0��2 =
Qin

2

Q0
2 �

Qe
2

Q0
2 + O��Qe/Q0�3�, �33�

where the last approximation is valid if Q0�Qe. Table 1
indicates that it holds true for the present system, and
additionally that Qe and Qin have the same order of mag-
nitude. Hence at resonance according to Eq. (33), strong
coupling is retained even upon considerable improvement
of Qin (and Qe). Consequently, the optimization formula-
tion makes it possible to control the counteracting rela-
tion between high Q and strong coupling. One should also
expect that Q0 is largest for the isolated cavity optimiza-
tion. Table 1 supports this fact for the monopole. How-

ever, the dipole mode favors the largest Q0 for unsym-
metrical cavity design in the vertical direction. This is
only obtainable for the coupled system �T1=4Tmax� as a
result of the symmetry conditions in both directions for
the isolated cavity optimization.

For the dipole mode the original cavity geometry in Fig.
5(a) and the optimized ones in Fig. 9 exhibit practically
zero transmission at resonance [see Figs. 10(b)–10(f)].
The isolated cavity optimization only improves Qin by a
factor of 2. In contrast to the monopole, optimizing for
T1=4Tmax further increases Qin by 50% as a result of mi-
nor design changes [compare Figs. 9(a) and 9(d)], yielding
a total improvement of 185%. The design result for T1
=0 in Fig. 5(a) shows substantial material redistribution
in the interaction region in order to enhance coupling.
However, the envelopes of the energy decay in Fig. 10(a)
only display marginal changes among the various designs
in the coupling performance. As expected the Hz-field plot
in Fig. 11 of the best dipole candidate �T1=4Tmax� shows
nearly zero transmission at resonance.

The use of a 2D PhC of infinite height in this paper
omits the influence of the out-of-plane energy losses,
which constitutes a limiting factor with regards to im-
proving the total Q factor in PhC slabs. Thus, improving
the in-plane Q does not necessarily imply the same trend
for the out-of-plane Q [22]. Furthermore, we cannot take
the third dimension into account by the effective index
method since it holds limited accuracy for high index-
contrast structures or near the cutoff. However, our expe-
rience from previous studies (cf. [9–12]) is that 2D
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Fig. 10. Dipole mode. (a) Logarithmic envelope of stored energy
U�t�. Transmission spectrum for (b) initial design, (c) isolated
MC, coupled system (d) T1=0, (e) T1=Tmax, and (f) T1=4Tmax.

Table 1. Q†103
‡ Factors for Coupled System Configurations

Monopole Dipole

Qin Qe Q0 Qin Qe Q0

Init. MC 16 17.3 220 2.1 2.1 99
Opt. MC 60 68.3 474 4.1 4.2 110
T1=0 2.1 2.1 139 2.0 2.0 90
T1=Tmax 7 7.3 168 3.3 3.4 100
T1=4Tmax 16 17.2 239 6.0 6.2 140

neg pos
Fig. 11. (Color online) Hz-field distribution for the best opti-
mized WG-side-coupled MC candidate for the dipole mode when
T1=4Tmax. The material distribution is shown with xe

t =0.6 as
threshold.
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optimized designs in general yield good behavior in three
dimensions as well. In future studies we will verify the
obtained designs by three-dimensional simulations and
possibly extend the optimization to three dimensions as
well.

4. CONCLUSION
In this paper, we have developed a design method based
on topology optimization for transient response, and we
have used it to design a miniaturized PhC-WG-side-
coupled PhC-MC device with an improved Q factor while
maintaining strong coupling. Frankly we have shown
that the transient optimization formulation makes us ca-
pable of controlling the counteracting relation between
high Q factor and strong coupling.

The optimization algorithm relies on a 2D FETD model
for TE-polarized waves that uses PMLs as absorbing
boundary conditions (ABCs), which has not been reported
before. To manage the material distribution of air and di-
electric we associate a continuously varying design vari-
able to each element in the design domain enclosing the
MC. We suggest that the in-plane Q factor can be im-
proved by maximizing the stored cavity energy in the de-
caying regime of the transient response. Manufacturable
designs are achieved by filtering techniques that control
the minimum length scale of air and dielectric simulta-
neously.

The design process is threefold. First, by trial and error
we alternate the radii of nearest neighboring holes to the
cavity to find a well-performing geometry. This serves as
an initial guess in the optimization of the isolated cavity,
and if the performance is improved, this is subsequently
used to start the optimization of the coupled device. We
have optimized the coupling to a monopole and a dipole
MC mode, and in both cases we managed to improve the
in-plane Q factors by 275% and 185%, respectively, com-
pared to the original design. To study the spectral perfor-
mance of the optimized designs we have derived an ana-
lytical expression for the transmission based on coupled-
mode (CM) theory. These agree very well with numerical
simulations.
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Abstract Time domain topology optimization is applied to
design pulse shaping filters. The objective function depends
on the pulse envelope, which is extracted by utilizing
the Hilbert transform. The gradients with respect to the
topology optimization variables are derived, and the opti-
mization methodology is demonstrated for pulse delaying
and pulse splitting. The formulation is applicable for non-
linear structures and signals consisting of broad range of
frequencies.
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1 Introduction

The focus in this article is on the topology optimization of
waveguides where the objective function depends on the
envelope of the output signal. Such optimized designs as
well as the methodology for obtaining them, can be utilized
in a wide range of physical areas—in control of electromag-
netic waves in optical waveguides and design of logical ele-
ments for photonic processors, in coupled opto-mechanical
and acoustic sensors, for sound and vibration isolation,
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inverse problems in seismology, biomedical imaging and
structural health monitoring, etc. The structures are obtained
by using alternating layers of different materials in 1D or by
distributing several materials in space for multidimensional
problems. Periodic structures possess filtering properties
and have been investigated by many authors using analyt-
ical, numerical and experimental methods (e.g. Brillouin
1953; Mead 1975; Kushwaha et al. 1993). Waves attenuate
along these structures within specific bands of frequencies
called stop bands or band gaps. The periodic structures act
as a filter for frequencies inside the band gap.

Simple filter designs (e.g. band-gaps) can be easily
obtained by utilizing analytical techniques, however the
design of more complicated filters, like pulse shaping or
pulse delaying devices require utilization of numerical tech-
niques such as topology optimization. Topology optimiza-
tion is an iterative optimization procedure, which produces
optimal material distribution. The design domain is split
into multiple cells and a design variable is assigned to each
of them. The design variables take value 0 if the cell is
empty, or 1 if the cell is filled with material. In order to
make the optimization problem solvable by using gradi-
ent based optimization techniques, the design variables are
allowed to vary continuously between 0 and 1. In each opti-
mization iteration the design variables are updated based
on fulfillment of prescribed constraints and minimization of
a given objective. Initially topology optimization has been
developed for mechanical systems (Bendsøe and Sigmund
2004) and later its field of applicability has been extended
to include applications in electromagnetics—antenna de-
sign and photonics (Sigmund and Jensen 2003; Jensen and
Sigmund 2004, 2011; Nomura et al. 2007).

Topology optimization has been applied to wave prop-
agation problems modeled in the frequency domain
(Sigmund and Jensen 2003; Jensen and Sigmund 2005)
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and in the time domain (Nomura et al. 2007; Dahl et al.
2008; Matzen et al. 2010). Time domain topology optimiza-
tion has been introduced relatively recently and the main
advantage compared to the frequency domain topology opti-
mization is lower computational cost for wave problems
consisting of broad range of frequencies. For non-linear
material behavior where the energy can be exchanged
between different frequency components, models in the fre-
quency domain can represent the system behavior approxi-
mately for weak interaction and stationary response (Jensen
2011). In contrast, time domain methods can model strongly
non-linear or active (time-controllable) materials without
any limitations.

Practical applications of the optimized wave guides and
filters require the utilization of signal generators and detec-
tors. The generation or the detection of short signals is an
unreliable process, e.g. see the discussion in Yang et al.
(2009), and in practical applications a signal is composed
of one or several modulated high frequency waves. In digi-
tal signal processing, the actual information is carried by the
signal envelope. A way to extract the envelope information
in topology optimization for single frequency modulated
wave is reported in Yang et al. (2009). Here a more robust
alternative based on the Hilbert transform (e.g. Cohen 1995)
is introduced and demonstrated for pulse shaping and delay-
ing devices. The Hilbert transform envelope extraction can
be utilized for a broader range of problems: waves with mul-
tiple frequencies (i.e. pulses) and non-linear wave guides
and filters.

2 Time domain topology optimization

The considered physical problem is wave propagation in a
wave guide. The model setup is shown in Fig. 1. Pulses are
propagating from left to right and the aim is to find material

distribution in the middle region, i.e. the design domain,
which minimizes given objective. The objective depends on
the pulse envelope. The envelope of the signal is obtained
by using the Hilbert transform as

s (t) =
√

u (t)2 + û (t)2 (1)

where u (t) is the signal, û (t) is the Hilbert transform and
s (t) is the signal envelope. The Hilbert transform is defined
in the time domain as convolution between the Hilbert trans-
former 1/(π t) and a function u(t). Examples of signals,
their Hilbert transforms and the envelopes are shown in
Fig. 2. The transformed signal is obtained from the orig-
inal one by using π/2 phase shift. For both examples the
envelope is smooth and slowly varying function. The enve-
lope extraction is applicable for signal centered around a
single frequency Fig. 2a, as well as for signal consisting of
a broad range of frequencies Fig. 2b. More details about
Hilbert transform can be found in most textbooks on signal
processing (e.g. Cohen 1995) and a short introduction can
be found in Appendix A.

2.1 Wave equation

The physical behavior of the system can be described by the
following scalar wave equation

∂

∂x

(
A

∂�

∂x

)
− B

∂2�

∂t2
= 0, x ∈ � (2)

where � is a scalar quantity which can represent:

1. u (x, t)—displacements for elastic wave propagation
2. p (x, t)—pressure for acoustic problems
3. e (x, t)—electric field in electromagnetics

ABC ABC

Input signal

Reflected signal

Design domain

Registered signal

Envelope of registered signal:  s(t)

Target envelope:  g(t)

Target nodeMaterial 1

Material 2

Fig. 1 Numerical model setup for the optimization experiments. Absorbing boundary condition (ABC) is applied in both ends of the modeling
domain. Incident signal is generated in the left boundary using the incident-scattered field formulation. The signal and its envelope are extracted
in the target node on the right side of the design domain
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Hilbert transform
Original signal

Envelope

a

b

Fig. 2 Pulse envelope obtained by using Hilbert transform

� (x, t) is a function of both the time t and the spatial
coordinate x ∈ �. The material parameters A and B are
equal to:

1. A = E (x) the Young’s modulus and B = ρ (x) the
mass density for linear elasticity

2. A = 1/ρ (x) the inverse of the mass density and
B = 1/κ (x) the inverse of the bulk modulus for linear
acoustics

3. A = 1/μ (x) the inverse of the material permeability
and B = ε (x) the permittivity in electromagnetics

In order to model an infinite wave guide, first order
absorbing boundary conditions are applied at both ends of
the modeling domain. The wave field can be split in two
parts—scattered and incident field.

� = �sc + � inc (3)

The boundary condition at the right end is given as

∂�sc

∂x
+ c

∂�sc

∂t
= 0 (4)

and at the left end can be written as

∂�

∂x
+ c

∂�

∂t
= ∂� inc

∂x
+ c

∂� inc

∂t
(5)

The value of � inc at the left end of the modeling domain
is known a priori. The coefficient c = √

AB is the so-
called surface admittance. For elastic wave propagation
the two boundary conditions (4) and (5) can be modeled
as two dash-pots with damping coefficient c = √

Eρ. It
should be pointed out that for high dimensional problems
in 2D and 3D the above boundary condition cannot absorb
the outgoing waves. In these cases an alternative such as
perfectly matched layers (PML) (e.g. Jin and Riley 2007;
Matzen et al. 2010) can be utilized for avoid the boundary
reflections.

2.2 Discretization

The computational domain is discretized into finite ele-
ments. A design variable ρi ∈ [0, 1] is associated with
each element located in the design domain (see Fig. 1).
By applying the standard Galerkin discretization procedure
(Zienkiewicz et al. 2005), the discrete form of equations (2),
(4) and (5) becomes

M (ρ) ü + C (ρ) u̇ + K (ρ) u = f (t) , t ∈ [0, T ] (6)

where u is the nodal displacement vector, ˙(·) and ¨(·) denote
first and second derivative with respect to time, f (t) is a vec-
tor with the system input. In linear elasticity M (ρ) , C (ρ)

and K (ρ) are the standard mass, damping and stiffness
matrices, respectively. The damping matrix is populated
only with entries coming from the boundary conditions,
since the wave guide is considered to be lossless. The vec-
tor ρ consists of all design variables associated with the
elements in the design domain.

The material properties for each design element are
obtained by using the following linear interpolation1

Ae = (1 − ρe) AI + ρe AI I

Be = (1 − ρe) B I + ρe B I I (7)

where
(

AI , B I
)

and
(

AI I , B I I
)

represent the material prop-
erties for material I and II, respectively, and ρe is the design
variable associated with element e. The above interpolation
scheme makes it possible to apply a gradient based opti-
mization algorithm. The main drawback is the appearance
of intermediate (gray) values in the final design (between 0
and 1), which are difficult to interpret. Several techniques
have been developed to ensure black and white designs
(Bendsøe and Sigmund 2004; Yang et al. 2009; Wang et al.
2011). Obtaining length scale and crisp black and white
designs for wave problems is a challenging problem deserv-
ing a more detailed study, which is outside of the scope of
this article.

2.3 Optimization problem

The focus in this section is to define a pulse shaping and
pulse delaying strategy based on a signal envelope extrac-
tion. The envelope s (t) in the time domain is defined by

1The interpolation scheme corresponds to the Solid Isotropic Material
with Penalization (SIMP) scheme, where the penalization parameter
is set to 1. SIMP with p ≥ 1 is effective for suppressing interme-
diate(gray) values in the design, in the cases when an active volume
constraint is introduced in the optimization problem.
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Fig. 3 Pulses with a group delay 0 and β. The parameter β is
introduced as an design variable. The g∗-parameter controls the tem-
poral spreading of the output pulse envelope. The α-parameter mainly
specify the transmitted energy, i.e. the amplitude decrease

(1). The aim of the optimization is to obtain a signal at
the registration point (Fig. 1), with an envelope following
a prescribed function g (t). The objective is defined as

f =
∫ T

0

[
s (t)2 − g (t)2]2

dt∫ T
0 g (t)4 dt

(8)

The term s (t) is squared in the above equation in order
to avoid special handling of the case when u (t) = 0 and
û (t) = 0. The objective is normalized with respect to the
pulse area and obtained results are reported in percentages.
The pulse shaping optimization problem can be written in
the following form

min
ρ

: f (ρ)

s.t. : M (ρ) ü + C (ρ) u̇ + K (ρ) u = f (t) , t ∈ [0, T ]

0 ≤ ρ ≤ 1 (9)

where the objective is given by (8). Due to the dispersive
properties of the optimized structure, the different fre-
quency components of a pulse traveling through the device
arrive at the registration point shifted with respect to each
other. Therefore, an initially Gaussian shaped pulse changes
its shape and amplitude through the optimization domain
(Fig. 3). The distortion and the amplitude decrease become
significant when the objective is to delay the pulse. In order
to account for these changes the pulse delay optimization
problem is defined as

min
ρ

: −β

s.t. : M (ρ) ü + C (ρ) u̇ + K (ρ) u = f (t) , t ∈ [0, T ]

g1 (ρ, β) ≤ 0

0 ≤ ρ ≤ 1 (10)

where β is the pulse delay and the constraint function
g1 (ρ, β) is given as follows

g1 (ρ, β) =
∫ T

0

[
s (t)2 − αg (t − β)2]2

dt

g∗ ∫ T
0 α2g (t)4 dt

− 1 (11)

The parameter α controls the amplitude scaling and the
parameter g∗ controls mainly the envelope distortion
(spreading). The meaning of the parameters is shown in
Fig. 3.

The first formulation can be used to find an optimized
structure which delays the input pulse with a prescribed
fixed value by minimizing the difference between the output
signal and prescribed delayed signal. The second formula-
tion tries to find the maximum delay so that the constraint
(11) is fulfilled.

2.4 Sensitivity analysis

Sensitivities of the objective and the constraints with respect
to all design variables are needed in order to solve the opti-
mization problems. For large numbers of design variables
the adjoint sensitivity approach offers a computationally
effective alternative to direct sensitivity analysis (Tortorelli
and Michaleris 1994; Kang et al. 2006). The objective
or the constraint function is augmented with product of
Lagrangian multiplier vector λ (t) and the residual of the
discretized state problem

ψ =
∫ T

0
G

(
û, u, ρ, t

) + λT (t) r (u, u̇, ü, ρ, t) dt (12)

where

r (u, u̇, ü, ρ) = f − (M (ρ) ü + C (ρ) u̇ + K (ρ) u) (13)

The function G
(
û, u, ρ, t

)
in (12) represents the integrand

in the original objective or constraint function. For zero
residual the augmented function coincides with the origi-
nal one. Derivative of the objective function is obtained by
differentiating (12) with respect to the design variables

∂ψ

∂ρe
=

∫ T

0

∂G

∂u
∂u
∂ρe

+ ∂G

∂û
∂û
∂ρe

+ ∂G

∂ρe
+ ∂λT

∂ρe
r

+ λT
[

∂r
∂u

∂u
∂ρe

+ ∂r
∂u̇

∂u̇
∂ρe

+ ∂r
∂ü

∂ü
∂ρe

+ ∂r
∂ρe

]
dt (14)

Integrating by parts and rearranging the above equation
yields

∂ψ

∂ρe
=

[
−λTC

∂u
∂ρe

− λTM
∂u̇
∂ρe

+ λ̇
T

M
∂u
∂ρe

]T

0

−
∫ T

0

[
λ̈
T

M
∂u

∂ρe
− λ̇

T
C

∂u
∂ρe

+ λTK
∂u

∂ρe

]
dt
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+
∫ T

0

[
∂G

∂u
∂u
∂ρe

+ ∂G

∂û
∂û
∂ρe

]
dt

+
∫ T

0

∂G

∂ρe
+λT

[
−∂M

∂ρe
ü− ∂C

∂ρe
u̇ − ∂K

∂ρe
u + ∂ f

∂ρe

]
dt

(15)

The above equation holds for arbitrary λ, therefore the
Lagrangian multipliers can be chosen to eliminate the sec-
ond and the third integral in (15). Using the identity

∫ T

0

∂G

∂û
∂û
∂ρe

dt =
∫ T

0
− ∂̂G

∂û
∂u
∂ρe

dt (16)

and collecting all terms with ∂u
∂ρe

, the following adjoint
equation is obtained from the above requirement

λ̈
T

M − λ̇
T

C + λTK = ∂G

∂u
− ∂̂G

∂û
(17)

The term ∂̂G
∂û denotes the Hilbert transform of ∂G

∂û . The eval-
uation of the right hand side of (17) is performed in several
steps as follows:

1. the Hilbert transform û is obtained from the response u
2. the envelope s (t) is computed using (1)
3. the derivatives ∂G

∂û and ∂G
∂u are computed as functions of

time
4. the Hilbert transform ∂̂G

∂û is computed using ∂G
∂û evalu-

ated in the previous step

The proof of the identity given by (16) is presented in
Appendix B.

The first term in (15) is evaluated at time t = 0 and t =
T . As the initial velocities and displacements do not depend
on the material distribution, the term vanishes at t = 0. To
eliminate the remaining part of the term at time t = T , the
terminal conditions for the adjoint equation (17) are set to be

λ (T ) = 0, λ̇ (T ) = 0 (18)

Utilizing the solution of (17) and (18), the sensitivity ex-
pression reduces to

∂ψ

∂ρe
=

∫ T

0

∂G

∂ρe
+ λT

[
−∂M

∂ρe
ü − ∂C

∂ρe
u̇ − ∂K

∂ρe
u + ∂ f

∂ρe

]
dt

(19)

which consists of only explicit derivatives with respect
to the design variables. They are computed based on the
numerical discretization and the material interpolation. Usu-
ally the first term in the integral ∂G

∂ρe
is zero.

The terminal value problem (17) can be converted to ini-
tial value problem by substituting t with t = T − τ , where
τ ∈ [0, T ]. Setting λ̄ (τ ) = λ (T − τ), (17) becomes

M ¨̄λ + C ˙̄λ + Kλ̄ = ∂G

∂u
− ∂̂G

∂û
(20)

with initial conditions λ̄ (0) = 0 and ˙̄λ (0) = 0.
The adjoint problem in this form is identical to the state

problem. The only difference is the input to the differen-
tial equation. Therefore the same solver used for obtaining
the state problem solution can be utilized for obtaining the
solution of the adjoint equation.

The sensitivity of g1 (ρ, β) with respect to β is com-
puted as

∂g1

∂β
=

∫ T
0 −4

[
s (t)2 − αg (t − β)2] αg (t − β)

∂g(t−β)
∂β

dt

g∗ ∫ T
0 α2g (t)4 dt

(21)

2.5 Time integration

As no analytical solution to (6) and (20) exists in the general
case, the solution is obtained numerically at discrete time
points. The choice of time integration scheme is extremely
important for topology optimization, as the integration has
to be performed twice after each update of the design vari-
ables. Explicit schemes with lumped mass matrices are
preferred over implicit ones, due to their lower computa-
tional cost. In each topology optimization iteration step, first
the state response is computed and after that the adjoint
sensitivities are computed utilizing the state solution for
evaluating the adjoint input. The adjoint response is com-
puted at the same time points as for the state solution.
During the integration process the value of the integrand in
(19) is computed and its contribution is added to the sensi-
tivities. The evaluation of the integrand in (19) is based on
the solution for λ and u at the current time step. In order
to implement the above scheme, it is necessary to store the
state response u (t).

The time derivatives u̇ (t) and ü (t) are computed based
on finite difference scheme. At the nth time step they are
given as

u̇n = un+1 − un−1

2t
(22)

ün = un+1 − 2un + un−1

t2
(23)
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where t = tn+1 − tn . Inserting the above expressions in
(6) and rearranging the term gives

(
1

t2
M + 1

2t
C

)
un+1 = fn −

(
2

t2
M + K

)
un

−
(

1

t2
M− 1

2t
C
)

un−1 (24)

where fn is the system input at time tn . Equation (24) pro-
vides the solution at time tn+1, based on the system response
at time steps tn and tn−1. The integration procedure starts
with initial conditions u0 = 0 and u−1 = 0. For the sensi-
tivity analysis the second time derivative of the response is
computed as

ü0 = M−1 f0 (25)

The time step is chosen according to Courant-Friedrichs-
Lewy (CFL) condition to ensure stable integration, i.e. t ≤
tc = x/c where x is the spatial step and c is the wave
speed.

In (24) it is desirable to have diagonal mass M and damp-
ing C matrices in order to avoid the solution of a linear
system, which will add significant computational cost to
the integration process. Various lumping techniques have
been presented in the literature. Among them spectral finite
element discretization leads to fully diagonal mass matrix
for nodal based elements (Cohen 2002; Peng et al. 2009).
For acoustic problems the employment of modified central
scheme (Yue and Guddati 2005) results in diagonal mass
matrix and fourth order dispersion error. In electromagnetic
problems, application of the trapezoidal integration rule
to vector-based elements results in diagonal mass matrix
without compromising the accuracy (Jin and Riley 2007).

2.6 Implementation details

The time domain optimization process consists of the fol-
lowing steps

1. Integration of the state response using (24).
2. Evaluating the objective and the constraint functions

using the trapezoidal numerical integration
3. Integration of the adjoint response using (24) with

the forcing term evaluated using the state response
obtained in step 1. At each time step the integrand
in (19) is evaluated and the contribution to the sen-
sitivities is added by using the trapezoidal integration
rule.

4. Update the design variables ρ using optimizer (MMA)

The Method of Moving Asymptotes (MMA) (Svanberg
1987) is utilized for solving the optimization problem. The

optimization iteration is stopped when the infinite norm of
the design vector increment is smaller than 10−3.

A major challenge for the proposed method is the storage
of the solution for the state problem, especially for larger
structures and long simulation times. In order to attack
large problems the state solution is stored in selected time
points. For computing the adjoint solution the state problem
solution is recomputed between each of the selected time
points. Using such scheme decreases the memory require-
ment by several orders of magnitude. This method, however
increases the computational cost by adding one additional
simulation of the state equation.

3 Numerical experiments

Two numerical experiments, which correspond to the two
optimization problems defined in Section 2.3, are presented
in this section. The first numerical experiment is pulse
delay, where the aim is to delay a pulse as much as pos-
sible and at the same time restricting the allowable envelope
distortion. The objective for the first numerical experi-
ment is given by (10). A well known example of such an
experiment is the slow light-matter interaction technology
which is achieved by utilizing pulse delaying structures.
It might find high applicability in the future optical net-
works and information processing systems, e.g. to achieve
low power consumption and efficient optical buffer devices
(Baba 2008). The method presented here works equivalently
for other physical problems as well. Among other poten-
tial applications are ultrasonic (Arenberg 1948) and surface
acoustic wave (Reindl et al. 2001) (SAW) delay lines.

The second numerical experiment is pulse shaping exam-
ple where the aim is the pulse recorded in the registration
point to follow predefined envelope. Optimized designs pro-
viding such features can find utilization in data decoding
devices and optical networks. In addition the methodology
can be utilized for solving inverse problems in seismology
or medical applications.

3.1 Pulse delay

Slow light can be realized in structures with composite
dielectric media (Joannopoulos et al. 2008). Such compos-
ite structures are realized with permeability μ equal to the
vacuum permeability, i.e. μr = 1, and the only material
parameter left for interpolation is the permittivity. The inter-
polation is done between air and dielectric material, i.e.
AI = AI I = μr and B I = ε0 and B I I = εrε0.

The structure is excited by an incident plane-wave
Gaussian pulse centered around t0

� inc (x, t) = � inc
0 sin (kx − ωc (t − t0)) e

− (t−t0−x/νp)2

T 2
0 (26)
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where � inc
0 is the amplitude of the pulse, k = ωc/νp is the

wave number, ωc is denoting the center angular frequency,
νp = c/n is the phase velocity, n = √

μrεr is the refractive
index, and c is the speed of light in vacuum. T0 controls the
width of the pulse.

The presented examples in Figs. 4 and 5 show the
influence of the pulse bandwidth, the allowable envelope
dispersion and the pulse amplitude decrease on the slow-
down effect (Lenz et al. 2001; Kashyap 2010). It should
be emphasized that the results serve to illustrate that the
optimization formulation is able to represents the expected
physical effects, rather than providing new results with
respect to slow light generation. The physical parameters
used in the presented study are shown in Table 1. The core
material is silicon dioxide (SiO2) with effective refractive
index n = 1.446.

The results from the numerical experiments are shown in
Figs. 4 and 5. The initial material layout consists of homoge-
neous core material. The envelope of the transmitted pulse
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Fig. 4 Envelope of the signal intensity (bottom) obtained using the
optimized structure (top) for T0 = 0.08ps. The settings for the allow-
able temporal spreading and the pulse amplitude are as follows: a: g∗

I ,
and αI with a group delay β = 0.05ps. b: g∗

II, and αI with β = 0.11ps.
c: g∗

I , and αII with β = 0.06ps

a

b

0 0.5 1 1.5
0

0.5

1

c

Time (ps)

In
te

ns
ity

 (
a.

u.
)

 

g(t)

g(t −β )
u(t)

Fig. 5 Envelope of the signal intensity (bottom) obtained using the
optimized structure (top) with T0 = 0.16ps and the simulation time
T = 2.5ps. The settings for the allowable temporal spreading and the
pulse amplitude are as follows: a: g∗

I , and αI with a group delay β =
0.28ps. b: g∗

II, and αI with β = 0.39ps. c: g∗
I , and αII with β = 0.27ps

is measured at location 0.9Ls . The spatial discretization
provides 20 uniformly spaced elements per wave length
in the dielectric material. To investigate the significance of
the allowable envelope distortion to the slow down effect,
the numerical experiment start with value of g∗ equal to
zero, which is increased gradually to g∗ = 0.045. Compar-
ison of the results between Fig. 4a and b, and the results
in Fig. 5a and b, indicates a slow-down effect enhance-
ment by allowing larger envelope spreading. By increasing
g∗ = 0.015 to g∗ = 0.045 the light is slowed down from
0.05ps to 0.11ps and 0.28 → 0.39ps. Broadening of the
delayed pulse is inevitable in achieving slow light for lin-
ear material (Lenz et al. 2001). Comparison of Fig. 4a and c
shows how the increase of the parameter α influence the
delay. Increasing α from 0.7 to 0.8 has minor effect on the
delay (0.05 → 0.06ps and 0.27 → 0.28ps for Fig. 5).
The influence of the pulse bandwidth and the delay of the
transmitted pulse can be seen by comparing Figs. 4 and 5.
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Table 1 List of physical and discretization parameters used and their
values

Parameters Values

Structure length, Ls 0.1mm

Design domain length, LFBG 0.6Ls

Center frequency, fc 193.55 THz

Relative permittivity, εr 2.09

Simulation time, T 1.2 ps

Time step, t t = tc
Number of elements, M 2,000

Pulse delay optimization: I© II©
Pulse width, T0 0.08 ps 0.16 ps

Amplitude decrease, α 0.7 0.8

Temporal spreading, g∗ 0.015 0.045

Increasing T0 = 0.08ps to T0 = 0.16ps leads to slow-down
(0.11 → 0.39ps).

3.2 Pulse shaping

The objective in the numerical experiments presented in this
section is to convert an incident Gaussian pulse into two
subsequent Gaussian pulses after passing though the design
domain in Fig. 1. The length of the entire modeling area (Ls)
is 25 μm and the length of the design domain is 0.6Ls . The
modeling area is discretized with 3,000 uniformly spaced
elements. The incident pulse prescribed by (26) has the fol-
lowing parameters: t0 = 0, ωc = 400π THz, T0 = 0.02 ps
and � inc

0 = 1. The target envelope is prescribed by two
Gaussian envelopes with T0 = 0.02 ps and �0 = 0.5 shifted
0.09 ps from each other.

Two materials with different electric permittivities are
used in the design domain: air (εr = 1) and dielectric
with arbitrary (but prescribed initially) permittivity varying
from εr = 1.5 to εr = 16. Initially, the design domain
includes randomly distributed air stripes, so that the prob-
ability of each element to be made of air is 1%. The delay
of the entire target envelope is defined for each series of
experiments with different dielectric materials separately. It
coincides with the time when the maximum of the enve-
lope of the registered pulse passes the target node for the
non-optimized (initial) distribution of the material inside
the modeling domain (e.g. the delay t0 = 0.092 ps for
the experiments with dielectric material having permittiv-
ity εr = 1.5 and t0 = 0.301 ps for the experiments with
dielectric material having permittivity εr = 16).

Twelve series of experiments with different permittivities
of the dielectric material are performed. Sixteen numerical
simulations are performed in each of these series with ran-
dom initial distribution of air inside the design domain (192

numerical simulations in total). Results of the experiments
are shown in Fig. 6. The objective function (and therefore
the conformance of the envelope of the signal to the target
envelope) quickly improves for dielectric materials having
higher permittivities. This behavior can be associated with
two factors:

– The effective length of the design domain is higher for
materials with high permittivity as the wavelength of
the signal passing through these materials is lower. This
makes it possible for the design domain to introduce
more substantial modifications into the incident signal.

– Higher refractive index of the dielectric materials makes
the design domain more flexible in terms of altering the
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Fig. 6 a. Normalized objective vs. permittivity of the dielectric
material used in the entire modeling domain for the pulse shaping
experiment. Error bars indicate the standard deviation resulting from
16 independent numerical simulations with random initial distribution
of air inside the design domain. b, c. Envelope of the signal intensity
(top) obtained using the optimized structure with the lowest objective
(bottom) for the dielectric materials with εr = 1.5 (b) and εr = 16 (c)
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original signal due to the wider spectrum of material
properties.

In all presented experiments the optimization procedure
results in intermediate materials inside the design domain
which can cause problems during manufacturing process.
Various techniques exist for enforcing black and white
design, including penalization of the objective function
(Dahl et al. 2008; Yang et al. 2009), implicit morphological
filters imposed on the design variables (Sigmund 2007) and
robust design (Sigmund 2009; Wang et al. 2011). However,
by forcing the structure to have either air or dielectric but
not a linear combination of both, limits the set of possible
solution and in this case the improvement of the objective
for the dielectrics with higher permittivities might only be
expected from longer design domain.

A problem which can be clearly seen on the presented
structures is the lack of length scale in the designs. The opti-
mized result consists of oscillating design with oscillations
comparable with the elements dimensions. Such solutions
are difficult for realization in practice and yield questionable
numerical accuracy. In order to avoid such fast oscillations
in the optimized design, the optimization problem has to be
regularized. The regularization here is achieved by applying
a density filter (Bruns and Tortorelli 2001). The design field
in the state equations, the objective and the constraint equa-
tions is replaced with the filtered design field. The filtered
density values ρ̃ for each element are computed as follows

ρ̃e =
∑

i∈Be
wiρi∑

i∈Be
wi

(27)

where ρ̃e is the filtered density for element e, wi is a
weighting factor which depends on the distance between the
centers of element e and element i and is computed as

wi = R − |xe − xi | (28)

for |xe − xi | ≤ R. For all other elements the weight is zero.
Be is the index set of all elements located in the filter support
domain, i.e. all elements for which wi 	= 0.

The objective, the constraint functions and the state
equations depend on the filtered density. The sensitivities
are computed using the procedure in Section 2.4 and by
applying the chain rule

∂ f

∂ρe
= ∂ f

∂ρ̃e

∂ρ̃e

∂ρe
(29)

Applying density filtering restricts the solution space,
and the performance of the optimized structure decreases
for large filter radius. This can be observed in Fig. 7a. For
small filter diameter the objective is on the same order as
for the unfiltered design. However, for filter diameter larger
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Fig. 7 a. Normalized objective vs. filter size (normalized by the cen-
tral wavelength of the signal) for the pulse shaping experiment. Error
bars indicate the standard deviation resulting from 12 independent
numerical simulations with random initial distribution of air inside the
design domain. b. Design domain obtained with the filter size 40% of
the wavelength of the signal

than 0.4 − 0.5d/λ, where λ is the wave length, the objective
quickly deteriorates. The design for d/λ = 0.4 is pre-
sented at Fig. 7b. It consists of gray areas, which create also
difficulties for practical realizations of the optimized struc-
ture. As mentioned earlier, obtaining crisp black and white
design is an important subject which will be discussed in
details in following articles.

4 Conclusions

The application of time domain topology optimization for
design of pulse shaping devices is demonstrated. The infor-
mation transferred through the optimized wave guide is
considered to be represented by the pulse envelope. Such
representation improves the robustness of the device with
respect to signal generation and registration. The pulse
envelope is extracted by using the Hilbert transform. The
derivation of the sensitivities when the objective depends
on the pulse envelope is demonstrated, and the optimiza-
tion process has been demonstrated with several designs
for pulse delaying and pulse splitting devices. The pre-
sented approach is applicable to signals consisting of broad
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range of frequencies. Therefore the optimization methodol-
ogy opens the possibility for applying time domain topology
optimization in non-linear devices such as photonic diodes,
transistors and logical elements. The presented algorithm
is extendable to 2D and 3D space and it is applicable in a
broad range of engineering areas, including acoustics and
linear elasticity.
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Appendix A: Hilbert transform

Hilbert transform can be found in many textbooks on sig-
nal processing (e.g. Cohen 1995). It plays an important role
in this article and, therefore, a short introduction and dis-
cussion on the numerical implementation are included for
completeness. The Hilbert transform f̂ (t) for a function
f (t) is defined as

f̂ (t) = 1

π
P

∫ ∞

−∞
f (t)

t − τ
dτ (30)

when the integral exists. Usually, it is not possible to com-
pute the integral as an ordinary improper integral due to the
pole at τ = t . In such cases the integral is computed as
the Cauchy principal value. P in (30) stands for Cauchy
principal value. The Hilbert transform can be easily com-
puted numerically by using Fourier transform. If F (ω) is
the Fourier transform of f (t), the Fourier transform of f̂ (t)
is computed as

F̂ (ω) = −i sgn (ω) F (ω) (31)

where i = √−1, and sgn is the signum function defined as
follows

sgn (ω) =
⎧
⎨
⎩

1 for ω ≥ 0
0 for ω = 0

−1 for ω ≤ 0
(32)

The Hilbert transform f̂ (t) can be computed by taking the
inverse Fourier transform of (31). In practical application
the Fourier transform and the inverse Fourier transform are
replaced with the Fast Fourier Transform and its inverse.

Appendix B: Proof of the identity (16)

The aim of this section is to demonstrate the derivation
of the identity given by (16). In order to simplify the
notations the derivative ∂G/∂ û is substituted with b (t)

∂G

∂ û

∂ û

∂ρe
= b (t)

∂ û

∂ρe
(33)

where b (t) can be computed from the time history of the
response u (t) and its Hilbert transform û (t). Assuming
that the system response and the system input are zero out-
side the time interval [0, T ], the following integrals are
equivalent

∫ T

0
b (t)

∂ û

∂ρe
dt =

∫ ∞

−∞
b (t)

∂ û

∂ρe
dt (34)

The Hilbert transform ∂ û/∂ρe of ∂u/∂ρe is given as

∂ û

∂ρe
= 1

π
P

∫ ∞

−∞
1

t − τ

∂u

∂ρe
dτ (35)

Introducing (35) into (34) and after some algebra the fol-
lowing equality is obtained

∫ ∞

−∞
b (t)

∂ û

∂ρe
dt =

∫ ∞

−∞
b (t)

1

π
P

∫ ∞

−∞
1

t − τ

∂u

∂ρe
dτdt

=
∫ ∞

−∞
∂u

∂ρe

(
−1

π
P

∫ ∞

−∞
b (t)

τ − t
dt

)
dτ (36)

=
∫ ∞

−∞
−b̂ (τ )

∂u

∂ρe
dτ =

∫ T

0
−b̂ (t)

∂u

∂ρe
dt

(37)

which concludes the derivation of the identity

∫ T

0

∂G

∂û
∂û
∂ρr

dt =
∫ T

0
− ∂̂G

∂û
∂u
∂ρr

dt (38)
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An efficient finite element time-domain formulation for the elastic
second-order wave equation: A non-split complex frequency

shifted convolutional PML

René Matzen∗,†

Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

SUMMARY

The perfectly matched layer (PML) technique has demonstrated very high efficiency as absorbing boundary
condition for the elastic wave equation recast as a first-order system in velocity and stress in attenuating
non-grazing bulk and surface waves. This paper develops a novel convolutional PML formulation based on
the second-order wave equation with displacements as the only unknowns to annihilate spurious reflections
from near-grazing waves. The derived variational form allows for the use of e.g. finite element and the
spectral element methods as spatial discretization schemes. A recursive convolution update scheme of
second-order accuracy is employed such that highly stable, effective time integration with the Newmark-
beta (implicit and explicit with mass lumping) method is achieved. The implementation requires minor
modifications of existing displacement-based finite element software, and the stability and efficiency of
the proposed formulation is verified by relevant two-dimensional benchmarks that accommodate bulk and
surface waves. Copyright � 2011 John Wiley & Sons, Ltd.
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KEY WORDS: perfectly matched layers; absorbing boundary conditions; elastic wave equation; finite
element time-domain discretization; implicit/explicit time integration

1. INTRODUCTION

Solving open-region elastodynamic problems implies that the infinite region exterior to the
radiating/scattering object has to be truncated with some type of artificial boundary such that
the computational domain becomes limited. Hence, a boundary condition that absorbs elastic
waves leaving the computational domain independent of direction and frequency needs to be
introduced. Such a condition serves, as far as possible, as a transparent boundary that should
yield perfect transmission of the scattered/radiated field and thereby minimize the non-physical
reflections from the boundary. During the last 35 years, several absorbing boundary condition
(ABC) techniques have been developed in the endeavor to complete this task [1–9]. Formulations
based on non-local conditions (i.e. an exact representation of the infinite medium) are difficult
to implement and cannot manage arbitrary material heterogeneity, whereas their local peers only
exhibit good performance under tailored circumstances (frequency dependent, specific angles of
incidence).
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In 1994, Berenger introduced the concept of transparent perfectly matched interface to elec-
tromagnetic (EM) waves [10]. It separates two half-spaces, one of which is dispersive, i.e. lossy,
and is known as the perfectly matched layer (PML). By construction, the PML is a local ABC
and renders the interface reflection-less in the continuous case while outwardly propagating waves
are attenuated exponentially independent of frequency, angle of incidence and polarization. The
formulation was based on a field-splitting procedure recasting the governing equation in the PML
into a non-Maxwellian form as means to avoid convolution operations in the time-domain. Despite
the introduction of spurious reflections upon a finite-difference time-domain (FDTD) discretization,
it reveals remarkable absorptive and stable late-time capabilities redeeming the additional costs
associated with doubling the number of unknowns as a result of the field-splitting.

After its introduction, the PML concept has elegantly been generalized to become a superior ABC
technique by interpreting the absorbing layer as complex coordinate stretched [11] or artificially
anisotropic [12]. The latter maintains the original Maxwellian form of the governing equation,
whereby the PML can be readily extended to problems involving irregular geometries, as e.g.
encountered by finite/spectral element (FE/SE) methods [13]. Nevertheless, both interpretations
have facilitated a straightforward adoption of the PML concept to other physical wave propagation
problems [14, 15].

The first real applications of PMLs to elastic waves were based on the split-field, velocity–stress
formulation [16–19], later extended to cases involving anisotropic media [20]. To obtain a unified
formulation instead, a non-splitting velocity/displacement–stress approach has been suggested, in
which the expensive temporal convolution operations, consequently emerging, are resolved by an
effective recursive update strategy [21]. This is also known as the convolutional PML (C-PML) and
includes the option for complex frequency shifted (CFS) [22] coordinate stretching that improves
the behavior of the discrete PML for near-grazing waves [23–29]. In the aforementioned studies
the spatial operators are approximated by finite differences (FDs). Similarly, the general trend in an
FE/SE time-domain framework involves split-field [30–32] and non-split [33] PML formulations
typically ensuing in a mixed scheme with velocity/displacement and stresses as unknowns to
avoid temporal convolution operations. However, when using implicit time marching to circumvent
the Courant–Friedrichs–Lewy (CFL) constraint between the time step and the smallest element
sizes in explicit schemes [34] for unstructured meshes, the mixed formulation based on an FE
discretization could lead to an increase in computational costs. This is due to system matrices
with extra non-zero entries (and broken symmetries) implying a growth in storage and the number
of flops to be performed at each time step, since, apart from displacements, stresses additionally
become unknowns (see e.g. [33]). Furthermore, since existing software for FE modeling of solid
mechanics and elasticity problems predominantly solves for displacements only there is a need for
a PML formulation for the elastic second-order wave equation. The proposed method supports a
straightforward switch to explicit time integration with mass lumping which is of high relevance
in very large three-dimensional (3D) elastodynamic problems.

To the author’s knowledge five attempts to solve the above challenge have been reported. In
[35] Komatitisch and Tromp manage to eliminate the stress terms; although at the expense of
splitting the displacement field into four components. The resulting discrete equations are either
third-order, or second-order coupled with a first-order equation. An FE discretized second-order
wave equation for the displacement field is almost established in [36, 37]. However, the formulation
requires computation of the strains that are obtained by tricky coordinate transformations of the
displacement gradients. Even though the rather involved implicit time integration in [36] has been
replaced by an explicit scheme in [37] to enhance computational efficiency the complexity persists.
Recent work by Martin et al. [38] demonstrates a highly stable hybrid technique rendering SE
discretized governing equations for the interior non-split in displacement-only, that couples to a
mixed velocity–stress form for the PML previously developed in [39]. Another recent work in
[40] presents a C-PML model for the second-order wave equation that contains auxiliary memory
variables to avoid the convolution operators. However in reality, the scheme is mixed since each
memory variable is governed by an additional equation of first-order in which the stresses are
needed. The common outcome of these formulations is rather complex implementations that
necessitate fundamental re-structuring of existing FE codes. It appears that a non-split variational

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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Figure 1. Computational domain truncated by PML layer. A penetrating wave with
angle � is depicted. For the complex frequency shifted convolutional PML s ′ =��1 and

s ′′ =�/(�+ j�) is a imaginary number, where ��0 and ��0.

formulation of the C-PML for the elastic second-order wave equation with displacement as the
single unknown has yet to be suggested.

1.1. Complex frequency shifted coordinate stretching

The key concept of the PML interpretation that relies on complex frequency coordinate stretching
is a coordinate transformation in which the spatial variables are mapped independently onto the
complex space by a complex stretching function. In particular, this mapping replaces propagating
waves with exponentially decaying waves as soon as the waves passes the PML interface located
at x1= x01 along the spatial direction x1, see Figure 1. The attenuation occurs over the PML layer
width d1, and continues after the remainder of the wave has been reflected from the PML boundary
at x1= x01 +d1.

In the two-dimensional (2D) PML region �PML, the original spatial coordinate variables xi
(i =1,2) are replaced in each distinct spatial direction by a stretched coordinate, that is defined as
[11, 41]

x ′
i =
∫ xi

0
si (x̃i ,�)dx̃i , i =1,2 (1)

The apostrophe ( )′ indicates the stretched version of the subtended function, � is the angular
frequency, and si (i =1,2) are the CFS stretched-coordinate metrics proposed by Kuzuoglu and
Mittra [22]

si (xi ,�)=�i (xi )+ �i (xi )

�i (xi )+ j�
, i =1,2 (2)

where ‘j’ denotes the imaginary unit. In Equation (2) �i�0 is a coordinate-wise real func-
tion that controls the attenuation of the propagating waves. The coordinate-wise real functions
�i�1 and �i�0 serve to enhance attenuation of evanescent and near-grazing waves. In the
stretched coordinate metrics the spatial variation of the planar wave amplitude that propagate

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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ω α ω α(a) (b)

Figure 2. Real and imaginary part of the decay factor (�2− j�1�)/(�2+�21) as a function of �/�1: (a)
the real part resembles the behavior of a Butterworth filter, where high frequency propagating wave
components are subject to attenuation, while at low frequencies the propagating waves remain unchanged.

Conversely, (b) the imaginary part indicates evanescent wave attenuation at low frequencies.

along x1, i.e. e−jk1x1 , modifies to [39, 42, 43]

e−jk1x′
1 =e−jk1

∫
�1dx̃1e

− k1
�

�2−j�1�

�2+�21

∫
�1dx̃1

(3)

where we, for simplicity, have assumed that �1 is constant. Since propagating waves at grazing
incidence become evanescent in the direction perpendicular to the boundary layer, strong reflections
will inevitably occur from the standard PML (�1=1 and �1=0), as this is only designed to
effectively absorb outward propagating waves. However, according to Equation (3) �1 serves as
a scaling function in attenuating evanescent waves. In addition to that, if we plot the real and
imaginary part of (�2− j�1�)/(�2+�21) as a function of �/�1 we realize (see Figure 2(b)) that
shifting the pole of stretching onto the imaginary axis by �1 causes attenuation of evanescent waves
at low frequencies. Simultaneously (see Figure 2(a)), propagating waves will be attenuated for high
frequencies and, according to Figure 2(b), subject to maximum phase shift at �=�1. Essentially,
the complex frequency shift implements a Butterworth filter [39, 44], and it has been successfully
implemented using mixed non-split FD and [23, 25–29] and split-field FE/SE formulations [38, 39].

The aim of this paper is to combine the CFS-PML model in Equation (2) and, for simplicity,
2D wave propagation in a linear elastic medium occupying an open domain �=�S∪�PML⊂R2

in a time interval I= [0,T ] governed by

(Eq. of motion) ∇ ·r+�p= �ü (4a)

(Constitutive law) r=C : e (4b)

(Strain–displ.) e= 1
2 [∇u+(∇u)T] (4c)

such that we obtain an FE discretized second-order wave equation with displacements as the only
unknowns. In Equation (4), u= (u1,u2)T and p= (p1, p2)T are the displacement and body force
vectors, respectively, � is the mass density, r, e, and C are stress, strain, and constitutive tensors,
respectively. ∇ = (�/�x1,�/�x2)T is the divergence operator, and (̈ )=�2/�t2. The formulation
presented in this paper implies minor modifications to the original second-order wave equation, in
which the convolution terms act as (internal) forces with the displacements from the previous time
step appearing as the driving source. The proposed method facilitates a simple switch between
explicit and implicit time integration, and the use of either FE or SE in the integration of the
element matrices is free of choice. The extension to 3D follows the same approach as in 2D.

The remainder of the paper is organized as follows: In Section 2 the continuous frequency domain
equations are derived (Section 2.1), followed by the time domain counterparts (Section 2.2). Next,

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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the variational form is established from which the FE system matrices are derived (Section 2.3),
and the section ends with a presentation of the time integration method (Section 2.4). In Section 3
the formulation is verified by various numerical experiments, and the section is completed by
a numerical stability analysis of the proposed scheme (Section 3.4), followed by conclusions in
Section 4.

2. PML EQUATIONS FOR PLANE MOTION

2.1. Frequency domain equations

The basic concept of the PML can be introduced by considering the frequency-domain counterparts
of the equations of motion, constitutive law, and the kinematic conditions (4) in the stretched
coordinate metrics

(Eq. of motion) ∇s · r̂+ �̂p= −�2�̂u (5a)

(Constitutive law) r̂= C :̂ e (5b)

(Strain–displ.) ê= 1
2 [∇s û+(∇s û)T] (5c)

The caret (̂ ) designates the frequency-domain equivalent of the subtended function, which is
obtained by the Fourier transform [45] by assuming vanishing initial conditions for the displacement
field. For a 2D isotropic elastic medium, the constitutive tensor entries are given by

Ci jkl =�	i j	kl +
(	ik	 j l+	il	 jk) (6)

with 
 and � denoting the Lamé coefficients, and where 	i j is Kronecker’s delta. In Equation (5)
the ∇s operator is defined in 2D by ∇s = (�/�x ′

1,�/�x ′
2)

T. Now, by use of the chain-rule the ∇s
operator becomes

∇s =
(
1

s1

�
�x1

,
1

s2

�
�x2

)T
(7)

Thus, in a Cartesian coordinate system ∇s can be interpreted in terms of the standard ∇, although
with x1 and x2-axes scaled by s1 and s2, respectively. By restoring non-stretched divergence ∇
in Equation (5) it is possible to obtain a uniform formulation that governs wave propagation in
the entire computational domain, including the PML region. To accomplish this, we need first to
modify the equation of motion and introduce a stretched complex-valued stress tensor r̂′ herein [16]

∇ · r̂′+ �̂p=−�2�′̂u (8)

where �′ =�s1s2. The stretched tensor in Eq. (7) can be expressed in terms of the original stress
tensor r̂ by

r̂′ = s1s2

⎡
⎢⎢⎣

1

s1
1

s2

⎤
⎥⎥⎦· r̂= s1s2� · r̂ (9)

Second, in order to render the kinematic condition non-stretched the constitutive tensor also needs
to be modified as follows:

Ĉ ′
i jkl =Ci jkl

s1s2
si sk

, i, j,k, l=1,2 (10)

where no Einstein summation over indices i and k applies. This leads to an artificial anisotropic
material, since Ĉ ′

1111 �= Ĉ ′
2222, with minor, however not major, symmetry properties conserved.

Writing out the constitutive law for the anisotropic medium, one will also find that the symmetry

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2011)
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of the stress tensor is destroyed, i.e. �̂′
i j �= �̂′

j i when i �= j . Notice that the transformations in
Equations (9) and (10) alternate the PML interpretation from being based upon complex coordinate
stretching to an anisotropic material model.

For a general FE implementation it is convenient to adopt a formulation based on Voigt notation
[46]. To reestablish the symmetry of the constitutive matrix (despite the non-symmetric tensor
counterpart), the constitutive law, based on displacements, now reads as

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�̂′
11

�̂′
22

1
2 (̂�

′
21+ �̂′

12)

1
2 (̂�

′
21− �̂′

12)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Ĉ ′
11 C12

C12 Ĉ ′
22

Ĉ ′
66 Ĉ ′′

66

Ĉ ′′
66 Ĉ ′′′

66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x1

0

0
�

�x2
�

�x2

�
�x1

�
�x2

− �
�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
û1

û2

}
(11)

where Ĉ ′
11= s2C11/s1, Ĉ ′

22= s1C22/s2, and the shear-related entries in the constitutive matrix are
given by

Ĉ ′
66 = C66

4

(
s1
s2

+ s2
s1

+2

)
(12a)

Ĉ ′′
66 = C66

4

(
s1
s2

− s2
s1

)
(12b)

Ĉ ′′′
66 = C66

4

(
s1
s2

+ s2
s1

−2

)
(12c)

For a compact version of Equation (11) we write r̂′v= Ĉ′�̂u, from which we identify the kinematic
(strain–displacement) operator as

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x1

0

0
�

�x2
�

�x2

�
�x1

�
�x2

− �
�x1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

the subscript ( )v indicates that Voigt notation is applied to second-order tensors. As preparation
for the construction of the time-domain formulation, we split the constitutive matrix into a non-
stretched part and two stretched parts associated with s1/s2 and s2/s1, respectively, i.e.

Ĉ′ =D0⊗C︸ ︷︷ ︸
=C0

+ s1
s2

D1⊗C︸ ︷︷ ︸
=C1

+ s2
s1

D2⊗C︸ ︷︷ ︸
=C2

(14)

where C is the non-stretched constitutive matrix given by

C=

⎡
⎢⎢⎢⎢⎣

�+2
 �

� �+2



 



 


⎤
⎥⎥⎥⎥⎦

(15)
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and ⊗ denotes the matrix operator that scales the entry in the first matrix by the element residing
at the same location in the second matrix. From Equation (11) we deduce the matrix operators D0,
D1, and D2 as

D0=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 2 0

0 0 0 −2

⎤
⎥⎥⎥⎥⎦

, D1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1 0 0

0 0
1

4

1

4

0 0
1

4

1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, D2=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0
1

4
−1

4

0 0 −1

4

1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

For the three-dimensional (3D) case a similar split needs to be employed in order to separate
the non-stretched and stretched terms with different frequency dependencies from each other. The
constitutive matrix for 3D generalization can be found in [47]. The anisotropic interpretation of
the PML is designed to ease the implementation in an FE framework compared to the difficulties
occurring when the FE formulation derives from complex coordinate stretching interpretation.
The latter idea is pursued in [36, 37], and the approach renders a semi-discrete form that is
almost second-order in time. However, it contains an internal force term, whose computation
requires storage of strains, that in addition need to be integrated in time at every time step.
The strains are obtained from rather complicated coordinate transformations of the displacement
gradients.

2.2. Time domain equations

Next, we establish the time-domain counterparts of the stretched frequency-dependent motion
Equation (8) and the displacement-based constitutive law in Equation (11). This conversion is
aided by the inverse Fourier transform [45]. The stretched stress tensor and the displacement
vector transform directly to r′v and u. Meanwhile, special treatment to the constitutive matrix in
Equation (11) and the right-hand side in Equation (8) is needed, since they contain si (i =1,2).
Applying the inverse Fourier transform (e.g. provided in Maple 14 [48]) yields

∇ ·r′+�p=L0(t)u (17a)

r′v =C′�u (17b)

with

C′ =C0+L1(t)C2+L2(t)C2 (17c)

where the operator L0(t) is the inverse Fourier transform of −�2s1s2, and it is, based on the
definition in Equation (2), given by

L0(t)= P0
�2

�t2
+P1

�
�t

+P2+�21P3,1e
−�1t ū(t)∗+�22P3,2e

−�2t ū(t)∗ (18)

In Equations (17b) and (17c) L1(t) and L2(t) are the inverse Fourier transform of s1/s2 and
s2/s1, respectively, and are given by

L1(t)= �1
�2

+�21P
−1
3,1 e

−�1t ū(t)∗−P4,2e
−(�2+�2�2)t/�2 ū(t)∗ (19a)

L2(t)= �2
�1

+�22P
−1
3,2 e

−�2t ū(t)∗−P4,1e
−(�1+�1�1)t/�1 ū(t)∗ (19b)

where ū(t) is the Heaviside step function, and ∗ denotes the temporal convolution. In Equations (18)
and (19), the spatially varying functions P0, P1, P2, P3,i , and P4,i (i =1,2) are introduced as
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follows:

P0 = �1�2 (20a)

P1 = �2�1+�1�2 (20b)

P2 = �1�2−�1�1�2−�2�2�1 (20c)

P3,1 = �1[�2(�1−�2)−�2]

�1−�2
, P3,2= �2[�1(�2−�1)−�1]

�2−�1
(20d)

P4,1 = �1[�1�2(�1−�2)+�2�1−�1�2]

�21[�1(�1−�2)+�1]
, P4,2= �2[�1�2(�2−�1)+�1�2−�2�1]

�22[�2(�2−�1)+�2]
(20e)

Note that P0=1 and the remaining functions in Equations (20) vanish in the computational
domain �S, since �i =1 and �i =�i =0 (i =1,2). The distribution of �i , �i , and �i (i =1,2) in
the PML region appears in Figure 1. Special considerations are needed in the corner regions of
the PML, in particular when �1=�2. In this case P3,1 and P3,2 simplify to P3,1=�1�2 and P3,2=
�2�1, respectively. Additionally, we have that �1=�2 and �1=�2, from which the operators in
Equations (19) simplify to L1(t)=L2(t)=1, while L0(t) remains unchanged. Note, by choosing
the spatial variation of �i , �i , and �i (i =1,2) thoughtfully one avoids the singularities of P4,i
(i =1,2) when �2(�1−�2)+�2 and �1(�2−�1)+�1 vanish.

2.3. Finite element implementation

For a displacement-based FE solution, the weak form of Equation (17) is required. This solution is
sought by using the principle of virtual work over the domain � with boundary �. We introduce,
as in [39], the space of admissible kinematic displacement field defined as Kt ={u(x, t) :�×I→
Rd+1|u∈H1(�) ∀t ∈ I}, where H1

0 (�) is the Hilbert space of vector functions and their weak
partial derivatives that are square integrable on � and vanish at �. Then, by associating the space
of admissible displacement variations at a given time t , 	K={	u(x) :�→Rd |	u∈H1

0 (�)}, the
variational problem consists of finding u∈Kt , such that ∀	u∈	K and ∀t ∈ I

∫

�
(	u)T�L0ud�+

∫

�
(�	u)Tr′vd�−

∫

�
(	u)Tpd�−

∫

�
(	u)TTd�=0 (21)

where r′v follows from Equation (17b). The contour integral in Equation (21) vanishes, since we,
for the sake of simplicity, assume a free-surface boundary condition on �, i.e. the traction is T=0.
The system is loaded through the body force p.

Now, we expand the displacement field at any point within the element as follows [49, 50]:

u≈
me∑
k=1

NkIdek = [N1I, . . . ,Nme I]

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d1

...

dme

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

e

=Nde (22)

where dek = (d1,d2)T contains the discrete displacement values at node k inside element e with
me nodes, I denotes the 2×2 identity matrix, and Nk is the nodal-based shape function. If we
then separate the convolution terms in the operators L0, L1, and L2 we obtain the ordinary
differential equation

Md̈+Zḋ+Kd+h+g= f (23)
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where the system matrices M, Z, and K are assembled from their respective element-level
constituent square matrices Me, Ze, and Ke, whose sub-matrix entries are given by

Me
i j =

∫

�e
�P0NT

i N jd� (24a)

Ze
i j =

∫

�e
�P1NT

i N jd� (24b)

Ke
i j =

∫

�e
BT
i

(
C0+ �1

�2
C1+ �2

�1
C2

)
B jd�+

∫

�
�P2NT

i N jd� (24c)

Here, Bi =�Ni denotes the strain–displacement matrix, and d is the unknown global vector with
the discrete displacement values, i.e. d= (d1, . . . ,dM )T, where M is the total number of nodes.
The force vector f in Equation (23) is determined by

fei =
∫

�e
NT
i pd� (25)

Further, in the convolution vectors h=∑e h
e and g=∑e g

e in Equation (23) the element contri-
butions are, respectively, given by individual sub-vectors

hei =
∫

�e
�NT

i
∑
j
[N j (�

2
1P3,1u

+
1, j +�22P3,2u

+
2, j )]d� (26a)

gei =
∫

�e
BT
i
∑
j

[
C1B j

(
�21
P3,1

u+
1, j −P4,2u

++
2, j

)
(26b)

+C2B j

(
�2
2

P3,2
u+
2, j −P4,1u

++
1, j

)]
d� (26c)

where u+
p, j =e−�pt ū(t)∗d j and u

++
p, j =e−(�p+�p�p)t/�p ū(t)∗d j . The computational disadvantage of

the occurrence of the convolution terms in Equation (26) is the need for their successive evaluation
at each time steps. However, since all spatial element information can be computed prior to time
stepping and subsequently stored it is only necessary to update the global auxiliary memory vectors
u+
p and u++

p (p=1,2) in the integration points of the element. The representation in Equation (26)
has to be followed when large element sizes appear in the mesh, because then the assumption of
constant variation of the PML parameters �p , �p , and �p (p=1,2) will not suffice anymore [51].

Meanwhile, introducing the requirement of constant PML parameters inside each element, e.g.
for bilinear shape functions, simplifies the convolution vectors in the resultant ordinary differential
equation that now reads as

Md̈+Zḋ+Kd+ h̃+ g̃= f (27)

In the computation of the modified convolution vectors h̃ and g̃ there is no need for spatial
integration each time step anymore. As a result, their expressions reduce to

h̃ei =∑
j

(
Me

1,i j +
�21
P3,1

Ke
1,i j

)
u+
1, j +

(
Me

2,i j +
�22
P3,2

Ke
2,i j

)
u+
2, j (28a)

g̃ei =∑
j
Ke

2,i j P4,1u
++
1, j +Ke

1,i j P4,2u
++
2, j (28b)
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where the element matrices Mp and Kp (p=1,2) are given by

Me
p,i j =

∫

�
��2p P3,pN

T
i N jd� (29a)

Ke
p,i j =

∫

�
−BT

i CpB jd� (29b)

Here, it is crucial to stress that u+
p, j and u++

p, j are local meaning that they are defined on each
element of the mesh and are discontinuous from one element to another, since the PML parameters
are now element-wise constant. In practice this implies that e.g. for Q nodal quadrilateral elements
the integration requires the update and storage of 8Q memory variables. The following section will
present a recursive update technique that effectively avoids integration of the entire solution history
at each time step in the evaluation of the convolution terms when progressing Equations (23)
and (27) in time. Finally, on the exterior of the computational domain the homogeneous Dirichlet
boundary condition is imposed, i.e. d=0, as this seems to stabilize the time integration for long
times of resolution [52].

2.4. Time integration

In the time marching of the FE discretized wave equations (23) or (27) we approximate the spatial
derivatives and non-derivatives by the Newmark-beta time integration method [53]. As a result,
the elastic displacement field is progressed in time as follows:

(
1

�t2
M+ 1

2�t
Z+�K

)
dn+1

=
(

2

�t2
M−(1−2�)K

)
dn−

(
1

�t2
M− 1

2�t
Z+�K

)
dn−1−�gn+1−(1−2�)gn−�gn−1

−�hn+1−(1−2�)hn−�hn−1+�fn+1+(1−2�)fn +�fn−1 (30)

where �t is the time step. When �=0, the formula reduces to explicit time integration. However, it
can be shown that the integration scheme becomes unconditionally stable for non-active, and non-
dispersive media when ��1/4 with second-order accuracy preserved [54]. Thus, unlike explicit
methods in which the choice of �t is bounded by the CFL condition the implicit method has no
limiting time step. The price for this convenient assurance in the time marching is the necessity of
solving a linear system at each time step. The important advantage is that the choice of �t is not
limited by the smallest FE in highly irregular mesh geometries through the CFL condition. Instead,
it depends solely on the accuracy with which the temporal variation of the field is reproduced. In
practical cases the elastodynamic problems often involve large 3D domains, in which cases matrix
inversion is not possible. If implicit time integration is still required then a direct solution of the
linear matrix system needs to be substituted by iterative methods that are rather involved to paral-
lelize. Alternatively, explicit methods with mass lumping could be used to avoid matrix inversion,
and they are also relatively straightforward to parallelize based on a non-blocking communication
strategy, because matrix–vector multiplication can be performed locally. The scalability is believed
to be linear. With the proposed method explicit time integration with mass lumping is achieved
for �=0 and by computing the mass matrix as Me

ii =
∑

j M
e
i j and Me

i j =0 for i �= j [49]. To be
consistent all mass-like terms in Equations (24) and (29) should be evaluated similarly. Notice that
for non-dispersive media the choice of time step is bounded by the CFL conditions for explicit
time integration.

We have learned from the derivation in Section 2.2, that, regardless of the PML technique,
the presence of the convolution term in the time-domain equations (17) is inevitable as soon as
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Δ

Luebbers et al.

Present approach

4

Figure 3. Small example that illustrates the convergence of the recursive convolution update scheme in
Equation (36) compared to the scheme of Luebbers et al. when K (t)=e−b�t ū(t) and u(t)= sin(2�t). The
analytical convolution is a(t)= ū(t)[2�(e−b�t −cos(2�t))+b sin(2�t)]/(b2+4�2). We define the error

measure as Err=||a(t)−r (t)||/||a(t)||, where || · || is the Euclidean norm.

the governing equation in the PML region needs to be recast in a format that only contains the
displacement as unknown. The general appearance of the convolution term is

(t)= [ae−bt ū∗u](t)

=
∫ t

0
ae−b�ū(�)u(t−�)d� (31)

where a, b are real constants, and u is the state field variable of analysis. Time convolution is by
definition a computational burden since it requires storage of the entire solution history in the time
marching. Fortunately, however, it has been shown by Luebbers and Hunsberger [21] that with
a kernel function on a simple exponential form K (t)=ae−bt ū(t) it can be recursively updated,
and thus only requires information from the previous time step. They assume that the field of
analysis is constant over n�t through the point (n�t,u(n�t)) yielding first-order accuracy. We
have found that if (t) is still discretized through the same point, but one half time step earlier than
u(t) in the time marching, i.e. u(t) is now constant in [(n−1/2)�t, (n+1/2)�t] in Equation (31),
the accuracy of the recursive update improves to second-order, see Figure 3. Thus, it aligns with
the intrinsic second-order accuracy of the Newmark-beta method. For this case, the convolution
integral is discretely evaluated as [55]

n =
n∑

k=0
un−k

∫ (k+1/2)�t

(k−1/2)�t
K (�)d�

= un
∫ �t/2

0
K (�)d�+

n−1∑
k=0

un−k−1
∫ (k+3/2)�t

(k+1/2)�t
K (�)d� (32)

Here, the integrals for b �=0 are given by

�0 =
∫ �t/2

0
K (�)d�= a

b
[1−e−b�t/2] (33a)

�k+1/2 =
∫ (k+3/2)�t

(k+1/2)�t
K (�)d�= a

b
[1−e−b�t ]e−b(k+1/2)�t (33b)
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and for b=0 they reduce to �0=a�t/2 and �k+1/2=a�t , respectively. For convenience, we
introduce �n for the last term in Equation (32) that is now rewritten to

�n =
n−1∑
k=0

un−k−1�k+1/2

= �1/2un−1+
n−2∑
k=0

un−k−2�k+3/2 (34)

and since �k+3/2=e−b�t�k+1/2 we realize that

n−2∑
k=0

un−k−2�k+3/2=e−b�t
n−2∑
k=0

un−k−2�k+1/2 (35)

which leads to the recurrence relation

�n =�1/2un−1+e−b�t�n−1 (36)

Summing up the above algebraic manipulations, the evaluation of n boils down to the following
two-step process:

�n = �1/2un−1+e−b�t�n−1 (37a)

n = �0un+�n (37b)

where �0 and �1/2 are given by Equation (33). The recurrence relation in Equation (36) saves
substantial computation time and memory. Evidently, we only need information about un and values
from the previous time step to compute n . Meanwhile, the cornerstone of the unconditionally
stable Newmark-betamethod relies on the weighted average approximation of the non-differentiated
term, i.e. (t)=�n+1+(1−2�)n+�n−1. Since n+1 requires un+1 there exists information
of the unknown displacement field towards which we progress in time on the right-hand side
of Equation (31). Hence, unconditionally stable time marching is only achieved when all terms
containing un+1 are moved to the left-hand side. Since the unconditional stability is only strictly
valid for non-dispersive media, it cannot be guaranteed to hold in the PML region. However,
numerous tests have shown that the suggested scheme is highly stable.

Compared to some FE-based non-split mixed formulations, see e.g. [33], the proposed
displacement-based FE scheme reduces the number of unknowns from 5M (u1, u2, �11, �22,
and �12) to 2M (u1, and u2) in 2D; in 3D 9M unknowns are reduced to 3M . The algorithmic
features of the proposed scheme are symmetric system matrices that need to be stored in
conjunction with the solution d and the auxiliary memory variables u+

p and u++
p (p=1,2 in 2D)

in the convolution terms, which essentially act as forcing terms that can be recursively updated.
Furthermore, it supports an easy switch between implicit and explicit time integration with mass
lumping.

3. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments that demonstrate the excellent absorbing prop-
erties of the suggested formulation. We limit the study to homogeneous material hosts, such that
the medium only contains pure pressure, shear, and surface waves [26]. More importantly, the
convenience of using homogeneous media is the existence of an analytical solution, against which
we validate the numerical solution from the proposed formulation. It should be emphasized that
the primary scope of this paper is merely to demonstrate the performance of C-PML when it
is employed directly to the wave equation recast as a second-order system with displacement as
the single unknown field. This without the need of introducing a mixed formulation approach
although it is claimed inconceivable in [33]. The first example, which is the simplest, involves an
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(a)

(b)

(c)

Figure 4. PML-truncated semi-infinite domains in two dimensions subjected to a vertically downward
point-source located at (xc1 , x

c
2) driven by an explosive Ricker wavelet. R1, R2, and R3 indicate the

location of the receivers at which the wave response is recorded: (a) experiment 1; (b) experiment 2; and
(c) experiment 3. The domains are not illustrated to scale.

explosive point-source residing inside a isotropic semi-infinite domain, see Figure 4(a). Examples
2 and 3 in Figure 4(b) and (c), respectively, address the issue that near-grazing waves often exhibit
degrading PML-performance [19, 25–27, 56] by using elongated domains with wave sources near
the free surface and the bottom-PML interface. The FORTRAN code EX2DDIR of Berg et al.
[57] has been used to compute the exact analytical solution of the responses that originate from
a vertical directional point-source in a two-dimensional isotropic elastic half-space with a free
surface.

The material properties of the elastic isotropic half-plane considered in the three cases are density
�=2000kg/m3, longitudinal wave velocity cp ≈774.6m/s, and shear wave velocity cs =cp/2 in
a state of plane strain. The explosive point-source is defined as

p(x, t)=T (t)	(x−xc)d(�) (38)

where 	 denotes the Dirac delta function, and xc is the location of the point-source with temporal
evolution T (t). The unit vector d= (cos�,sin�)T prescribes the direction of the source, where the
angle � is measured counterclockwise from the x1 axis. For comparison with the analytical solution
we choose the angle �=−�/2. As temporal variation of the source a modified Ricker wavelet is
employed, which is given by

T (t)= (0.5+a1(t− td)
2)ea1(t−td )2 (39)

where td is the source delay time, a1=−(� fc)2, and fc=1.0Hz is the dominant frequency of the
source.

Based on the stretched-coordinate metrics, the spatial dependence of the CFS PML parameters
is chosen in the xi direction as follows [33, 35, 39, 40, 58]:

�i = 1+�max,i

(
xi −x0i
di

)n1

(40a)

�i = �max,i

(
xi −x0i
di

)n1+n2

(40b)

�i = �max,i

(
di −xi +x0i

di

)n3

(40c)
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with �max,i =2� f� and

�max,i = − (1+n1+n2)cp log10(R0)

2di
(40d)

�max,i = − (1+n1)bi log10(R0)

2di
(40e)

for i =1,2. Here, R0 is the theoretical reflection coefficient at normal incidence, bi is a characteristic
length of the domain (e.g. integer multiples of the element size), x0i and di (i =1,2) are the
starting location and the thickness of the PML layer, respectively. Further, f� is a characteristic
cut-off frequency that designs the absorbing behavior of the C-PML as described in Section 1.1.
In all experiments, we have, unless otherwise stated, chosen the following values for the profile
parameters: f� =0.5 [39, 42], b=10�xi , R0=10−8 [33], n1=3, n2=0, and n3=1. This set of
variables does not induce any singularities for P4,i in Equation (20e), and for 1/P3,i (i =1,2) in
Equations (26) and (28).

For the discretization of the PML and the solution domain quadrilateral bilinear FEs are
employed. It follows naturally from this choice of element types that the PML parameters in
Equations (40) are assumed constant inside each element which leads to the use of the second-order
ordinary differential equation in Equation (27). In the time integration we use the implicit version
of the Newmark-beta method, i.e. �=1/4 to have unconditionally stable time marching. Although
the time step is merely free of choice with regards to stability considerations it is essential to
choose a time step that reproduces the temporal variation of the source with an accuracy such
that the numerical and exact solution will be comparable. We have found that a suitable choice is
based on the CFL condition

�tc=min

(
1

cp
,
1

cs

)(
1

�x21
+ 1

�x22

)−1/2

(41)

For equisized elements the criterion reduces to �tc=�x1min(c−1
p ,c−1

s )/
√
2. The FE scheme is

implemented in the Matlab programming environment. However, for the recursive update scheme
in Equation (37), which needs to be carried out separately for the nodal displacements of each
element, we make Mex function calls to avoid the latency from which Matlab inherently suffers
when executing FE assembly procedures in for-loops.

3.1. Experiment 1

The numerical analysis is conducted by reducing a semi-finite elastic medium to a 350m×350m
computational domain surrounded by 70m thick PML layer, see Figure 4(a). The element edge
size is �x1=�x2=3.6458m which leads to a time step �tc=0.0033s, and the simulation runs
for 10.0 s requiring 3030 time steps for completion. The excitation is driven by the Ricker wavelet
source in Equation (39) that is located at the center of the solution domain and with a delay
td =1.0s. We record the horizontal and vertical transient responses in three receiving positions
R1, R2, and R3 located at (350m,−350m), (350m,0m), and (350m,350m), respectively. The
monitored time evolutions appear in Figure 5, and they behave perfect in accordance with the
analytical solution. In all plots, the responses based on the standard PML implementation are
also included, i.e. for �i =0, and �i =1 (i =1,2) in Equations (20). Clearly, the standard PML
and C-PML strategies perform almost equally. This congruence is a result of the point-source
settings that do not generate strong evanescent waves in the PML layer, in which case the C-PML
outperforms the classical PML approach.

Figure 6 shows the snapshots of the displacement field magnitude taken at four different time
steps. After approximately 1.0 s it becomes clear, that two primary wave trains (the fastest associated
to the P-carrier followed by a stronger S) have been created by the directional point-source. Both
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(c) (d)

(a) (b)

Figure 5. Experiment 1: C-PML, standard PML, and analytical transient response comparison of the
horizontal u1 (left) and the vertical u2 (right) at three receiving positions (a)–(b) R1, and (c)–(d) R3

located at (350m,−350m), and (350m,350m), respectively.

waves propagate to the sides and towards the bottom of the truncated domain and penetrate the
PML at normal incidence. However, due to momentum flux conservation, an upward directional
field appears which will split into reflected bulk and Rayleigh waves at the free surface, see
Figure 6(b) and (c). Frankly, the u2 response at R3 in Figure 5(f) indicates a weak S wave around
1.5 s prior to a much stronger Rayleigh wave around 2.0 s. According to Figure 6(d), only bulk
waves remain in the domain after 2.8 s. They travel at grazing incidence towards the bottom as
P- and S-waves (compare Figure 5(a) and (b)), and create a weak evanescent field in the PML
side regions. This phenomenon explains the small deviations in Figure 5(b) of the standard PML
response at the last receiving position R1 before the waves leave the computational domain. The
standard PML is not capable of attenuating the evanescent field, and while traveling towards the
bottom this dispersion error accumulates, which is eventually recorded at R1.

3.2. Experiment 2

The purpose of this experiment is to address the issue that the standard C-PML suffers from poor
performance when an evanescent wave field is generated in the boundary layer as a result of near-
grazing incidence. It originates from Rayleigh waves penetrating into the domain. To accommodate
this scenario, we have reduced a semi-finite domain with a free surface to a 3450m×225m elon-
gated domain truncated by a 150m thick PML layer, as illustrated in Figure 4(b). Both regions are
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Figure 6. Experiment 1: Snapshots of the displacement field magnitude defined as the norm

||u||=
√
u21+u22 at time steps: (a) 0.5 s, (b) 1.0 s, (c) 2.0 s, and (d) 2.8 s. The waves are generation

by a Ricker wavelet source located at (xc1 , x
c
2)= (0m,0m).

Figure 7. Experiment 2: Snapshots of the displacement field magnitude defined as the norm

||u||=
√
u21+u22 at time steps: (a) 1.0 s, (b) 3.0 s, (c) 5.0 s, and (d) 8.5 s. The waves are driven by

a Ricker wavelet source located at (xc1, x
c
2)= (937.50m, 93.75m).
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(a) (b)

(c) (d)

Figure 8. Experiment 2: C-PML, standard PML, and analytical transient response comparison of the
horizontal u1 (left) and the vertical u2 (right) at three receiving positions (a)–(b) R1, and (c)–(d) R3

located at (−862.5m,−112.5m), and (−1650.0m,112.5m), respectively.

discretized by equisized quadrilateral elements with edge size �x1=�x2=4.6875m. We run the
simulation for 20.0s that yields 4674 time steps with a time step �t=0.0043s. The Ricker wavelet
source from experiment 1 is reconstituted and is now located at (937.50m,93.75m). We have allo-
cated three receivers at (−862.5m,−112.5m), (−1706.25m,93.75m), and (−1650.0m,112.5m)
to track u1 and u2 responses. In Figure 8 the response records clearly display the poor performance
of the classical C-PML compared to the C-PML implementation which are in perfect agreement
with the exact solution, even with an inactive evanescent scaling factor, i.e. �i =1 (i =1,2). The
degrading functionality of the standard C-PML is magnified in the inset of Figure 8(c) and (d), and
it is primarily caused by a strong evanescent field that for geometrical reasons does not penetrate
the PML region very deep [27] while the surface wave propagates at grazing incidence to the left,
see Figure 7.

As already mentioned the surface waves carry a large amount of the energy identified as
the large amplitude u2 responses in Figure 8(b) and (d) occurring approximately around 5.5
and 7.5, respectively. In addition, before the arrival of the P- (see Figure 8(c)) and Rayleigh
waves very weak S-waves are recorded around 4.5s. It is well known from analytical studies of
this Lamb’s problem that the energy of the Rayleigh waves eclipses far away from the driving
source [59]. Figure 8(a) also indicates that in the vicinity of the bottom PML layer a P-wave
appears.
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Figure 9. Experiment 3: Snapshots of the displacement field magnitude defined as the norm

‖u‖=
√
u21+u22 at time steps: (a) 1.0 s, (b) 3.0 s, (c) 5.0 s, and (d) 8.5 s. The waves are driven

by a Ricker wavelet source located at (xc1, x
c
2)= (−937.50m,−93.75m).

3.3. Experiment 3

In this experiment explicit time integration with mass lumping is employed. The domain and
discretization settings in conjunction with the temporal variation of the directional point-source
follow the same choices as for the numerical experiment in Section 3.2. To avoid or delay numerical
instabilities, such as nonphysical oscillations and late-time instabilities in the PML we choose the
time step to �t=0.95�tc yielding 4921 time steps. The location of the source is altered to be
near the bottom-PML instead, i.e. (xc1, x

c
2)= (−937.50m,−93.75m). Consequently, surface and

pressure waves are not formed instantly as in experiments 2, but rather after the P- and S-wave have
interfered/interacted with the surface. If we consider the snapshots of the displacement magnitude
at different time steps in Figure 9, and simultaneously compare Figure 10(a), (c) to (b), (d),
respectively, we notice that Rayleigh waves still dominate. The near bottom-PML location of
the source gives rise to an inclined wave vector away from the surface at 3.0s as illustrated in
Figure 9(b). The wave vector eventually aligns with the direction parallel to the bottom layer, see
Figure 9(c) and (d). Conversely, the wave motion of experiment 2, shown in Figure 7, remains
almost perpendicular to a vertical cross section at any time.

In this experiment it is crucial to enforce the scaling of evanescent attenuation by �i >1 (i =1,2).
Otherwise, the P-wave response in receiving position R1 at the bottom PML-interface will be
polluted by energy reentering the domain constituted as spurious reflected evanescent waves, as
depicted in the inset of Figure 10(a).

3.4. Late-time stability and energy conservation

The illustration of the late-time behavior of the proposed PML implementation is based on long-time
simulation of numerical experiments 2 and 3 from Sections 3.2 and 3.3, respectively. In particular,
we record the total (elastic and kinetic) energy decay inside the physical solution domain �S
given by

E= 1
2 ḋ

TMḋ+ 1
2d

TKd (42)

and increase the simulation time from 20 to 320s. The mathematical proof of unconditional stability
is a rather involved task, for which reason we rely entirely on the numerical results. It is a well-
established fact that many PML models (e.g in electromagnetics) suffer from strong instabilities at
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(c) (d)

(a) (b)

Figure 10. Experiment 3: C-PML, standard PML, and analytical transient response comparison
of the horizontal u1 (left) and the vertical u2 (right) at three receiving positions (a)–(b) R1,
and (c)–(d) R3 located at (862.5m,−112.5m), and (1650.0m,112.5m), respectively. Note, that
the response based on two C-PML models are recorded at R1: one with (C-PML 1) evanescent

scaling active, i.e. �i >1, and one without (C-PML 2).

late times [60–62]. However, it has also been shown that the inclusion of the CFS filter improves
the stability significantly [63, 64].

As previously emphasized, the unconditionally stable Newmark-beta method only applies to non-
active, non-dissipative media when ��1/4 [54]. One should therefore be careful when generalizing
this criterion to the proposed implementation, because attenuation in the PML region is driven
by dissipation. We verify unconditional stability by reusing the above energy recording approach
for increasing time steps �t=2�tc, 4�tc, 8�tc, where �tc stems from Equation (41). The results
appear in Figure 11(b) and (d). Clearly, the proposed scheme exhibits highly stable behavior. As
confirmation, we have also conducted experiments for �t=16�tc and 32�tc with a very long
simulation of 128 000 s requiring 930 000 time steps. They are not included here because the energy
is significantly overestimated due to an inaccurate representation of the temporal variation of the
source. The long simulation has also been performed for mass lumped explicit time integration
with �t=0.95�tc. Both results reveal stable time-marching. As noticed, the stability properties of
the proposed scheme for anisotropic media have not been analyzed. However, as various numerical
investigations indicate [20, 27, 33, 40, 60], we believe that this scheme will also suffer from intrinsic
instabilities in the case of anisotropic media. Hence, the instability growth in the PML is not a
consequence of the discretization but depends on the physical properties of the anisotropic medium
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Figure 11. Energy decay in the computational domain for experiment 2 (top) and experiment 3 (bottom)
with implicit time integration: (a), (c) performance comparison of the C-PML and the standard PML
implementation and (b), (d) unconditional stability verification for time steps �t=�tc, 2�tc, 4�tc, and 8�tc.

[27, 60]. Meanwhile, the recent development of the multi-axial PML (M-PML) has shown to delay
the instabilities significantly [32].

Apart from addressing stability properties the total energy decay is also an accurate measure for
the efficiency of the discrete C-PML model. Figure 11(a) and (c) shows that between approximately
0 and 1.5 s energy is introduced in the medium by the source. Initially, this energy is carried by P-,
S-, and Rayleigh waves, and between roughly 8.0 and 10.5 s the waves leave the physical domain
starting with the P-wave. The Rayleigh wave is the last one to be absorbed in the PML around
10s, indicated by the steep decay. Hereafter, all remaining energy is purely spurious. Evidently,
the standard PML exhibits degrading performance since the energy residue after 11.5 s e.g. in
experiment 3 is 0.1 J compared to the C-PML implementation that yields a remaining energy of
0.0004 J.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we suggest an efficient FE time-domain implementation of the C-PML for the elastic
second-order wave equation in which the displacement is the single unknown field.

To obtain a unified FE formulation, we utilize that the material behavior in the PML can be
interpreted as anisotropic. Effectively, this requires modification of the kinematic relation between
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strains and displacements as well as the constitutive matrix to render it symmetric, such that
the constitutive law is directly applicable in the variational form of the FE implementation. We
realize that the appearance of the four time convolution integrals in 2D acting as auxiliary memory
variables (or internal forces) is inevitable when a pure displacement-based formulation is desired.
However, the condition of the convolutional integrals facilitates the use of a recursive update
procedure that avoids the computational burden inherently associated with convolution operations.
In the time marching we use the general Newmark-beta method which is highly recommendable
for irregular geometries in order to avoid the inherent limitation of the CFL condition. Thus,
to align with the accuracy of the Newmark-beta method we use a recursive update scheme of
second-order accuracy which results in extremely stable time integration. However, it has also
been demonstrated that the proposed scheme supports an easy switch to explicit time integration
with mass lumping. The efficiency of the suggested formulation is tested on relevant numerical
examples comprised by homogeneous, isotropic half-spaces subjected to a directional point-source
to produce near-grazing waves. The results show perfect agreement with analytical solutions.

Although we do not complete the stability analysis of the formulation by including arbitrary
anisotropic material behavior in the physical domain, we believe, similar to the previously reported
findings, that the scheme will suffer from late-time instabilities. Hence, future work includes
implementation of stabilization techniques in terms of the M-PML [32], which, naturally, needs
to be verified for anisotropic materials. Additionally, the 3D model will be implemented in the
future. The primary purpose of this paper is to show that an efficient C-PML FE implementation
is indeed possible when e.g. existing displacement-based FE codes need to handle open-region
elastic wave propagation problems.
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Nils Koppels Allé, Building 404, 2800 Kgs. Lyngby, Denmark

∗Corresponding author: rmat@mek.dtu.dk

A pulse delaying optimization scheme based on topology optimization for

transient response of photonic crystal structures (PhCs) is formulated to

obtain slow light devices. The optimization process is started from a qualified

W1 PhC waveguide design with group index ng ≈ 40 obtained from a simple

Edisonian parameter search. Based on this, the proposed pulse delaying

and subsequent pulse restoring strategies yield a design that increases the

group index by 75% to ng ≈ 70 ± 10% for an operational full width at half

maximum bandwidth BFWHM = 6nm, and simultaneously minimizes interface

penalty losses between the access ridge and W1 PhC waveguide. To retain

periodicity and symmetry the active design set is limited to the in-/outlet

region and a distributed supercell, and manufacturability is further enhanced

by density filtering techniques combined with material phase projections. c©
2011 Optical Society of America

OCIS codes: 000.4430, 130.5296, 230.7400.

1. Introduction

It is well-known that the speed of light is an upper bound for waves conveying matter, energy

or information [1]. However, after the discovery of the slow-light phenomenon as a result of

material dispersion, it seems that no lower limit for the group velocity at which light can

travel exists [2], [3]. Since then, this promising technology has attracted much attention,

as the application prospects are numerous, e.g. in future optical networks and information

processing systems. To mention only a few remarkable properties, slow-light offers the op-

portunity for accurate time-domain processing of optical signals, low power consumption

in optical switching devices [4], spatial pulse compression [5], optical buffering [6], and en-

hancement of weak linear as well as nonlinear light-matter interaction processes [7–10]. In
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the realization of on-chip integration of slow-light devices equipped with these features, pho-

tonic crystals (PhCs) show very promising candidacy. This is due to their intrinsic photonic

band gap (PBG) property that inhibits the existence of optical modes at certain frequency

bands [11–13]. The PBG facilitates the structural engineering of PhC waveguides (-WG) [14]

and micro-cavities (-MC) [15], that separately or in combinations exhibit unique tunable

(group-velocity) dispersion characteristics. In contrast to conventional semiconductors PhCs

exploit all-optical processes, thus leaving it as an obvious choice of platform for designing

efficient slow-light devices [16–20]. At very low group velocities, however, this advantage is

counteracted by losses that scale as the inverse square of the group velocity due to increased

density of states [21].

Recently, inverse problem techniques have surfaced as competitive design tools to previous

Edisonian approaches in the engineering of PhCs [22]. In the present paper we will employ

the methodology behind topology optimization [23] as a means to structurally design devices

that slow down the speed of light. The design process is based on a time-domain analysis,

and the setup consists of a PhC-WG of finite length with in- and outlet connections to

ridge waveguides. The entire structure is surrounded by a perfectly matched layer (PML) as

absorbing boundary conditions (ABCs).

Topology optimization has previously exploited the tunability with which the PhC-WGs

and -MCs are naturally born to optimize various PhC devices with large enhancement in

optical properties. This comprises frequency-domain optimization of a 90-degree bend [24],

a T-junction [25], and a termination [26]. Other efficient PhC-WG components have also

been devised and experimentally verified in [27–30]. Even though the above examples rely

on frequency-domain analyses, time-domain optimization is continuously maturing as an

attractive approach. The reason hereto is its ability to handle broadband signals by short

pulse excitation with a single analysis cycle, and it allows for local permutations at frequency

level. Hence, time-domain optimization facilitates the treatment of active media and non-

linearities that give rise to frequency modulation. Additionally, it can manage time-domain

processing of optical signals, such as pulse shaping [31, 32] and pulse delay [33], as well as

optimization of PhC notch filters [34]. A comprehensive review on topology optimization of

nano-photonic devices is provided in [35].

In comparison to slow light devices based on material resonant enhancement e.g. caused by

electromagnetically induced transparency (EIT) [36], the structural engineering counterpart

is highly preferred because it accommodates a simpler control of light. The reason hereto is

that signals very often in practice propagate in transparent media, i.e. at the operation fre-

quency, far away from any material resonances [37]. However, both approaches are subject to

the intrinsic detrimental effect that large time delays are only possible near large changes in

the amplitude response (near band edges of filter pass and/or stop bands) and are therefore
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accompanied by severe amplitude distortion. Very recently, topology optimization based on

eigenvalue analyses has been used to enhance the slow light performance of PhC-WGs by

engineering/tailoring their dispersion properties [38, 39]. Both approaches include manufac-

turing constraints, and in particular the latter successfully incorporates robustness to further

enhance manufacturability [40, 41].

The optimization process is completed in two consecutive steps: First, a pulse delay step

where the objective is the time delay of the pulse while its shape is preserved through a

relaxed signal shaping constraint. Next, a pulse restoring step is carried out in which the

pulse shape is tailored to match the original reference pulse in the exit ridge waveguide, but

now with the maximized delay obtained in first step fixed in a pulse conforming objective

function.

2. Formulation

The method presented in this paper supports propagation of transverse electric (TE) modes

within two-dimensional (2D) optical waveguide structures. The medium residing inside these

structures occupies a composite of regions of homogenous dielectric material in the xy-plane

and is invariant in the z direction.

With these assumptions, the behavior is governed by the following scalar-wave equation

∂

∂x

(
A

∂Ψ

∂x

)
+

∂Ψ

∂y

(
A

∂Ψ

∂y

)
− B

c2

∂2Ψ

∂t2
= 0

Ψ = Hz(r, t), A = 1/εr(r), B = 1

(1)

where Hz is the transverse components of the magnetic field, as a function of position r =

(x, y) and time t, c is vacuum speed of light, and εr(r) is the relative permittivity that only

varies spatially. The structures are surrounded by PML regions to minimize nonphysical

reflection from the boundaries. The formulation in Eq. (1) then needs to be modified to

handle the anisotropic, dispersive PML behavior, which can be found in [34]. The formulation

can equally be employed for transverse magnetic (TM) modes by letting Ψ = Ez(r, t), A = 1,

and B = εr(r), where Ez denotes the out-of-plane electric field component.

Since we consider macroscopic systems containing dielectric material we utilize that no

fundamental length scale exists by introducing (x′, y′) = (x, y)/a, where a is the lattice

constant or the pitch of the PhC [43]. Based on Eq. (1) this leads to scaled time t′ = tc/a

and scaled angular frequency ω′ = ωa/c. We use the scaled parameters in the remainder of

this paper unless otherwise stated, and it is straight forward to switch between these and

the non-scaled parameters as soon as a is known a priori.

To realize the slow light device we exploit the unique tunable dispersion properties of a

W1 PhC-WG given in Fig. 1, where a single row of holes has been removed. As illustrated,
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the waveguide has in- and outlet connections to straight ridge waveguides, and the crystal

is formed by perforated air holes with radius r/a = 0.30 in the dielectric material GaAs.

This yields a band gap in the normalized frequency a/λ = 0.21 − 0.30 where λ denotes the

wavelength. We will assume that the pitch of the lattice is a = 370nm.

To seek a numerical solution to Eq. (1) the computational domain including PML regions

is divided into bilinear square elements. Then, applying the standard finite-element (FE)

technique [44] yields the system of ordinary differential equations

M∑

e=1

(Teü + Reu̇ + Seu + ge − f e) = 0 (2)

where ˙( ) = d/dt, (̈ ) = d2/dt2, and M denotes the number of elements. We integrate Eq.

(2) by a dispersion reducing scheme that can be found in [34]. Herein, the expressions for

the element-level constituent system matrices Te, Re, Se, ge and f e are also derived.

3. Characterizing and quantifying slow light behavior

There are different ways to determine if a (PhC) structure for a given geometry or mate-

rial distribution exhibits slow light behavior. A common method is to study the dispersion

relation ω(k) from which the group velocity can be computed by

vg ≡ dω

dk
=

c

ng

(3)

where k is the wave number. In the rightmost expression the dimensionless group index ng

is introduced as an alternative measure for the slow light behavior, and we can obtain that

by numerical differentiation, once ω(k) is known.

We have performed an eigenvalue analysis to obtain the dispersion characteristics for the

supercell structure in Fig. 2a. In conjunction with the dispersion diagram in the left part of

Fig. 2b, the group index versus normalized frequency plot in Fig. 2c reveals that inside the

band gap a/λ = 0.21−0.30, the waveguide mode exhibits (semi)-slow light behavior with very

little group velocity dispersion at group velocity vg ≈ c/(40 ± 10%). The useful bandwidth

of the structure (i.e. the range over which the group index remains constant within ±10%)

is BFWHM ≈ 12nm centered around the normalized frequency a/λ = 0.2163. Consequently,

the given supercell structure serves as a suitable starting guess the for optimization process.

The geometry has been found via a parameter search in which the radius of the three nearest

neighboring holes to the waveguide has been varied [20,45].

For time domain simulations it is not that straightforward to retrieve the dispersion char-

acteristics as they appear in the band diagram [46]. Another reliable way to detect slow light

behavior is to analyze the transmission spectrum, which we construct by exciting the inlet
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ridge waveguide with a short pulse. We obtain the transmission spectrum by integrating the

frequency dependent Poynting flux over a vertical wall located after the PhC-WG. Since the

PhC-WG sample has a PhC mirror mechanism: the PhC-WG and the non-optimized in- and

outlet, it functions as a so-called Fabry-Pérot (F-P) cavity. This leads to F-P fringes in the

transmitted energy, and the group velocity can be determined by [16].

vg = c
2LcΔλ

λ2
(4)

where Δλ is the free spectral range between adjacent F-P peaks, and Lc is the length of the

(closed) cavity. The transmission spectrum in the right part of Fig. 2b reveals F-P oscilla-

tions in the normalized frequency a/λ = 0.21 − 0.25, thus insinuating slow light behavior.

Furthermore, the spectrum shows an unambiguous correlation between the eigenvalue anal-

ysis and our FETD data. Apart from the energy transmittance Fig. 3 shows the energy

reflectance recorded at a vertical wall in front of the PhC-WG, from which the energy bal-

ance is computed. We clearly see that for the wavelength range corresponding to the linear

part of the guided dispersion curve all input energy is transmitted through the PhC-WG,

automatically yielding almost zero reflection. Hence, very little coupling losses between the

ridge and the PhC waveguide occur. The energy balance is almost conserved here due to

high mode confinement in the PhC-WG. Around the band gap edges the energy balance is

disrupted partly due to poor coupling at the PhC-WG entrance resulting in reflected and

surface modes not captured by the vertical wall in front of the PhC-WG. The poor mode

confinement in the slow light region can give rise to a lateral mode flow which is not included

in the computed energy flow and therefore further explains why the energy is not preserved.

Where the above techniques require frequency information, the time-of-flight (ToF)

method, see e.g. [47, 48], relies on time observations of the pulse delay η as it traverses

the PhC-WG to compute the group velocity by

vg =
η

L
(5)

where L is the length of the PhC-WG. For the device in Fig. 1 the time delay η can be

determined by recording the probe pulse at a given point in the exit ridge waveguide with

and without PhC-WG. For a precise measure we extract the envelope of the probe pulses

and define the delay as the temporal distance between the envelope peaks. It is important to

be sufficiently downstream in the ridge waveguide to avoid potential near-field disturbances

from surface modes living along the in-/outlet interface.

The definition in Eq. 5 gives us a quantitative measure, namely the delay η, which can be

adopted in the formulation of a time domain optimization problem.
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4. Optimization problem

The optimization problem with the setup given in Fig. 1 is based on pulse shaping of the

envelope r(t) of the probe signal u(t) registered at ΩE in the ridge waveguide. The aim is

to distribute air and dielectric material in the design domain ΩD, such that envelope signal

obtained at multiple registration points is delayed as much as possible while following a

prescribed envelope, obtained from the same input signals propagating in a straight ridge

waveguide. The pulse conforming measure is defined as [33]

f =

∫ T

0

∑

i∈ΩE

[ri(t) − αpi(t − η)]2dt

∫ T

0

∑

i∈ΩE

α2pi(t)
2dt

(6)

where ri(t) denotes the envelope of the probe signal ui(t) registered at the ith point in ΩE,

pi(t) is the prescribed envelope function delayed η and scaled by α, and T is the termination

time of the transient simulation. To render a physically interpretable measure, we have

normalized with respect to the prescribed pulse envelope area(s). The envelope of the probe

signal ui(t) is retrieved by utilizing the Hilbert transform [33].

For the design parametrization each element in the design domain ΩD is linked to one

(density) variable ρe that varies continuously between 0 ≤ ρe ≤ 1. By adopting a similar

concept to that of the solid isotropic material with penalization (SIMP) scheme, the de-

sign variable serves to interpolate the inverse permittivity linearly between two candidate

materials [23, 49]

ε−1
r (ρe) = (1 − ρe)(ε

I
r)

−1 + ρe(ε
II
r )−1 (7)

where (·)I and (·)II designate air and dielectric material, respectively. All design variables

are assembled into the global design vector ρ = (ρ1, . . . , ρM)T . The continuous design

parametrization in Eq. (7) enables the use of gradient-based optimization algorithm of the

globally convergent method of moving asymptotes (GCMMA) [50] to find optimized designs.

To formulate a pulse delaying strategy, we introduce η′ = η/s as a design variable with

s denoting a scaling factor. The shape of the pulse is controlled by treating the design

response measure in Eq. (6) as a constraint. The objective is to maximize the delay, which

we formulate as
min

ρ∈RM ,η′∈R
−η′

s.t.: Governing equation (2)

g(ρ, η′) = f(ρ, η′)/g∗ − 1 ≤ 0

0 ≤ ρe ≤ 1, e ∈ ΩD

0 ≤ η′ ≤ η′
max

(8)
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where 0 < g∗ ≤ 1 has been introduced to allow for broadening and distortion of the delayed

pulse in Fig. (4) after traversing the PhC-WG. The maximum allowable distortion is obtained

for g∗ = 1 (i.e. the initial pulse shape has been completely destroyed) and is gradually

diminished when g∗ → 0 (i.e. the output pulse shape is perfect). The gradients of g with

respect to the structurally related design variables are found through the adjoint sensitivity

analysis method [33, 34, 51]. The sensitivity of g with respect to the time related design

variable η′ is given by

∂g

∂η′ =

∫ T

0

∑

i∈ΩE

−2 [ri(t) − αpi(t − sη′)] α∂pi(t−sη′)
∂η′ dt

g∗
∫ T

0

∑

i∈ΩE

α2pi(t)
2dt

(9)

where the change of variable Π = t − sη′ yields ∂pi/∂η′ = −s∂pi/∂Π which we approximate

by finite differences. It is important to stress that the delay variable η = sη′ is several orders

of magnitudes larger compared to the structurally related design variables that vary between

0 and 1. Hence, the sensitivity expression in Eq. (9) has to be scaled adequately through

s in order to gain a well-posed optimization problem. A strategy for choosing the scaling

parameter is 0 ≤ η/s ≤ 3 yielding η′
max = 3.

Once a material distribution is obtained for a maximum delay and a given allowable

distortion g∗ and α, we will start from the resulting design and use the pulse shaping response

function in Eq. (6) as the objective, now with a fixed η, to minimize the pulse distortion.

The optimization problem is now formulated as

min
ρ∈RM

f(ρ, η′)

s.t.: Governing equation (2)

0 ≤ ρe ≤ 1, e ∈ ΩD

(10)

Hence, the optimization is completed in two consecutive steps: 1© a pulse delay step cf.

Eq. (8), followed by 2© a pulse restoring step cf. Eq. (10). The pulse shaping constraint in

the delay formulation is applied in a single point in the ridge waveguide center sufficiently

downstream to allow for larger pulse delays. To achieve perfect transmission for the output

signal in the subsequent restoring step, we apply the pulse shaping objective in multiple

points along a vertical line, such that the ridge waveguide mode profile will be inherited

automatically in the registered output signal.
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5. Maximizing the delay

We excite the ridge waveguide by an incident plane-wave Gaussian pulse with a 1/e-intensity

half width T0 centered around t0

Ψinc(x, t) = Ψ(y) sin[kx − ωc(t − t0)]e
− (t−t0−x/vp)2

T2
0 (11)

where Ψ(y) is the amplitude profile analytically known for ridge waveguides, k = ωc/vp is

the wave number with ωc denoting the center angular frequency. Further, vp = c/n is the

phase velocity with n =
√

μrεr designating the refractive index. By utilizing the inverse

Fourier transform, the conversion from FWHM bandwidth BFWHM to Gaussian 1/e width is

obtained by

T0 =

√
4 ln 2

πBFWHM

(12)

For a specified bandwidth BFWHM the optimization formulation in Eq. (8) can successfully be

deployed to obtain a device exhibiting slow light behavior by exciting the structure with the

incident wave in Eq. (11) in which T0 is determined by Eq. (12). To give the optimization

problem design freedom and opportunity for a significant slow down effect we choose an

operational FWHM bandwidth BFWHM = 6nm, and the driving frequency is ωca/2πc =

0.2163.

To retain a certain periodicity and symmetry of the final design, we only allow for design

freedom in the x-mirrored part of the in-/outlet region ΩIO as well as in the x-y mirrored

part of the supercell ΩSC distributed periodically downstream over the lattice distance 17a

in the design domain ΩD (see the symmetry details in Fig. 5). Even though the actual design

update is carried out only in a small part of the design domain, we still need to compute

the sensitivities in the entire design domain, and subsequently map and sum those properly

for the ’active’ design variables. In Fig. 1 the active design set ΩIO ∪ ΩSC is highlighted in

relation to the entire design domain ΩD. It should be combined with Fig. 5 to clarify the

symmetry conditions.

The geometrical restrictions will reduce the optimization design space whereby potentially

well-performing designs are disregarded because nothing dictates that a symmetric and pe-

riodic structure should be the best performing. However, by limiting the optimization to the

in-/outlet region and the supercell, we can directly determine the dispersion characteristics

of the resulting structure by a simple eigenvalue analysis of the supercell. The periodicity

also enhances manufacturability, that is further boosted by standard density filtering of the

design variables with filter radius R = 2.5Δx combined with material phase projection [52].

Even though the applied projection function does not preserve the minimum structural length

scale for some settings [39], it results in well-defined designs, see Fig. 6b, -c, -d and 8c. It

8



should be emphasized that whenever an optimized design is presented we only illustrate the

in-/outlet region in conjunction with the supercell structure.

The first part of the optimization has been dedicated to investigate the design as well as the

time delay response to three different values for the relaxation parameter g∗ = 0.001, 0.005,

and 0.05 and α = 1 of the prescribed pulse envelope area in the pulse shaping constraint.

The designs and time delays appear in Fig. 6. For the lowest relaxation factor g∗ = 0.001 the

pulse is delayed 1.5ps which doubles to 3ps for g∗ = 0.05. However, the price for the largest

delay is a considerable broadening of the pulse and amplitude distortion which corresponds to

an unfavorable reduction of the useful bandwidth of the device. In practice heavy distortion

implies that some of the information carried by the pulse has been lost, and for signal

processing devices it is important to preserve the pulse shape to a certain degree. Further,

the peak intensity reduction of a pulse makes it less effective for driving nonlinear effects.

Based on an eigenvalue analysis of the optimized supercell structures the group index

versus normalized frequency plot in Fig. 7 confirms that the maximized delays give rise to

increased group indices. However, the bandwidth in which the optimized devices can be

considered useful for slow light purposes is simultaneously decreased. The enhanced time

delays induce very strong wavelength dependence of the group index. In particular, we see

that the ’flat-band’ region for the initial guess evolves into an s-shaped kink whose center

is moving towards northwest, causing bandwidth shrinkage. For the largest relaxation value

the average group index is ng ≈ 160, for which, however, the 10% criterion is not satisfied.

This points to the fact, that a bandwidth extension is only obtained at the cost of the group

index. Frankly, this detrimental effect is inherently associated to slow light systems, leaving

the designer of such systems with a difficult task.

All the optimized designs have reached convergence1 within 300 optimization iterations.

In addition to changing the supercell layout, the geometry of the in-/outlet region has been

altered to lower the interface penalty losses, when coupling the access waveguide mode into

the PhC-WG. For real applications it is important to terminate the PhC properly, since

coupling losses, together with backscattering losses, as a result of fabrication disorders, will

degrade the functionality of the slow light device. Intriguingly, a comparison of the optimized

supercell structures in Fig. 6a, -b, -c and the initial supercell layout in Fig. 2a reveals that

the optimization has reduced the size of the air inclusions. We consider this a logical action

in order to reduce backscattering losses as they originate from the overlap of the optical

modes and the hole surfaces [45].

1For the convergence criteria we use that the relative change of the objective function should be less 10−4.
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6. Restoring the ridge waveguide pulse shape

In Fig. 7b it is seen that even for the lowest relaxation factor g∗ = 0.001 we obtain a

supercell design with a group index variation around ng ≈ 70 that is not confined to the

allowable ±10% band for the specified 6nm bandwidth. To tweak this unsatisfied behavior

we have executed the pulse restoring step with the design in Fig. 6a as the initial design

and the maximized delay as the fixed time delay in the pulse shaping objective. Whereas

the delay formulation typically reaches convergence within 300 optimization iterations (it

naturally depends on the relaxation parameters), the pulse shape formulation has required

1710 iterations for converging to the design in Fig. 8b. We believe the reason for this rather

high number of iterations lies in the fact that the optimization has two concerns; while

modification of the supercell structure will result in a change of the waveguide mode, the

in-/outlet design needs to be simultaneously adjusted to eliminate coupling losses. To meet

and balance both regards, the optimization will then progress in small increments.

As it appears in Fig. 7b, the optimized design yields a group index variation that satisfies

the ±10% criterion. It is obvious to pose the question why the pulse shaping optimization

strategy does not result in a completely flat-band region. One explanation could be that the

optimization has ended up in a local minimum or that a flat-band region is not physically

obtainable. We should also remember that as designers we are competing against the intrinsic

dispersion property of the PhC-WG, that the group index can only be increased at the cost of

the operational bandwidth. It is also noted in Fig. 7b that the group index versus normalized

frequency curve is shifted slightly towards lower frequencies compared to the start design.

Based on a comparison of the supercell designs in Fig. 2a and 8c showing that the amount

of dielectric material has increased moderately, the horizontal shift of group index curve is

expected, since the frequency of the guided mode scales by 1/
√

ε in a medium of dielectric

constant ε [39].

The transmission, reflection and energy balance spectrum for the finite waveguide structure

assembled from the supercell design in Fig. 8b without the optimized in-/outlet region is

presented in Fig. 9. It shows clearly defined Fabry-Pérot (F-P) fringes with decreased spacing

towards the slow light wavelength region. In the slow light region near the band edge the

wavelength spacing is measured to Δλ = 5nm that for an effective F-P cavity length Lc =

13a yields vg ≈ c/65. The spectrum also contains a dip at λ = 1375nm with almost zero

transmittance. To explain this we need to consider the band diagram for the optimized

supercell in Fig. 8b, showing that a guided mode (red curve) has been pulled down from the

air band. This mode has an odd mode profile and, apart from living in the waveguide, it

can also live in the upper/lower part of the design domain between the waveguide and the

surrounding PhC. A comparison of transmittance against the band diagram in Fig. 8b shows

that anti-crossing of the even (black curve) and the odd (red curve) modes at λ ≈ 1375 gives
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rise to a mode gap inside the band gap, which explains the dip in transmission and in the

energy balance [17] .

Finally, Fig. 10 shows that almost perfect transmission, i.e. |T |2 ≈ 0.98, and almost zero

reflection are achieved in the wavelength range BFWHM = 1710±3nm specified by the source,

if we include the optimized in-/outlet design. This indicates that no penalty losses are present

at the interface due to a mode mismatch, and the associated Hz field pattern in Fig. 11a for

the dominant source wavelength also confirms perfect transmission compared to the poorly

performing start design with a field pattern given in Fig. 11b.

7. Conclusion

In this study a topology optimization methodology has been presented to design slow light

structures subjected to transient responses. The slow light devices are obtained in two consec-

utive steps: A pulse delaying step, followed by a pulse restoring step. The first step employs

an optimization formulation that delays the probe pulse as much as possible while control-

ling the allowable pulse distortion through a pulse-shaping constraint. In the second step

a pulse-shaping objective is used for the maximum delay obtained from the previous step

to restore the analytically known mode profile of the ridge waveguide, and thereby reduce

the amount of GVD such that the group index variation satisfies the 10% rule [45] for the

operational bandwidth.

The optimization process starts from a suitable W1 PhC-WG with in- and outlet con-

nections to ridge waveguides used to feed the system with an incoming pulse-shaped signal

and, after traversing the PhC-WG, to monitor the probe signal, respectively. The initial

PhC-WG, which has been found through a simple parameter study by varying the radii of

the nearest neighboring holes, has group index ng ≈ 40 with very low GVD.

To retain periodicity and symmetry in the final designs the active design set is limited to

the in-/outlet region as well as to the supercell structure inside the entire design domain. The

manufacturability is further enhanced by standard density filtering techniques combined with

material phase projection. With these settings, the pulse delaying optimization step yields

a structure with group index variation around ng ≈ 70 (i.e. a 75% increase) that does not

meet the 10% criterion. However, the subsequent pulse restoring step fixes this issue, and

the resulting pulse shape is very close to the equivalent one monitored in a straight ridge

waveguide.

The energy flow inside the structures of finite length and an eigenvalue analysis of the

supercell confirm that the initial as well as the optimized structures hold the expected slow

light properties.
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Fig. 1. Ridge wave guide optimization setup. The computational domain con-

tains a solution region ΩS, PML region ΩPML, and design region ΩD encapsu-

lated by the dashed boundary. The ’active’ design set consists of y mirrored

in-/outlet region ΩIO and a supercell ΩSC that is a subset of ΩD. Whenever an

optimized design is presented we only show the material distribution in ΩIO

and ΩSC. The waveguide mode is excited at Γinc with an analytically given

amplitude profile Ψ(y) [42]. The objective is measured at multiple point(s) on

ΩE.
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Fig. 2. (a) The rotated supercell used in the eigenvalue computation to obtain

the (b) band diagram. This shows the normalized frequencies versus normal-

ized wave vectors for an even (solid) and odd (omitted here) PhC-WG mode

in the band gap, and the dashed line indicates the light line above which leaky

modes live. The inset of the graph magnifies the dispersion properties of the

guided mode where the dotted lines confine a region with low dispersion. (c)

Group index ng versus normalized frequency.
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Fig. 5. Symmetry conditions for the ’active’ design set. (a) x symmetry is

imposed for ΩIO. (b) x-y symmetry is imposed for ΩSC. This reduces the

number of active design variables further.
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Fig. 8. Pulse delayed-shaped slow light design. (a) Transient intensity response

of the initial envelope peaking at t = 0ps, and the optimized envelope peaking

at t = 1.5ps with and without pulse shaping. (b) Band diagram for the opti-

mized supercell structure and the transmission spectrum for the structure of

finite length without optimized in-/outlets (c) .
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Fig. 11. H3 field pattern for slow light device. (a) The optimized structure first

by delaying and subsequently shaping the pulse. (b) The initial geometry. The

material distribution is shown with 0.6 threshold.
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