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ABSTRACT 

Optical filters encompass a vast array of devices and structures for a wide variety of 

applications.  Generally speaking, an optical filter is some structure that applies a designed 

amplitude and phase transform to an incident signal.  Different classes of filters have vastly 

divergent characteristics, and one of the challenges in the optical design process is identifying 

the ideal filter for a given application and optimizing it to obtain a specific response.  In 

particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an 

overall device package without requiring exotic fabrication steps, extremely sensitive 

alignments, or complicated conversions between optical and electrical signals.  

This dissertation explores three classes of nano-scale optical filters in an effort to obtain 

different types of dispersive response functions.  First, dispersive waveguides are designed using 

a sub-wavelength periodic structure to transmit a single TE propagating mode with very high 

second order dispersion.  Next, an innovative approach for decoupling waveguide trajectories 

from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response 

while minimizing fabrication limitations.  Finally, high Q-factor microcavities are coupled into 

axisymmetric pillar structures that offer extremely high group delay over very narrow 

transmission bandwidths. 

While these three novel filters are quite diverse in their operation and target applications, 

they offer extremely compact structures given the magnitude of the dispersion or group delay 

they introduce to an incident signal.  They are also designed and structured as to be formed on an 

optical wafer scale using standard integrated circuit fabrication techniques. 
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A number of frequency-domain numerical simulation methods are developed to fully 

characterize and model each of the different filters.  The complete filter response, which includes 

the dispersion and delay characteristics and optical coupling, is used to evaluate each filter 

design concept.  However, due to the complex nature of the structure geometries and 

electromagnetic interactions, an iterative optimization approach is required to improve the 

structure designs and obtain a suitable response.  To this end, a Particle Swarm Optimization 

algorithm is developed and applied to the simulated filter responses to generate optimal filter 

designs. 
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CHAPTER 1 
INTRODUCTION 

1.1 Basics of Optical Filtering 

Optical structures of all shapes and sizes rely on their ability to bend and control 

frequencies of light.  The term “optical filter” is an exceedingly broad description that essentially 

includes any structure that purposely distinguishes between different frequency components of 

an incident signal and treats them in different ways. 

The transformation applied to an input signal can be in terms of amplitude, phase, or 

both.  The former is accomplished principally through some form of resonance or interference, 

while the latter involves dispersive and phase delay effects.  While a number of structures, such 

as all-pass filters, offer minimal amplitude distortion, some degree of frequency-dependent phase 

is always applied by the filter to the incident signal. 

Ignoring nonlinearities, optical filters consist of linear time-invariant systems, which may 

be characterized in the time domain in terms of an impulse response function, h(t) [1].  Given an 

input signal, x(t), the output, y(t), is defined as: 

             dthxthtxty  (1.1) 

In the frequency domain, this relationship becomes 

       HXY   (1.2) 

where 

       ieHH   (1.3) 



 2

The complex-valued transfer function, H(), is the primary focus of filter design 

problems.  Its magnitude provides the amplitude distortion of the incident signal, while the 

frequency-dependent phase, (), describes the phase accumulated for a given frequency 

component upon transmission through the filter.  Some of the more interesting effects resulting 

from filters rely upon the spectral dependence of this phase function. 

1.2 Frequency-Dependent Phase and Dispersion 

1.2.1 Group Delay 

The principles governing the induced spectrally-dependent phase, or dispersion, are well 

known, though it is illustrative to highlight a few basic details.  The phase may be written in 

terms of a propagation constant, , of an optical mode inside the filter 

      zn
c

z eff 
   (1.4) 

where neff is the effective index of the guiding structure and z describes the propagation distance.  

Assuming that the amplitude distortion may be ignored and we are able to treat the filter as a 

guiding structure along which a signal travels1, propagation of a specific frequency harmonic a 

distance z through a filter takes the form 

       ize,a,za  0  (1.5) 

Since we generally consider optical pulses with a reasonably small frequency bandwidth 

propagating through media whose optical response has finite derivatives with respect to 

frequency, it is convenient to expand Eqn. 1.4 in a Taylor Series about a center frequency, ω0: 

                                                 

1 While this treatment does not specifically apply to filters based on mechanisms other than guiding structures (such 
as cavities or gratings), the mathematical treatment may still be used to a certain degree, though the identified 
variables may take on a different physical meaning. 
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        32
0

0

0

2

11 
















 OD

vg

 (1.6) 

vg is known as the group velocity, and its inverse is the group delay per unit of propagation 

distance, which describes the phase accumulated by a propagating optical signal.  It is given by 

    





 d

dn

cc

n

d

d

v
effeff

g


1

 (1.7) 

This represents a delay experienced by optical signals propagating through the structure.  

The actual group delay for a signal propagating a distance, z, is given by 

 
 



d

d

v

z

g
g   (1.8) 

It is also reasonable to define a group index, ng, which provides a descriptive “figure of merit” 

for evaluations of degree of delay a given structure provides.  The group index is defined 

according to 

    








d

dn
n

d

dn
n

z
c

v

c
n eff

eff
eff

eff
g

g
g   (1.9) 

and offers a value in terms of “delay per unit length.”  From this we see that group delay only 

becomes highly significant near sharp resonant peaks in the effective index curve.  Thus, 

obtaining a large group delay requires designing a device either to operate near material 

resonance peaks or to rely on a geometry that creates a resonance condition or operates near a 

modal cutoff condition. 
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1.2.2 Quadratic Dispersion 

Dω in Eqn. 1.6 describes the spreading, or dispersion, of the optical signal as a function of 

frequency.  It is often convenient to work in terms of wavelength instead of frequency, so we use 

an equivalent definition for dispersion, D: 
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Returning to Eqn. 1.5, we know that an optical signal described in the frequency domain 

is related to the time domain description via a Fourier Transform pair: 
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Eqn. 1.12 is analytically solvable for a few different types of input signals.  The most common 

one is a Gaussian pulse of waist, 0.  After propagating a finite distance, z, the new beam waist 

has a dependence on the dispersion of the medium and is given by 
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where 
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The dispersive term in the exponent of Eqn. 1.12 induces frequency chirp whereby the 

spectral components of an optical signal are no longer centered on top of each other (Figure 1-1).  

This can work to one’s advantage as a pulse incident on the dispersive structure already chirped 
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with a sign opposite of the frequency derivative of the propagation constant for the structure will 

experience compression instead of broadening since the frequency components are pushed back 

on top of each other by the structure’s dispersion. 

 

                         
 

 
Figure 1-1: Relative Phase Delays of Frequency Components Causes Broadening of Signals. 

 

1.2.3 Higher Order Dispersion 

An additional consideration when dealing with pulse dispersion is the case where higher 

order dispersion is present.  In some cases it is quite significant, though in most cases involving 

simple pulse compression and expansion it shows up as a slight ripple in an otherwise linear 

group delay curve.  This can be represented as an additional frequency-dependent phase term 

incorporated into Eqn. 1.12.  The phase can generally take the form 
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where ωp gives the frequency of the ripple and τa gives its amplitude.  0 defines the phase 

between a ripple peak and the spectral center of the signal.  Following the derivation of [2] we 

note that this phase results in a term of the form  

  
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
n

in
n

ncosiz ezJie   (1.16) 

according to the Jacobi-Anger expansion.  Jn(z) is a Bessel function of the first kind.  We can 

then evaluate the new pulse according to 
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Thus, group delay ripple (GDR) results in a continuum of overlapping signals with 

different amplitudes and temporal centers.  The phase differences across the overlapping pulses 

result in a noticeable distortion of the final signal.  Figure 1-2 demonstrates the effects of GDR 

on a pulse broadened from 1ps to 1ns.  The frequency of the ripple is taken to be 1THz, and the 

results are plotted for different values of the amplitude.  As can be seen, GDR causes oscillations 

in the output signal, though the magnitude has to be a noticeable percentage of the overall group 

delay before it significantly affects the output quality. 
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Figure 1-2: Pulse Broadened from 1 ps to 1 ns with Different Magnitudes of Group Delay 

Ripple. 
 

1.2.4 Summary and Description of Dispersion 

The frequency-dependent response of optical structures results in three different orders of 

dispersion that apply a phase transform to an incident signal in dispersive waveguides and delay 

line filters.  The first is simply termed “delay” or “group delay” and describes a time delay 

applied to an optical signal.  This is the principal consideration for nearly monochromatic signals 

or structures that are not dominated by quadratic dispersion.  This is particularly applicable in a 

variety of situations, such as time synchronization in communications systems or optical 

buffering of data until it may be processed [3]. 

The second type of dispersion, known as “quadratic dispersion” or simply “dispersion,” 

describes a difference in group delay for different frequency components of an optical signal.  As 

discussed above, a chromatic pulse impinging upon a dispersive guiding structure receives a 

different delay for each component frequency and is thus broadened as it propagates. 
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Telecommunications, imaging systems, military uses for high-power lasers, and 

numerous other optical applications relying on ultra-short pulses require means for compensating 

or controlling dispersive effects on such optical signals.  In particular, these methods make use of 

dispersive guiding structures to broaden pulses to better control individual frequency 

components.  Additionally, in high-speed communication systems, dispersion-induced pulse 

broadening is already present, and dispersive structures are needed to compensate for this and to 

restore the original signals.  Other applications [4] make use of dispersive delay for time 

synchronization or data buffering [3] or to enhance nonlinear interaction by slowing the group 

velocity [5]. 

To increase the rate at which a pulse is spread or compressed, the dispersion must be 

increased.  For example, consider a 1 ps Gaussian pulse at 1.55 microns.  Expanding the pulse to 

2 ps within a 100 mm length of a dispersive waveguide requires a structure with dispersion on 

the order of 6800 ps nm-1 km-1.  A typical optical fiber has a dispersion of around 10-20 ps nm-1 

km-1 near this wavelength.  To expand the same pulse up to 1 ns within the same length of 

waveguide requires a dispersion of nearly 4,000,000 ps nm-1 km-1. 

The third category of dispersion involves the higher order terms in Eqn. 1.6.  Whereas 

quadratic dispersion results from a convolution of the frequency components of a pulse with a 

linearly-varying frequency-dependent group velocity, the higher order terms result in a further 

convolution of the frequency-domain phase-shifted pulse with a set of Bessel functions.  In 

general, the higher order dispersion results in noise in the output signal and is usually 

undesirable.  For a relatively narrow signal bandwidth, these terms may have minimal effect, 

though for most optical filters the higher order terms are minimized as much as possible [6]. 
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1.3 Classes of Optical Filters 

Optical filters can largely be divided into two basic classes based on their filtering 

mechanisms [7].  Finite impulse response (FIR) filters are essentially single-pass devices.  They 

do not rely on feedback mechanisms or optical reflections.  Thus, signal delay is limited  and 

strictly determined by the length of the structure.  Dispersive waveguides and Mach-Zender 

based filters fit into this category [4, 8]. 

The alternative class, termed infinite impulse response (IIR) filters, relies on multiple 

reflections and feedback mechanisms.  Filters in this class include Bragg gratings, resonators, 

and many all-pass filters. Their resonant nature allows them to produce extremely large group 

delays for frequencies near resonance. 

The class of IIR filters may further be divided into two categories based on the relation (if 

any) between the amplitude response and phase response of the filter.  Specifically, if  Hln  

and () form a Hilbert Transform pair, either the phase or amplitude response is sufficient to 

fully characterize the filter.  Given one, the other is completely determined [7].  These types of 

structures, termed minimum phase filters (MPF), include Fabry-Perot systems and some Bragg 

grating structures [4].  Non-MPF filters do not have the relationship between the phase and 

amplitude response and thus offer an additional degree of freedom in terms of the filter design 

process.  The non-MPF category of IIR filters include chirped Bragg gratings and all-pass filters. 

To improve the response of the filter it is common practice to couple multiple filters to 

each other [9].  This can provide a narrower line width for resonant transmission lines from 

certain filters, though coupling and fabrication errors can diminish the spectral response rather 

than improve it. 
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1.4 Dispersive Guiding Structures 

1.4.1 Types of Dispersion in Waveguides 

In bulk media, dispersion is caused by the variation of material refractive index with 

respect to wavelength.  In waveguide structures dispersion is caused by two additional effects: 

the difference in propagation constants for different modes, and the dependence of a single 

mode’s propagation constant on frequency.  So long as the structure is single-moded, the former 

plays no part and may be ignored.  Material dispersion is generally quite small in comparison 

with the dispersive values and is only dependent on the material used, so this type of dispersion 

cannot be adjusted through modifications to the waveguide shape.  Hence this discussion will be 

confined to considerations of waveguide dispersion and an exploration of the ways different 

frequencies interact with the waveguide shape to allow the tuning of its phase response into a 

desired optical filter. 

1.4.2 Highly Dispersive Guiding Structures 

A waveguide with no longitudinal structural variation should introduce minimal 

amplitude distortion of the incident signal and must rely solely on a phase response as its 

filtering mechanism.  Additionally, since the structure does not rely on resonance effects, the 

magnitude of the introduced dispersion must be as large as possible to provide a reasonable filter 

response within a relatively short waveguide length.  Thus we specifically look for structures that 

contain a very high group delay or considerable quadratic dispersion depending on the 

application.  We are primarily concerned with guiding structures of a wafer-size scale that may 

be formed using standard lithographic and nanofabrication processes and that produce dispersive 

delay on the order of 1 ps/nm.  While bulk materials may yield substantial dispersion near 
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resonances, they also produce a rather significant degree of absorptive loss.  The focus of this 

research will be on large dispersion magnitudes obtained through the actual structure of the 

waveguides.  We also restrict our consideration to low intensity incident light and neglect 

nonlinear effects in these types of guiding structures. 

1.4.3 Design of Dispersive Waveguides 

A number of different approaches have been taken to varying the cross-sectional 

geometry of guiding structures to produce substantial group delay and dispersion.  Although 

pairs or combinations of waveguides are not generally well known for their dispersion, primarily 

because most basic descriptions assume identical waveguides, they can prove quite effective 

under certain circumstances.  When the structures differ substantially, dissimilar modes may 

actually form coupled modes with dispersive magnitudes dependent on the difference in group 

delays for the two individual guides.  Their operation has been explored and discussed elsewhere 

[10, 11].  Plasmonic [12, 13] and photonic crystal waveguides [14-16] make use of combinations 

of material and geometrical properties to achieve resonance effects suitable for a strong 

frequency dependence. 

An additional approach presented here adjusts the geometrical cross section of 

waveguides in the manner of a subwavelength grating or an effective index material pushing the 

modes close to cut-off to obtain highly dispersive behavior [17].  Neglecting scattering losses, 

the resulting filter function for a length, L, of the resulting waveguide will have a filter response 

of the form 

    LieH    (1.18) 
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where () is the propagation constant described earlier.  The design problem centers on 

optimizing  for the desired response. 

To adequately obtain a specific magnitude of dispersion and group delay, one must 

carefully tune the geometric shape of the structure.  This is particularly true when it operates 

very near mode cut-off conditions, as the structure bandwidth becomes quite limited and a design 

wavelength can be shifted into a scattering mode if the geometry changes too much.  The design 

process requires a means to analyze the cross-sectional geometry, determine the effective 

refractive indices for a range of frequencies, and, from this information, derive an estimate of 

group delay and dispersion. 

1.5 Bragg Grating Filters 

Bragg structures and chirped Bragg gratings, especially as used in optical fibers, are some 

of the more recognizable optical filters [18-20], particularly in the realm of pulse compression 

and stretching.  They involve the coupling of light from one propagating mode into another mode 

(either forwards or backwards propagating) [21, 22] in a manner highly dependent on frequency, 

or more specifically, on the ratio of the grating frequency to the propagating wave frequency.  

One of the biggest drawbacks with these structures is the inherent fabrication limitations which 

inevitably result in the introduction of non-ideal dispersion in the form of GDR to the system.  

Various studies have considered the magnitude of the impact of the GDR on the quality of the 

system as a whole [2, 23, 24], while others have considered a variety of means to compensate for 

this problem [25, 26].  Additional difficulties with Bragg structures include the significant length 

of the structures needed for any substantial degree of dispersion and the coupling loss for the 

typical Bragg reflector arrangement. 
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1.5.1 Bragg Grating Theory 

There are a several ways to approach the operational theory of Bragg reflectors.  We 

generally consider a shallow grating fabricated on top of a waveguide (often an optical fiber) as 

demonstrated in Figure 1-3 in a form known as a distributed Bragg reflector (DBR).  For 

diffraction gratings, the well known Bragg condition is given by 

 Kmkk incm


  (1.19) 

where km and kinc give the propagation vectors for the mth diffracted order and the incident field, 

respectively, and K gives the grating vector.  For sufficiently small grating periods the only 

propagating orders are the transmitted and reflected modes.  The Bragg condition simplifies to 

 Bn 2  (1.20) 

which describes the grating period, L, needed to diffract the maximum possible energy into the 

reflected mode given an average waveguide index, n, and free space wavelength, λB. 

 
Figure 1-3: Reflective Bragg Grating. 

 

We generally utilize a grating that provides a very small index contrast, which puts it in 

the weak coupling regime.  We can turn to coupled mode theory to further describe the behavior 

of the structure.  If A gives the field strength of the forward propagating mode and B gives the 

strength for the reflected mode, the coupled-mode equations can be written as 
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where κ is the coupling constant and  is given by 
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which obviously goes to zero when the Bragg condition is met.  The coupling constant for the 

Bragg grating structures is given by [4, 27] 

 
B

n

n

n


 






2

 (1.23) 

where Δn is the index modulation depth and  is the confinement factor of the mode inside the 

waveguide. 

By straightforward solution of Eqns. 1.21 it may be shown [27] that the solutions take the 

form 
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where the boundary conditions A(0) = A0 and B(L) = 0 have been assumed (field incident from 

the left only).  L is taken to be the length of the grating and 22   .  Thus the complex 

filter responses for the transmitted and reflected beams are given, respectively: 
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Notice that if the incident light frequency falls within a stop band defined by   ,  

becomes imaginary and the field strength of the forward propagating wave decays exponentially 

with distance along the waveguide.  Exactly at the Bragg wavelength, the reflectance becomes 

 LtanhR 2 .  If the magnitude of the coupling constant is small (usually due to the 

introduction of a very small refractive index modulation) and the grating length is sufficiently 

long, very specific bands of frequencies may be selectively reflected. Thus, Bragg structures 

introduce a definite amplitude transformation to the optical signal in contrast with the dispersive 

waveguide structures where the filter response consists primarily of an induced phase variation. 

1.5.2 Principles of Chirped Bragg Gratings 

We now note that if the grating period is gradually changed or chirped along its length, 

different frequency components may be given a relative phase delay proportional to the distance 

between corresponding Bragg grating periods.  This situation means that both κ and  are 

functions of z.  The exact solution of Eqns. 1.21 is nontrivial and is not usually solved directly.  

A better solution is obtained by considering each section of uniform-period grating individually 

and identifying a 2x2 transmission-line matrix for it.  The full filter response is given by the 

product of each of these matrices [28].  Since the matrices are seldom trivial, the product is 

usually calculated numerically and may be used to evaluate the filter response of arbitrary non-
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uniform gratings [18].  However, an approximate response may be discussed from a purely 

analytical perspective. 

To obtain uniform second-order dispersion from a chirped Bragg structure we would 

apply a uniform linear chirp to the grating period.  The time delay between two spectral 

components reflected from different positions along the grating separated by a distance, L, is 

given by 
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where c is the speed of light and n is the effective index of the guiding structure.  The spectral 

width between these components can be similarly determined by making use of Eqn. 1.20: 
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This gives a value for the dispersive delay of the structure as 
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1.5.3 Group Velocity in Bragg Gratings 

Another effect common to resonant structures, such as Bragg gratings, involves the 

change of the group velocity of a mode.  It was mentioned earlier that the phase response of a 

uniform Bragg grating is given by the Hilbert transform of its amplitude response.  Thus, large 

changes in the filter’s amplitude response will result in a correspondingly large change in its 

phase response.  Such a variation in the phase corresponds directly to a large group delay, and a 

resonant structure operating near the band edge of a filter sees group velocity drop quickly to 

zero (see Figure 1-4).  This effect can also be described in terms of the multiple reflections the 
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mode experiences before it is able to leak out of the structure.  From either perspective, the 

interaction between the mode and the device geometry is significantly increased.  This effect has 

been specifically employed to enhance the gain available to a given resonant cavity in the 

formation of one-dimensional band-edge lasers [29].  Similar effects have been obtained through 

careful tuning of two- and three-dimensional geometries [30, 31]. 

 
Figure 1-4: Group Velocity in a Fiber Bragg Grating. 

 

The large group delay introduced near the edges of the band can also be used to great 

advantage in certain delay line applications.  Although there is only a very small bandwidth to 

which the large delay values apply, this approach offers a means by which the Bragg structures 

may be used in a transmission system, obviating the need for a potentially lossy coupling scheme 

to separate out the incident and reflected signals [19].  The group delay in the pass band is given 

by [32] 
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which rapidly diverges as the wavelength approaches the stop band. 
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1.5.4 Design of Bragg Structures 

Analysis of Eqn. 1.28 reveals a number of advantages and disadvantages of these 

structures.  First, these structures can have an extremely large bandwidth given an appropriately 

large chirp.  The dispersive delay can be increased by simply increasing the length of the 

structure, while actual dispersion is dependent strictly on the effective index of the structure and 

the total chirp.  A device in glass may have a bandwidth of 15 nm and dispersion on the order of 

106 ps nm-1 km-1 quite easily by using a total grating chirp of 5 nm. 

Unfortunately, to make effective use of such magnitudes of dispersion, that chirp must be 

stretched out over tens of centimeters.  At this point fabrication considerations come into play, 

and one must define some unique manner in which to uniformly increase the grating period by 

fractions of a nanometer without introducing significant GDR.  Various approaches have been 

attempted to mitigate these difficulties [6]. 

A variety of other filtering applications can also be obtained through a nonlinear 

functional variation of the grating period along the grating length.  This can be utilized to tune 

the filtering characteristics of the structure by introducing pass- and stop-bands to various 

frequency components in addition to the induced group delay.  While the response may be 

evaluated for an arbitrary grating period function, determining the necessary function to obtain a 

desired filter response becomes a much more challenging problem. 

1.6 Nano-Scale Resonant Structures 

1.6.1 Resonant Optical Filters 

Optical cavity resonators act much like their analogs in the acoustic world where tuning 

forks resonate at specific frequencies based on their size.  Much of the terminology may also be 
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borrowed from the area of electronics where resonators are composed of inductor-capacitor 

circuits. 

The properties of microcavity resonators have been explored in great detail and are 

exploited for myriad applications.  Whereas waveguides are based principally on the concept of 

transmitting signals, resonators are devices designed to store optical energy and build up high 

field intensities [33].  In recent years they have been most useful in quantum electrodynamics 

experiments and have provided excellent sources and filters in optical communications [34]. 

While many types of cavities have been fabricated, they commonly fit into one of three 

basic geometries.  Fabry-Perot cavities are based on the concept of highly reflective coatings 

(often in the form of DBR layers) at either end of a guiding structure, typically forming a sort of 

pillar structure [35].  In contrast, whispering gallery cavities make use of a circular or elliptical 

path for the propagating components of the resonant mode.  These often come in the form of 

microspheres or disk or ring resonators [36].  The final standard resonator geometry consists of a 

defect inside a photonic crystal structure [37, 38], where a standing wave takes on a more two- or 

three-dimensional nature in comparison to the Fabry Perot (where a standing wave is in the axial 

direction) and the whispering gallery (where a standing wave is oriented azimuthally) structures. 

1.6.2 Modes of Optical Resonators 

1.6.2.1 Wave Equation for Cavity Resonators 

The derivation of the resonant modes inside cavity resonators begins with Maxwell’s 

equations: 
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The standard derivation of the wave equation involves taking the curl of Faraday’s Law and 

substituting Ampere’s Law into it, arriving at 
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If the permittivity in the region can be treated as piecewise constant, we may obtain a similar 

expression for the magnetic field in each of the separate regions: 
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In rectangular coordinates, the left-hand side of both equations will simply further using the 

vector identity: 

     EEE


2  (1.33) 

This can be further simplified by incorporating Gauss’ Law: 
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Since we are again assuming piecewise constant permittivity, the divergence of the electric and 

magnetic fields are both identically zero inside each region of uniform permittivity. 

Unfortunately, in non-Cartesian coordinate systems the Laplacian of the vector field, 

E


2 , has no independent definition, and Eqns. 1.31 and 1.32 cannot be simplified in this 

manner, which would normally pose a problem for cylindrical geometry.  However, this may be 

overcome by expressing the wave equations in terms of the longitudinal components of the fields 

[33].  Thus, combining Eqn. 1.33 with Eqns. 1.31 and 1.32, we obtain 
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where the Laplacian operator is expressed as 
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The transverse components are obtained by direct application of Maxwell’s Equations 

(Eqns. 1.30) to this result and solving in terms of the longitudinal components.  If the field 

vectors are written as ẑEEE zT 


 and ẑHHH zT 


, the transverse components may be 

expressed as [39] 
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where T is the transverse gradient operator, and we have assumed 2
2

2





z
.  This relies on 

our ability to represent an arbitrary field distribution as a superposition of plane waves through a 

Fourier Transform. 

1.6.2.2 Cylindrical Symmetry 

The cavity geometries considered in this research are principally rotationally symmetric.  

In such cases, the azimuthal dependence of all solutions simplifies greatly.  The boundary 

conditions require that a given solution and all its derivatives must be continuous at  = 2.  

Thus, all resonant solutions for a rotationally symmetric cavity must have the form 

      inez,rEz,,rE   (1.39) 

Therefore, the azimuthal derivatives used to determine the various field components may be 

expressed as 
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 (1.40) 

Note that the sign of the azimuthal mode number may be switched without affecting the solution 

of the wave equation.  Although the opposite sign would result in an independent solution set, 

the radial dependence is identical, and it may safely be ignored without loss of generality.  

1.6.2.3 Solutions for Dielectric Cylinder 

As a specific example, consider the geometry depicted in Figure 1-5.  A dielectric 

cylinder of permittivity r with radius a and length L is embedded in a semi-infinite region of 

permittivity c.  The cylinder may be positioned so that the bottom end sits on a substrate region 

with permittivity s. 

The simplicity of the geometry suggests that a separable solution of the form 

     zErEz,rE Z
z

R
zz   should be appropriate.  Thus, Eqn. 1.35 becomes 
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and similarly for the Hz field.  To obtain realistic behavior of the fields at very small and very 

large radial values, the appropriate solutions to the radial equation take the form 
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The longitudinal solutions are given simply by 

   ziZ
z ezE   (1.43) 
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An equivalent solution set may be expressed for the magnetic field [33]. 

 
Figure 1-5: Dielectric Cylindrical Cavity. 

1.6.2.4 Radial Solution 

The resonant frequencies and hence wavenumbers, k0, of the cavity are one of the key 

qualities we look for when writing particular solutions to the equations above.  To obtain the 

exact expression for the frequencies requires implementing boundary conditions and matching 

transverse field components at the edge of the cavity.  Gauss’ Law requires the electric and 

magnetic field components tangential to the radial surface of the dielectric cylinder to be 

continuous.  Hence, the solutions for Ez, E, Hz, and H for radii less than a must be continuous 

with the solutions for radii larger than a. 

  To simplify the expressions somewhat, we make the following change of variables: 
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Thus, from Eqn. 1.42 we have for Ez 

    aqCKahAJ nn   (1.45) 

and for Hz 
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    aqDKahBJ nn   (1.46) 

where A and B are the amplitudes of the longitudinal electric and magnetic fields inside the 

cylinder and C and D are the amplitudes outside the cylinder. 

To obtain the azimuthal field components, the solutions of Eqns. 1.42 and 1.43 are 

substituted into Eqns. 1.37 and 1.38.  The field-matching expression for the azimuthal electric 

field component becomes 
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Similarly, continuity of the azimuthal magnetic field component requires 
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The general solution to all four continuity expressions results in the following [33]: 
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While the general case is a rather convoluted expression, the simpler transverse cases 

based on n=0 simplify things considerably.  It can easily be shown that the resonant frequencies 

for TE0mp modes, which assume zero longitudinal electric field, come from setting the leftmost 

term in square brackets to zero, while the frequencies for the TM0mp modes, derived from the 

assumption that Hz = 0, come from setting the rightmost term from the left hand side of Eqn. 

1.49 to zero.  By substituting in Eqns. 1.44 and solving numerically, one obtains values for k0 in 

terms of .  For a complete numerical value, one must turn to the longitudinal solution to 
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determine .  In general, there will be multiple numerical solutions to Eqn. 1.49.  These values 

correspond to the different radial mode numbers, m. 

1.6.2.5 Longitudinal Solution 

The discussion in the previous section provides the standard solution for propagating 

fields in cylindrical waveguides.  However, the resonant property of a cylindrical cavity involves 

standing waves rather than traveling waves.  This may be represented by taking a forward and 

backward propagating mode of equal amplitude and summing the two to obtain a sinusoidal field 

dependence [39]: 

      zsinzE Z
z  (1.50) 

The standard approach at this point is to assume perfect electrical conductors (PECs) at 

the top and bottom surfaces of the cylinder, in which case,  = 0 and L = p, where p takes on 

integer values and refers to the longitudinal mode number of the given resonance.  A purely 

dielectric resonator does not include the requirement that the electric fields go to zero at the ends 

of the cylinder and the mode will extend outwards into the surrounding region resulting in a 

larger value for . 

1.6.3 Loss Mechanisms and Quality Factors 

The results of the preceding discussion point to the presence of a set of discrete resonant 

modes in a given cavity.  Further, those modes take the form of standing waves.  For such 

solutions, the total energy contained in the cavity will be a time-independent constant value.  

Specifically, the energy will transition from electrical to magnetic and back again in an optical 

analog to the ideal circuit resonator consisting of an inductor and a capacitor. 
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This theoretical model leads to two considerations.  First, it is reasonable to presume that 

any non-ideal resonator present in any realistic environment must be able to contain optical 

signals at frequencies other than the specified resonances.  This is particularly true in the case of 

“loaded resonators” which are coupled to other structures by some means.  Light of various 

frequencies may be directly injected into the resonant cavity.  In loaded resonators the resonant 

modes may exist at some frequency other than the specified resonance.  The amplitude of the 

modes will decrease with the difference between the injected frequency and the ideal resonant 

frequency [40]. 

The second issue of note is that structures that permanently contain constant amounts of 

optical energy are of no practical value.  A more useful structure is one into which we can couple 

a packet of energy, store it for some length of time, and then extract it again at some later time 

period.  This requires that some mechanism exist by which the contained energy in the cavity 

may decrease over time.  The primary reasons for this energy loss involve some combination of 

internal dissipative absorptive losses into the cavity materials and coupling between the internal 

resonant cavity modes and external scattering and traveling waves. 

The resonant characteristics of optical cavities are termed in like manner to their circuit 

analogs.  In addition to the resonant frequencies, the other property of note is the cavity quality 

factor (Q-factor) of the corresponding resonance.  This unitless number is given as 

 
dt

dU
U

Q r  (1.51) 

where r is the frequency of a given resonance and U is the stored energy.  Note that this is a 

differential equation for stored energy whose solution takes the form 
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This suggests a suitable means to incorporate the Q-factor directly into the resonant frequency.  

If the frequency is assumed to be complex with the form  i~
r  , the expression for the 

contained energy in the cavity results in the following [41]: 
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Thus, we may express the Q-factor in terms of the ratio between the real and imaginary parts of 

the resonant frequency: 

 
 
 





~Im

~Re
Q r

22
  (1.54) 

From circuit theory, the transfer function of a resonant circuit element is given by a 

Lorentzian function in terms of the input frequency: 
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From this relation, one can define a frequency bandwidth, Δ, corresponding to the full-width 

half-max (FWHM) of the transfer function.  This is related to the Q-factor in the following way: 

 




 rQ  (1.56) 

One additional aspect that is not immediately evident is that the Q-factor often increases 

for higher-order modes.  This makes sense if one visualizes the higher-order resonator as a 
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collection of smaller resonators containing lower-order modes.  This could be accomplished by 

positioning PECs at each of the nodes in the original resonator.  Thus, only the outermost 

resonator has imperfect lossy sidewalls, and the total power dissipation from the structure is 

significantly less than the sum of the energy losses from a collection of individual low-order 

resonators with imperfect sidewalls.  On the other hand, the total energy contained inside the 

structure is exactly equal to the sum of the energy in each of the smaller resonators.  Therefore, 

the ratio of the contained energy to power dissipation, and hence the quality factor, is 

significantly increased for higher-order resonances [40]. 

1.6.4 Mode Volume 

An additional characteristic of interest for resonant cavities is the mode volume.  While 

the contained cavity volume is immediately intuitive, the mode volume is an integral of the 

volume of space weighted by the field intensity.  This value provides a better indication of the 

overall size of the contained mode and can indicate its degree of confinement.  Large mode 

volumes are useful in cavity amplifiers, as the field is spread over a large gain region.  On the 

other hand, cavity quantum electrodynamics experiments rely on very small mode volumes to 

obtain an enhancement to the spontaneous emission rate [34, 42, 43]. 

The effective mode volume is given by the volume integral of the field intensity divided 

by the peak intensity [42]: 
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1.6.5 Resonant Enhancements 

1.6.5.1 Spontaneous Emission and Purcell Factors 

Some of the major applications for resonant microcavities involve quantum 

electrodynamics experiments and luminescent sources.  Both cases typically make use of a 

quantum dot or dipole located inside a cavity and coupled to its resonant modes [34].  When the 

coupling is very strong, the atomic source interacts coherently with the resonant mode resulting 

in an entangled state and a splitting of the transmission peak [44]. 

The weak coupling system was originally described by Purcell [45], who predicted that if 

the dissipation time for a photon emitted by an atom or quantum dot inside a cavity were shorter 

than its radiative lifetime then reabsorption would be minimal and the spontaneous emission 

(SE) rate would be enhanced [42].  In a resonant cavity with a large Q-factor, the mode density is 

dramatically increased, which leads to the enhanced SE rate [46].  The enhancement is quantified 

by the Purcell factor 
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where /n gives the resonant wavelength inside the cavity. 

1.6.5.2 Group Velocity and Slow Light 

While the slow group velocity is typically observed in resonant devices incorporating a 

highly reflective structure at either end, which is usually effected by means of DBR layers, a 

similar result may be obtained in cavities with uniform geometry in the axial direction [47].  If a 

cylindrical cavity is coated in the radial direction with highly reflective layers (typically either 

DBR layers, metallic films, or a photonic crystal structure), a pair of resonant modes (such as the 
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TE and TM modes) will repel each other and can result in anomalous dispersion and even zero 

group velocity under the right conditions. 

Under such conditions the Q-factor of the cavity is dramatically enhanced if the cavity 

dimensions are carefully balanced with the reflections at the end caps of the cavity.  Without 

conditions at the ends restricting the field at the boundaries, a pair of modes exists for each 

resonance order (standing sine wave versus cosine wave).  By expressing the transfer functions 

for the pair of modes in terms of cavity length and reflections at both ends, one may obtain its 

eigenvalues, .  The Q-factor for the pair of resonances is given in terms of the cavity length and 

group velocity as follows [48]: 
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At points where the transfer function eigenvalues are closest to 1 (their imaginary part drops to 

zero), the Q-factor peaks strongly.  The distance between the peaks is closely related to the end 

cap reflections and cavity geometry [49]. 

1.6.5.3 Nonlinear Effects 

In resonant optical filters electromagnetic energy can become highly concentrated in very 

small areas.  This leads directly to nonlinear effects, which can either pose significant design 

challenges or provide an interesting and exploitable filter characteristic. 

Third-order nonlinearities principally appear in the form of the Kerr effect in which the 

refractive index of a material varies as a function of the incident field intensity: 

 Inn 2  (1.60) 
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n2 is the material-dependent Kerr constant and I is the incident field intensity.  In transmission 

lines, this effect results in self-phase modulation which can take the appearance of standard 

dispersion [50, 51].  For optical cavities expected to operate under specified field strengths, this 

effect may be calculated and applied as a perturbation to the cavity permittivity to fully analyze a 

given design.  However, the actual shape of a resonant mode strongly influences the strength of 

the Kerr effect, so it is difficult to include in the first-order design phase. 

Another nonlinear effect that may be explicitly incorporated into the filter design is 

second harmonic generation (SHG).  This effect results in a polarization proportional to the 

square of the incident field: 

       EEP


:2 )2(  (1.61) 

This means that an incident pump beam can produce an output signal at twice its initial 

frequency.  This has been experimentally demonstrated in a variety of structures, including 

photonic crystals [52], which may be designed to incorporate a sign reversal of the nonlinear 

term to provide quasi-phase matching (QPM) [53, 54]. 

In the case of optical microcavities, we have the possibility of dual-resonance cavities.  

By designing the structures to be resonant at both fundamental and harmonic modes we obtain 

significantly enhanced SHG resulting from a direct corollary of the Purcell effect outlined above 

[55, 56]. 

Several issues are cause for consideration when attempting to design such a cavity.  First 

there are issues with phase and mode matching.  SHG can result in a second-order pump 

polarization either exactly in phase or out of phase with the resonant harmonic signal.  The 

former is preferred, while the latter should be suppressed by appropriate cavity design [57, 58].  
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Further, the modes must overlap sufficiently to create a phase-matched interaction.  The relevant 

overlap integral may be expressed as [59] 
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As an additional consideration, the polarizations of the selected resonant modes must 

match the corresponding values of the nonlinearity tensor.  The tensor is commonly written in 

the form 
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where the diJ terms of the tensor are given such that i gives the resulting second-order 

polarization (x, y, and z respectively) and J indicates the combination of the two fundamental 

field components to be multiplied (xx, yy, zz, yz, xz, and xy respectively).  Most highly 

nonlinear materials only have a few nonzero tensor terms, thus the polarizations of the 

fundamental and harmonic modes for cylindrical cavity resonators must be chosen carefully. 

For example, consider a resonator using a TE011 pump mode.  If TE0mp harmonic modes 

are expected, the nonlinear material must have large d11 and d22 tensor values (d33 may also be 

used if the crystal is oriented properly).  Unfortunately, most materials do not exhibit such 

properties (though SiO2 could be used if one is content with very low conversion).  On the other 

hand, GaAs has a very large value for the d14 tensor element.  This indicates an x-polarized 
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harmonic given a product of an Ey and Ez fundamental.  A TE011 pump mode has a polarization 

given by 

      rEyxrE  cosˆsinˆ, 


 (1.64) 

This allows us to obtain a second-order polarization of the form 
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Notice that this corresponds to the z-component of a second-azimuthal-order mode, and this then 

should be the choice of the resonant harmonic mode to be optimized. 

1.6.6 Design of Resonant Cavities 

Resonant optical cavities offer a unique and fitting approach to a wide variety of optical 

applications.  The ability to store optical energy for some length of time, cause it to interact with 

some material geometry, and then release it, forms the basis for various optical filtering 

methodologies.  Taking a broad spectrum of input frequencies and stripping out a narrow band 

centered on a specific resonance is essential to photoluminescent structures of various types. 

However, as this section has highlighted, the operation and spectral characteristics of 

resonant cavities vary dramatically with shifts in the geometrical configuration of the structures.  

To make effective use of such cavities for the many possible applications mentioned previously, 

two design tools are crucial.  First, a method to quickly obtain the optical characteristics of the 

cavity is vital.  While a basic analytic approach has been outlined in this chapter, a rigorous 

model applicable to arbitrary cavity geometries is necessary. 

The second tool of import to the cavity design process is a means to optimize the 

geometrical configurations and tweak the structures in various ways to obtain specific resonance 
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conditions.  Simple cylindrical cavities can largely be designed by an analytical method, and 

even in more complicated structures a rough idea of the necessary cavity size can be estimated.  

However, the tolerances for some of these parameters are extremely limited if one is to obtain a 

high Q-factor resonance at a specific frequency, and they may be too difficult for back-of-the-

envelope methods.  Also, when realistic geometries, such as tilted cavity sidewalls and variations 

in layer thicknesses, are taken into account, the required parameter combinations shift beyond 

the range of prediction available to simplistic design methods. 

Finally, even when cavities are designed for specific resonance conditions, a cavity-based 

optical filter requires a complete response function which involves coupling characteristics.  In 

one-dimensional resonant filters or in those based on a waveguide coupling light into and out of 

resonant cavities, the response transfer function has sharp peaks around the resonant frequencies 

and relatively flat response away from them [60, 61].  In three-dimensional cavities, light that 

does not couple into the cavity is not necessarily re-coupled into a reflected mode in the manner 

of waveguide-based resonators.  A large fraction of the energy away from resonance can couple 

into cavity scattering modes and leak out of the device.  Thus, a complete analysis of cavity 

resonant filters requires a complete model for light coupled into and out of the structure as a 

function of frequency. 

1.7 Sign Conventions 

This research makes repeated use of Maxwell’s Equations and various design and 

analysis methods derived from them.  Solutions to Maxwell’s Equations are typically expressed 

as traveling waves of the form 

      rktierErE
  

0  (1.66) 
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Unfortunately, the sign in the exponent is not consistent across different fields.  The “-“ sign is 

more common among physicists, while engineers migrate towards the “+” sign (in addition to the 

use of “j” in place of “i”).  While the different conventions have equivalent meanings, one must 

apply them consistently in any derivations, particularly in the formulation of numerical modeling 

approaches.  This research makes use of the “+i” sign convention throughout. 

1.8 Optical Filter Design Summary 

Optical filters and resonators include a vast spectrum of devices and applications.  To 

fully discuss optical filters in detail is well beyond the scope of this research.  However, this 

chapter has provided a theoretical analysis of three different types of filters.  Dispersive 

waveguide structures fall within the category of finite impulse response structures and rely on 

length scaling to introduce a time delay to the optical signal.  Their filter response primarily 

introduces a frequency-dependent phase variation with little in the way of amplitude modulation 

(at least for frequencies above cut-off). 

Infinite impulse response filters include the two presented examples of a Bragg grating 

structure and a resonant microcavity.  These types of structures rely on resonance and multiple 

reflections and can produce magnitudes of delay that are independent of the device size.  In 

addition, these two filters introduce an amplitude variation to the output signal and separate 

specific frequency components for either transmission or reflection. Large delay magnitudes 

usually occur either at or very close to the resonances of these structures (as would be predicted 

from the Hilbert transform of the amplitude response).   

However, in some ways these two types of structures are opposites of each other.  Bragg 

structures rely on resonant properties to reflect narrow bands of frequencies and largely transmit 
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the rest.  Microcavities are used primarily to select and transmit narrow resonant frequencies 

while reflecting (or simply rejecting) off-resonant components. 

A basic theoretical framework for the description of each of these filters has been 

presented in this chapter.  Succeeding chapters will deal with the tools needed to adequately 

model the realistic response of each type of filter.  Additionally, we explore a proposed method 

for taking the actual filter response and feeding it back into its geometrical description.  This 

allows us to optimize the filter design for a desired spectral response. 
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CHAPTER 2 
RESEARCH OVERVIEW 

2.1 Optical Filter Design 

Optical filters find uses in a vast array of applications from telecommunications to signal 

processing and detecting.  One of the most significant challenges in obtaining a filter for a given 

application is the ability to quickly decipher the necessary structure geometry that will provide 

the given filter response. 

In the optical filter design process, one must first determine the types of filtering 

capabilities required.  A filter that simply seeks to introduce a phase delay over a given 

frequency band will use a very different device than one that needs to selectively remove very 

narrow frequency components from a broadband signal.  Beyond that, an appropriate method 

must be devised both to model the response of a designed optical filter and to adjust its geometry 

to obtain a response function that more closely matches that required by the given application. 

Three classes of optical filters have been identified and discussed in detail.  Innovative 

design approaches will be presented for filters in each category, and the necessary numerical 

modeling and optimization tools required to develop each filter will be discussed. 

2.2 Design and Optimization Tools 

In order to adequately analyze and design any such structures, a number of numerical 

techniques is required.  The first category of design tools consists of methods that evaluate 

Maxwell’s Equations for a given geometry in an attempt to determine the interaction of electric 

and magnetic fields with the structure.  These tools allow one to analyze a given structure and 
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determine its overall electromagnetic properties and its response to given boundary conditions 

(expressed as optical sources).  The other type of design tool used in this research is a numerical 

optimization method.  Optical filters typically have a wide variety of geometrical variables, each 

affecting the filter response in a different manner.  The goal of numerical optimization is to find 

a combination of geometrical parameters that allows the filter to perform to some predefined 

criteria. 

2.2.1 Numerical Analysis of Optical Filters 

CHAPTER 3 presents a number of frequency-domain numerical techniques.  These 

methods assume monochromatic conditions and evaluate Maxwell’s Equations across a given 

filter geometry for a single optical frequency.  To find the overall spectral response, one must 

recalculate the response at a large number of closely spaced frequencies across the band of 

interest. 

The frequency-domain techniques presented herein are threefold.  First, an 

eigenfrequency solver involves expressing Maxwell’s Equations as an eigenvalue problem with 

the optical frequency given by the eigenvalues of the system.  This allows one to obtain the 

resonant frequencies and corresponding Q-factors of a given filter geometry.  Since resonance 

conditions are inherently assumed, this method is primarily used to analyze the spectral 

characteristics of resonant cavities. 

The second numerical method similarly expresses Maxwell’s Equations as an 

eigensystem, but in contrast with the first approach assumes that the field may be expressed as 

waves propagating along the z-axis.  In this manner, the eigenvalues of the system are the wave 
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propagation constants for a given optical frequency.  This method lends itself well to the analysis 

of dispersive waveguides. 

The final technique, known as the method of lines (MOL) is largely an extension of the 

second method to geometries that vary in the propagation direction.  Specifically, propagation 

constants can be obtained in each discrete layer in the axial direction, and then the sets are 

connected using electromagnetic boundary conditions to obtain a single transfer matrix 

describing the response of the entire structure.  This approach allows one to obtain both 

reflectance and transmittance for an arbitrary incident electric field and can provide both phase 

and amplitude response.  It can be used for most types of optical filters and will be specifically 

applied to the analysis of Bragg grating structures and optical cavity filters in this research. 

2.2.2 Optimization of Optical Filters 

Evaluation of the phase and amplitude response for a given geometry is essential to the 

overall analysis of optical filters, but the design phase typically requires incremental 

improvements to designs to produce a specific filter response.  For some simple filters and 

response functions, requisite geometries may often be derived from first principles.  However, 

complex response functions and elaborate filter geometries may require an iterative numerical 

optimization method.  CHAPTER 4 outlines the particle swarm optimization (PSO) tool, one of 

the more recently developed probabilistic search algorithms.  This method provides a reasonably 

fast and efficient way to adjust filter geometries to obtain desired filter responses. 
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2.3 Dispersive Waveguide Filter Design 

The first major category of optical filters discussed above involves waveguides with large 

phase response.  In these structures the geometry is designed to increase group delay and 

dispersion.  CHAPTER 5 explores a specific example of a dispersive waveguide filtering 

mechanism (illustrated in Figure 2-1).  This geometry operates very close to cutoff for TE-type 

propagating modes, and this combined with the periodic nature of the structure results in very 

large dispersive magnitudes.  The actual capabilities and response of the structure (termed a 

“Nano Dispersion Amplified Waveguide,” or “Nano-DAWG”) is discussed in detail.  Coupling 

to the structure and alternative approaches are also explored. 

 
Figure 2-1: Nano Dispersion Amplified Waveguide Structure. 

 

2.4 Bragg Grating Filter Design 

The second major area of optical filters explored in this research makes use of Bragg 

gratings to form the filter response.  CHAPTER 6 explores an innovative approach to the design 

and fabrication of Bragg grating waveguide structures.  The grating vector is decoupled from the 

waveguide trajectory, introducing an additional degree of flexibility in the design of filter 

response without succumbing to fabrication constraints.  Figure 2-2 illustrates the basic approach 
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whereby a radial grating is fabricated on an optical substrate and a waveguide with an arbitrary 

trajectory is placed directly on top.  The combination of the two produces some filter response.  

The decoupling approach, in addition to providing a significant degree of flexibility in terms of 

possible responses, allows one to re-use the same grating for a variety of different waveguides 

and corresponding filter responses.  A special case design based on a linear group delay curve is 

discussed in detail and the parameters and approach necessary for a more general case is 

outlined.  

   
Figure 2-2: Spiral Waveguide, Radial Grating, and the Resulting Combination. 
 

2.5 Microcavity Filter Design 

The final class of optical filters of interest to this research departs from the waveguide 

nature of the first two filter classes and moves into the realm of three-dimensional filter design 

using resonant microcavities as the foundational element.  CHAPTER 7 describes the design and 

optimization of axially symmetric resonant microcavities and a number of approaches to optical 

filtering using such structures.  One approach uses exotic cavity geometries to confine the 

resonant mode and obtain large Q-factors to allow a single cavity to filter out narrow 

+ = 
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transmission bands around design wavelengths.  A more interesting case makes use of 

multiplexed cavities with somewhat lower Q-factors (as illustrated in Figure 2-3).  By coupling a 

large number of these structures together, the Q-factor is increased, although additional spectral 

features begin to appear due to resonance and oscillations between cavities.  Additionally, by 

making use of higher Q cavities using DBR layers for confinement significantly higher group 

delay magnitudes are obtained, albeit over a much narrower bandwidth.  These features and 

possible uses for these structures are discussed in detail, and some specific design examples are 

demonstrated and analyzed. 

 
Figure 2-3: Multiplexing of GaAs/AlAs Cavity Filter. 

 

2.6 Research Summary 

The fundamental goal of this research is to provide the design tools and approaches 

necessary for the formulation of various types of nanostructured optical filters.  The applicable 

numerical tools for design, analysis, and optimization are derived and discussed in detail.  In 

addition, three classes of optical filters are explored and innovative designs in each category are 

presented and characterized.  Coupling and fabrication challenges are noted and accounted for in 
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the analysis, and calculations and predictions for the overall filter responses for the different 

designs are presented. 
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CHAPTER 3 
FREQUENCY DOMAIN MODELING OF OPTICAL FILTERS 

3.1 Eigenstates of Optical Filters 

The preceding chapters outlined a few varieties of optical filters, each of which has a 

unique response function in the frequency domain.  Delay lines are highly dispersive devices 

whose geometrical configurations are used to introduce a large shift in the propagation constant 

as a function of wavelength.  The variation of the propagation constant of the fundamental 

guided mode provides a means to calculate the structure’s dispersion.  Optical resonators involve 

a cavity around which electromagnetic fields circulate.  The resonant modes of the cavity are 

caused by standing waves of the field around the circumference of the cavity.  The geometry of 

the cavities and the requirement that the accumulated phase around the perimeter be an integer 

multiple of 2 tends to result in a very narrow spectral width of the resonant modes for 

microcavity resonators.  This gives them a very significant quality factor which makes them 

advantageous choices for a number of optical filtering applications.  The difficulty is in 

designing and predicting the behavior of both of these types of optical filters. 

Frequency domain simulation methods are based fundamentally on solving Maxwell’s 

Equations either at or for a single frequency value.  This is in direct contrast to the time domain 

approach presented in the next chapter.  These models are based on steady-state behavior of 

systems.  In order to obtain broadband results, frequency domain simulations must be run 

multiple times to ascertain the response at each individual spectral component.  Thus, there are 

certain limitations to these models.  Dispersion, nonlinear effects, and other aspects of some 
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optical filters are not directly attainable from these models, though they may be estimated based 

on filter behavior calculated for various relevant wavelengths. 

That said, frequency domain models are typically quite fast.  Further, they are absolutely 

essential if one wishes to observe very narrow spectral linewidths in the optical response.  Time 

domain models must be run for exorbitant amounts of time to be able to even approximate the 

sharp frequency-dependent changes in the response function. 

While there are myriad frequency domain models, those relevant to this research are all 

based, in part, on formulating Maxwell’s Equations into an eigenvalue problem, where the 

eigenvalues will represent either a propagation constant or resonant frequency depending on the 

formulation. 

3.2 Modeling Fields on a Grid 

3.2.1 Finite Difference Approximations 

Critical to formulating the equations for any model and to representing the fields and 

material parameters is the determination of the best numerical representation.  The principle 

models used in this research are based on the finite difference representation for derivatives and 

a rectangular grid.  In this way, continuous functions are fit to a grid where the values are 

specified at discrete points.  I make use of a rectangular grid for ease of implementation, though 

others have demonstrated improved accuracy and efficiency with more elaborate gridding 

schemes such as variable grid spacing [62] and conformal surface gridding [63]. 

The standard approach for the finite difference expressions involves a simple Taylor’s 

series expansion allowing for second order accurate derivatives [64].  The first derivatives are 

expressed according to 
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This provides the first derivative midway between two grid points separated by a distance Δx 

given the field value at both points.  A second derivative may be obtained by applying the first 

derivative operator twice. 

This equation is suitable for most situations, though additional terms may be included to 

provide derivatives of higher-order accuracy.  Additionally, others [65, 66] have demonstrated 

alternative formulations of the derivative operators that provide a significant improvement in the 

order of accuracy under certain conditions. 

3.2.2 Field Representation 

The numerical methods used throughout this research are explicitly based only on the 

curl equations rather than the full set of Maxwell’s Equations.  In general, the divergence 

equations are a direct consequence of a charge-free medium.  However, when the field 

components are snapped to a finite grid extra care must be taken to ensure the divergence 

conditions are satisfied, particularly for two- and three-dimensional problems.  If the field 

components are oriented incorrectly or if they are all co-located on the grid, the divergence 

conditions will not necessarily be satisfied. 

The most common finite difference gridding algorithm was introduced by Yee [67] and is 

illustrated in Figure 3-1.  The H-fields are interlaced around the E-fields so that they rotate 

around each other.  This method offers a number of convenient attributes [68]: 

1) The location of the field components lends itself immediately to a straightforward 

implementation of the curl expressions with second-order accurate derivatives. 
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2) The tangential components are naturally maintained across the interface of dissimilar 

materials without the need to apply additional requirements to strictly enforce the 

boundary conditions. 

3) The divergence conditions are automatically satisfied. 

4) The nonphysical numerical dispersion resulting from the finite grid is significantly less 

with the Yee grid than with co-located grids [69]. 

  
(a)       (b) 

  
(c)       (d) 
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(e)       (f) 

Figure 3-1: Field Positioning for (a,b) 1-D; (c) 2-D TE; (d) 2-D TM; (e) 3-D; (f) 
Axisymmetric Simulations. 

 

To provide sufficiently accurate results, the grid spacing must be significantly smaller 

than the wavelength of interest.  On the other hand, if the grid spacing is too small, the 

computation time and computer memory required to complete the simulation become 

unreasonable.  A reasonable compromise between speed and accuracy occurs when the grid 

spacing is roughly between 
max

min
n10

  and 
max

min
n40

 , where min  is the smallest wavelength 

of interest and maxn  is the largest refractive index present in the simulation region. 

3.3 Maxwell’s Equations Formulation 

As with most numerical methods, we begin the derivation with Maxwell’s Equations: 
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The standard derivation of the wave equation involves taking the curl of Faraday’s Law and 

substituting Ampere’s Law into it, arriving at 
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In rectangular coordinates, the left hand side will simplify further using the vector identity 
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This can be further simplified by incorporating Gauss’ Law: 
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Eqn. 3.3 then simplifies to 
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In non-Cartesian coordinate systems, the vector Laplacian, E


2 , is not defined apart from the 

curl operator (Eqn. 3.4), and Eqn. 3.3 cannot be simplified in this manner. 

Note that the curl operators may be written in matrix form according to 
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so long as we are operating in rectangular coordinates.  The case is similar with cylindrical 

coordinates, though the matrix is slightly more complicated: 
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It will also be convenient to represent the divergence operator in cylindrical coordinates 

in matrix form: 
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3.4 Perfectly Matched Layer Boundary Conditions 

The boundary conditions require extra care to eliminate non-physical reflections from the 

edges of the simulated area.  The most common formulation for absorbing boundaries is known 

as the perfectly matched layers (PML) and incorporates what is known as the stretched 

coordinate method [70, 71].  In this method, each successive layer at the boundary has a 

somewhat higher electrical conductivity than the one before it, while at the same time a 

simulated magnetic conductivity is applied to the layer to ensure impedance matching and to 

minimize reflections. 

In some cases, Dirichlet boundaries may be used without adversely affecting the 

simulation results.  This is only the case if the field is sufficiently small at all boundaries so that 

reflections are negligible.  This does allow some flexibility in the formulation of the expressions, 

but also requires extra caution, as the hard boundaries can cause the appearance of non-physical 

guided modes that would not exist apart from the boundary conditions. 
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Additionally, the estimation of loss terms of both guided modes and resonant frequencies 

requires a mechanism for said loss to occur.  PML boundaries allow energy from the simulated 

modes to leak out of the region, resulting in complex eigenvalues whose imaginary part provides 

a mechanism to estimate the loss. 

3.4.1 Material Tensor Expressions 

Permeability and permittivity both become tensors representing uniaxial materials inside 

PML regions [70].  For minimal reflections, they can be shown [68] to take the form of an 

invertible diagonal matrix 
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where u1, u2, and u3 are the coordinates for the three dimensional region (x,y,z for Cartesian 

coordinates or r,,z for cylindrical coordinates).  The  and σ terms scale the real and imaginary 

parts of the permittivity (and permeability) as a function of depth inside the PML. 

There are different methods for expressing the  and σ terms [68], though I make use of a 

polynomial grading of the form 
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where m is the order of the grading and d is the width of the PML region.  A significant amount 

of experimentation [72] has been performed on various combinations of parameters, though m º 

3, d º 10 grid points, and 



n.

max

53  (where n is refractive index and Δ is the grid spacing) 

appear to provide reasonably good performance.  Optimal values of max vary according to the 

problem geometry, though it is usually between 1 and 5. 

3.4.2 Cylindrical Coordinates 

There are additional considerations in cylindrical coordinates.  The  component might 

not appear to need any PML considerations due to a lack of any boundary in that direction.  

However, the radial and azimuthal components are not independent, so a radially-dependent 

azimuthal PML term is still required [73, 74].  Eqn. 3.10 is still suitable for the r and z 

components (s1 and s3), but the azimthal term is given by 
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where r0 is the radius at the edge of the PML region. 

3.4.3 Modification of Maxwell’s Equations 

Since the PML tensor scales both the permittivity and permeability, both of Mawell’s curl 

Equations are affected: 
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The resulting expressions are no longer as easy to simplify into a succinct form as they were 

previously.  However, the PML tensor is an invertible diagonal matrix, and the matrix forms for 

the curl expressions allow us to solve the pair with a limited degree of manipulation. 

3.5 Eigenfrequency Calculations 

When attempting to model and design micro-cavities, one needs a method for obtaining 

the resonant modes of the structures.  The structures will typically resonate at a variety of 

different frequencies, each having its own field distribution and Q-factor.  There are a number of 

different methods for obtaining these resonant modes [75-77], each method offering a different 

set of advantages and disadvantages.  For sufficiently small problems, or geometries where 

symmetry may reduce the necessary simulation points, methods based on linear algebra [78-80] 

provide a fast and efficient algorithm for obtaining the modes. 

Maxwell’s Equations express the field components in the cavity.  The resonance 

condition and cavity geometry are used to combine and simplify the equations into a pair of 

differential equations in terms of the electric field.  These are expressed in terms of an 

eigenvalue problem, where the calculated eigenvalues are interpreted as the resonant frequencies 

of the cavity. 

When we calculate eigenfrequencies, we are looking for two pieces of information: the 

resonant frequencies of the cavity and the Q-factors of each resonance.  PML boundaries are 

essential to the estimation of Q-factors, as mentioned above, so Eqns. 3.13 are central to the 

formulation of the model.  Further, the polar coordinate system adds a degree of complexity to 

the operators, and the formulation of the curl expressions in Eqn. 3.8 is used. 
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3.5.1 Problem Symmetry 

We assume a rotationally symmetric cavity geometry, which implies an angular 

symmetry for the fields as well.  For a resonant mode inside such a structure, the boundary 

conditions require 
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where n is an integer describing the azimuthal variation of the mode.  The mode equations are 

separately derived for each n value and are solved independently.  The excited field in the region 

should be the superposition of all the resonant modes from each n value.  This indicates that the 

angular derivative can be expressed analytically 
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and similarly for the H field. 

With n given, the problem can be reduced to two dimensions by incorporating the 

divergence condition (assuming a charge-free region).  Since Gauss’ Law is defined in terms of 

electric displacement rather than electric field, we make a change of variables at this point: 
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The divergence condition then gives 
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The azimuthal component may now be eliminated by a convenient transform matrix: 
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This allows us to write an eigenvalue problem in terms of Dr and Dz.  However, the terms 

involving n in the denominator suggest that an alternative approach must be applied when 

working with zero-order modes.  Eqn. 3.17 indicates that the azimuthal term is independent of 

the radial and z-directed field components in this case.  The same is true with the magnetic field, 

which suggests that the zero-order modes may be represented as a function of either E or H 

exclusively.  The electric displacement vector components are co-located with the corresponding 

electric field components. 

3.5.2 Derivative Operators and Boundary Conditions 

Since several terms incorporate an inverse of the radial coordinate (which becomes 

singular on the z-axis) proper positioning of field components is critical.  The grid is structured 

so that only field components that go to zero on the z-axis are positioned on integer radial grid 

locations [68].  Components that are nonzero on-axis are located on the half-grid in the radial 

direction, as illustrated in Figure 3-2. 
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Figure 3-2: Field Component Locations for Axisymmetric Simulations 

 

Eqn. 3.1 provides the formulation for the derivative operators, but the positioning of the 

field components requires slight differences in the exact construction of the corresponding 

derivatives.  For example: 
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Thus, we define four different derivative operators: 
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The operators are identified so that the E-labeled derivative operators are used in the curl of the 

electric field in Eqn. 3.13, while the H-labeled operators are incorporated in the curl of the 

magnetic field.  Eqns. 3.20 and 3.23 operate on integer grids and result in values for field 

components on the half-integer grids.  Eqns. 3.21 and 3.22 operate on the half integer grids and 

result in values located on the integer grids.  This allows each of the derivative operators to be 

implemented as matrices with nonzero elements strictly along the main diagonal and a single 

additional diagonal.  The field components can then be represented as a vector, allowing the 

system of equations to be solved via linear algebraic methods. 

3.5.3 Transverse Modes 

As discussed earlier, the zero-order modes are handled in a slightly different manner than 

the higher-order ones.  The divergence condition (Eqn. 3.17) indicates that the azimuthal 

component of the electric field is linearly independent from the radial and axial components.  

This indicates that the zero-order modes can be divided into two categories: transverse electric 

(E) and transverse magnetic (H).  These will be designated as TE0mp and TM0mp modes 

respectively. 

3.5.3.1 TE0mp Modes 

Since the azimuthal derivatives are all zero, the cross-product operator from Eqn. 3.8 

simplifies to the following: 
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Since we are only concerned with the E, Hr, and Hz field components, Maxwell’s Equations in 

operator form become 
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Since s  is invertible, the first equation may be solved for the magnetic field 
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which is then substituted into the second equation: 
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After some simplification and substitution of the appropriate PML matrix elements, the operator 

matrix equation becomes 
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We may simplify this expression a bit further if we expand the PML terms.  The terms are 

expressed according to 
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Some of the PML terms may be pulled out of the partial derivatives resulting in 
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The operators on the left hand side may all be combined into a single matrix, resulting in a 

standard eigenvalue problem.  The eigenvalues of the system give the complex wavenumbers of 

each of the resonant TE0mp modes, while the eigenvectors give the azimuthal electric field for the 

mode. 

3.5.3.2 TM0mp Modes 

For the TM modes, the first concern is the boundary conditions.  As with the TE case, the 

azimuthal field component is zero on-axis, which suggests that the coordinate system indicated 

in Figure 3-2 would be better served if the H and E field components were all swapped. 

Following the same method as the derivation of the TE modes, we assume that the only 

field components present are H, Er, and Ez, which instead results in 
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Solving for the electric field and substituting gives 
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Expanding and simplifying further produces the following: 
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Once again, canceling appropriate PML terms results in the final eigenvalue expression: 
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This equation is solved in the same manner as the TE equation to obtain the TM0mp resonant 

modes. 

3.5.4 Higher Order Modes 

The derivation of the eigenvalue expression for the higher order modes closely follows 

that of the TE modes, though with a greater degree of complexity.  One major difference is that 

the equations are derived in terms of electric displacement defined by Eqn. 3.16 as opposed to 

electric field.  As before, Maxwell’s Equations from Eqn. 3.13 are expressed in matrix form: 
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After replacing the derivatives with the appropriate operators and simplifying, the equations 

become 
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The two equations may now be combined and simplified further, resulting in 
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Combining matrices once again and canceling PML terms yields the following: 
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This matrix is then combined with Eqn. 3.18 to eliminate the azimuthal term: 
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Eqn. 3.39 is the full eigenvalue expression for the complete set of higher order modes.  Once the 

electric displacement vectors for each resonant mode are calculated, Eqns. 3.16 and 3.18 may be 

used to obtain the full 3-D vector form of the electric field for each of these modes. 

3.5.5 Quality Factors of Eigenfrequencies 

Properly implemented PML boundary conditions will incorporate a loss mechanism into 

the eigenvalues computed from the systems of equations, which provides an estimate of the 

energy leakage out of the geometry.  Thus, the resonant frequencies calculated in the solver will, 

in general, be complex-valued.  The imaginary part gives the loss and is directly related to the Q-

factor of the cavity [81] according to 
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3.5.6 Model Benchmarks 

To verify the predicted resonant frequencies and Q-factors from the model, a variety of 

test cases were used to benchmark the model against published values.  [73] gives values for a 

cylindrical dielectric resonator surrounded by air.  The cylinder radius is 5.25mm, its length is 
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4.62mm, and its permittivity is 38.  The simulated resonances compared to those reported is 

demonstrated in Table 3-1.  [75]  reports values for a few higher order modes for a similar 

resonator except with a length of 4.6mm.  These comparisons are presented in Table 3-2. 

Table 3-1: Comparison of Transverse Mode Resonances. 
Mode Simulated freq. Reported freq. Simulated Q Reported Q 
TE011 4.8406GHz 4.8713GHz 38.6 51 
TE021 9.1108GHz 9.1199GHz 43.2 47.4 
TM011 7.5229GHz 7.5083GHz 74.9 86 

 

The model was also benchmarked against more complicated geometries [82] with similar 

degrees of accuracy.  To ensure the simulation accuracy is good over a range of geometries, the 

periodic enhancement of Q-factors as a function of cavity length described and simulated 

through a time domain calculation in [49] was also confirmed by the eigenmode simulation, as 

demonstrated in Figure 3-3.  The resonant frequencies matched very closely with the published 

values and indicate excellent agreement, particularly considering the vast differences in 

simulation methodology and data gridding.  The strong agreement between published data and 

simulation results for a range of geometries and resonances provides greater confidence in the 

model results. 

Table 3-2: Comparison of Various Mode Resonances. 
Mode Simulated freq. Reported freq. Simulated Q Reported Q 
TE011 4.855GHz 4.829GHz 39.3 45.8 
TM011 7.577GHz 7.524GHz 74.5 76.8 

HEM111 6.290GHz 6.333GHz 42.8 30.7 
HEM211 7.703GHz 7.752GHz 316.0 327.1 
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(a)       (b) 

Figure 3-3: Q-factor Dependence on Cavity Length (a) Published and (b) Simulated. 
 

3.6 Eigenmode Calculations 

As discussed previously, delay lines offer another type of optical filter in which the total 

delay scales linearly with length.  In this case it is desirable to obtain a guiding cross-section that 

offers an extremely high dispersion around the desired operating frequency.  To design such a 

structure, one needs a reliable method for calculating the frequency response of an arbitrarily-

shaped waveguide cross-section. 

While material and modal dispersions will have some overall effect, we are primarily 

concerned with designing structures containing extremely large waveguide dispersion, which is 

related to the frequency dependence of the effective index of the waveguide.  As such, we simply 

need to calculate the effective index over a range of frequencies to obtain the dispersion of the 

delay line. 

While the previous section outlined a method for obtaining the standing wave resonant 

frequencies of a structure, a slight variation of that formulation allows us instead to obtain the 
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propagation constants corresponding to traveling waves as a given frequency.  In this 

formulation we make the assumption that light of a specific frequency is being guided through 

the delay line perpendicular to its cross-section with some propagation constant.  By a 

straightforward derivation from Maxwell’s Equations, we arrive at a linear algebraic formulation 

wherein the propagation constants are given by the eigenvalues.  We may solve this expression 

over a band of closely spaced frequencies to obtain the spectral response of the delay line.  This 

approach is known as an eigenmode formulation, whereas the approach for the resonators is 

termed the eigenfrequency formulation. 

3.6.1 Mode Expression 

For these waveguides, we assume that propagation is along the z-axis, so the electric field 

takes the form 

     ziey,xEz,y,xE 


 (3.41) 

This allows us to eliminate the z-derivatives.  Eqn. 3.6 then simplifies to 
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This equation is also an eigenmode expression where the eigenvalues are the propagation 

constants of the corresponding eigenmodes.  A TE mode may be obtained by assuming there is 

no electric field component in the direction of propagation (Ez=0).  Maxwell’s Equations may 

then be solved in terms of Hz: 
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Similarly, a TM mode may be obtained by assuming Hz=0 and solving in terms of Ez: 
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 zzrz EEkE 22
0

2    (3.44) 

These equations are all available in Comsol’s Femlab software, which, due to its 

efficiency and ease of use, provided most of the propagation constants for the dispersive 

waveguide structures discussed in this research.  The values were benchmarked against a custom 

solver script implemented according to the finite difference methods described in [79]. 

3.6.2 Dispersion Calculations 

The results of eigenmode simulations are often given in terms of an “effective refractive 

index” for the structure expressed according to 

 effn

 2

  (3.45) 

where  is the calculated propagation constant and  is the simulated wavelength.  Once the 

propagation constants are determined at fine increments over a band of wavelengths, the 

dispersion may also be obtained.  Dispersion is expressed according to the following equation: 
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We can then apply the finite difference expressions to the derivative term to obtain the 

magnitude of dispersion for the guiding structure over a given frequency band. 

3.6.3 Bent Waveguide Modes 

Another mode-solver problem arises when we allow the waveguide trajectory to bend 

along a curved path.  An angular propagation direction will rely on a rather different mode shape 

than will propagation down a straight-line waveguide.  For gentle curvatures the difference in the 

propagation constants is not substantial, but radial loss terms can become significant for long 
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bent waveguides.  It is worthwhile to implement a complex-valued mode solver to ascertain the 

loss terms as a function of waveguide curvature in order to determine the limitations for a curved 

waveguide filter. 

3.6.3.1 Model Formulation 

We again start with Maxwell’s Equations (Eqns. 3.13) and assume that the propagating 

eigenmode takes the form 

      RiezrEzrE  ,,,


 (3.47) 

where R is the radius of curvature of the waveguide and  is the complex-valued propagation 

constant as discussed previously.  Thus, based on the derivations in section 3.5.4, Maxwell’s 

Equations in matrix form may be written as follows: 
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Note that these equations are identical to those in section 3.5.4 with the slight adjustment 

to the azimuthal derivative: Rn  .  Thus, we may write the general expression for the modes 

in bent waveguides in the following manner: 
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This can be simplified a bit further to obtain a convenient eigenvalue expression: 
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While this is accurate for arbitrary hybrid modes, we typically assume that the ridge waveguides 

contain either horizontally or vertically polarized modes.  We can consider each of these cases 

individually. 

3.6.3.2 Bent Waveguide TE Modes 

In this formulation we define the TE modes as those for which the electric field is 

perpendicular to the waveguide curvature.  Thus, Er = 0 by assumption, and the eigenvalue 

problem simplifies to the following: 
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In similar manner to the eigenfrequency calculations outlined above, this equation may be 

expressed in matrix form and solved numerically using an eigenvalue solver. 

3.6.3.3 Bent Waveguide TM Modes 

We define the TM modes as those with the electric field in the same plane as the 

waveguide curvature.  Thus, Ez = 0 and we write the eigenvalue problem in terms of Er.  The 

equation simplifies to the following: 
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3.6.3.4 Loss Terms 

The eigenvalue solver returns complex eigenvalues that we interpret as the propagation 

constant: 

  
200

 inkink effeff   (3.53) 

The amplitude of the modes then decays according to 
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The electric field intensity loss (in dB) may then be written as 
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The propagation distance along the waveguide is given by RL  , so loss is expressed as 
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 Loss (dB per unit length) =     Im686.8343.4log10 e  (3.56) 

 

3.7 Method of Lines Calculations 

While the above methods allow one to predict certain characteristics of an optical filter’s 

response, it is often necessary to simulate the entire complex response function for a given 

incident source condition.  There are a variety of frequency domain propagation methods 

available, though this work will focus on the MOL approach [83-86].  This method operates 

under similar assumptions as the eigenmode simulation.  Specifically, propagation is assumed to 

be along the z-axis.  However, instead of simply evaluating a scalar propagation constant for a 

single region, the MOL approach involves calculating a transmission matrix (based on the 

eigenvalue formulations expressed above) for each individual region and then building up 

matrices that describe the transmission and reflection for an entire structure. 

3.7.1 Method of Lines Formulation 

This method is based on the assumption that permittivity and permeability are piecewise-

constant in the propagation direction.  Thus, the structure may be divided into individual layers, 

each with its own permittivity distribution in the r, plane (see Figure 3-4).  In each layer the 

electric field takes the form 

       ,,,, rBerAezrE zGizGi


   (3.57) 

Note that the A term refers to forward-propagating waves (in the +i sign convention used here) 

and the B term deals with backward-propagating waves. 
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Figure 3-4: Layering of Permittivity Regions. 

 

3.7.2 Derivation of Transfer Matrix 

From Maxwell’s Equations (per Eqn. 3.13) we can write the following: 
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and 
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If we consider only zero-order azimuthal modes, the equations simplify to 
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and 
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The TE0 modes can be written in terms of the azimuthal electric field component.  In this case 

Maxwell’s Equations combine to produce the following: 
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The longitudinal derivative term may be eliminated using Eqn. 3.57: 
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Similarly, the TM0 modes are expressed in terms of the azimuthal magnetic field component.  In 

such a case, the following expression may be obtained: 
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Eliminating the longitudinal derivative and simplifying produces the following: 
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In terms of the derivative operators defined above, these equations may be written in the 

following manner: 

TE0 case: 
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TM0 case: 
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3.7.3 Evaluation of Matrix Functions 

As an aside, one may note that we actually have the formulation for the square of the 

propagation matrix.  Additionally, the formulation of the proposed solution for the electric field 

is based on an exponential function of the matrix.  Powers and exponential functions of such 

matrices may be obtained in a straightforward manner by method of diagonalization.  

Specifically, the matrix may be expressed as 

 122  TTG   (3.68) 

where 2 and T are the eigenvalues and eigenvectors of 2G .  Then we may write the following: 

 1 TTG   (3.69) 

and 

 1  TeTe zizGi   (3.70) 
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3.7.4 Layer Transitions 

At an interface between layers we know that the tangential field components are 

continuous.  Specifically, for E and Hr (or H and Er) at the boundary between the mth and 

(m+1)th layers we obtain 
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If we assume that there is no field incident from the right (Bm+1 = 0), we can obtain reflection and 

transmission coefficients: 
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Similarly, by setting Am = 0 we can derive transmission and reflection coefficients for light 

incident on the opposite side of the interface.  The full set of coefficients are given as 
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Of greater interest are the reflection and transmission coefficients for multiple layers.  

There is a variety of methods to accurately account for the transitions.  The simplest approach, 

known as the transmission matrix formulation [87], simply involves matching the forward- and 

backward-propagating amplitudes at each boundary to formulate a transfer matrix.  However, the 

exponential term for the backward-propagating fields can become numerically unstable, leading 

to erroneous simulations.  A better approach is to directly sum the reflected and transmitted 
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components in an infinite series to account for multiple reflections and propagations across a 

given layer.  This ultimately leads to the following expressions [88, 89]: 
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Here, m
ABR  and m

ABT  represent the reflection and transmission coefficients for a wave incident 

through the mth layer from the left, and m
BAR  and m

BAT  are the coefficients for a wave incident from 

the right;  Rm,m+1, Tm,m+1, Rm+1,m and Tm+1,m are the reflection and transmission coefficients for the 

single interface between the m and (m+1) layers expressed in Eqns. 3.73; and 1m  gives the 

thickness of the m+1 layer. 

Thus, the coefficient matrices may be built up based on the matrices defined for 

succeeding layers.  The algorithm iterates backward through the entire structure consisting of M 

layers to obtain a single overall set of filter response matrices for a given frequency.  To begin, 

one introduces a “ghost” M+1 layer with zero reflection and unity transmission coefficients.  

Additionally, a similar m=0 layer may be introduced with like coefficients to provide the 

appropriate transitions from a source plane to the first layer interface. 

3.7.5 Doubling Algorithm 

In some cases we wish to model the transmission and reflection through structures of a 

periodic nature.  In such cases, the reflection and transmission coefficients outlined above may 

be calculated for a single period and then appropriately transformed through a doubling 
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algorithm to describe the overall structure.  The more general case of this algorithm allows us to 

stitch together potentially disparate adjacent regions whose coefficients have been calculated 

previously.  If C denotes the leftmost region and D denotes the rightmost region, the reflection 

and transmission coefficients for the resulting combination are given by the following: 
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Obviously, for periodic structures regions C and D are identical.  Thus, once the coefficients for 

the pair are calculated, the doubling algorithm may be applied a second time to represent 4 

periods, a third time to provide the coefficients for 8 periods, and so on.  This allows us to 

quickly and efficiently build up the transition coefficients for a large periodic structure. 

3.8 Frequency Domain Models Summary 

This chapter has outlined three basic frequency domain modeling tools.  The 

eigenfrequency calculations provide a fast and efficient way to evaluate resonant cavity filters.  

While they do not offer a means to predict the response function for an arbitrary incident source 

condition, they do produce the various resonant characteristics of interest.  Specifically, the 

predicted complex eigenfrequencies give the essential information to calculate the spectral 

positioning and the bandwidth of the relevant resonances.  The eigenmode simulations are used 

to determine the dispersive characteristics of delay line filters.  The eigenvalues represent the 

propagation constants of the modes of interest, and the variation of the propagation constant with 

frequency allows us to predict the filter’s dispersion.  Finally, the MOL simulation allows us to 
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simulate the results of an arbitrary source condition incident on a given optical filter.  It yields 

both reflectance and transmittance, and gives us a means to visualize how these change with 

incident frequency and source conditions. 
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CHAPTER 4 
OPTIMIZATION OF ELECTRO MAGNETIC STRUCTURES 

4.1 Principles of Optimization 

For various electromagnetic design problems it is usually necessary to make use of an 

optimization of the geometry of the physical elements of the optical system or device.  

Depending on the complexity of the design, this may be trivial or exceedingly difficult. 

Any optimization problem relies on two components.  The first is a collection of 

numerical values or variables offering a complete description of the component to be optimized.  

The number of independent variables in this collection defines the dimensionality of the possible 

set of solutions.  This set, termed parameter space, contains the entire set of possible designs or 

solutions to the optimization problem expressed in vector form.  The second aspect of the 

optimization problem is a function that maps a vector in parameter space describing a possible 

solution to a value expressing how closely the behavior of the solution comes to the absolute 

optimum.  This mapping function is typically termed the fitness function or cost function. (Often 

the former term lends itself more naturally to maximization problems and the latter to 

minimizations, though they are usually used interchangeably.)  A simple optimization example 

could consist of an N-dimensional parameter space with a De Jong cost function: 

   



N

i
ixXf

1

2  (4.1) 

One of the difficulties in optimization is that the cost function rarely has as simple or 

obvious a solution as the example above.  De Jong’s function has a single minimum at xi=0.  

However, most fitness functions have a large number of minima throughout parameter space.  
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Only one value provides the global minimum, though simple optimization algorithms relying on 

gradients and steepest descent will often get caught in one of the myriad local minima.  A good 

example of this is Rastrigin’s function 

     
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which is illustrated in two dimensions in Figure 4-1. 
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Figure 4-1: Fitness Map of Rastrigin’s Function. 

 

A problem with a large number of minima (or maxima) requires a more brute-force 

search algorithm that can exhaustively go through all of parameter space and evaluate every local 

minimum before settling in the global best.  However, as the dimensionality of parameter space 

grows, exhaustive, or deterministic, search algorithms become highly inefficient and we must 

rely on probabilistic methods that combine aspects of a global exhaustive search with fast 

localized optimization methods. 
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4.2 Methods of Probabilistic Searches 

One of the primary methods of probabilistic optimization was the Genetic Algorithm 

(GA) [90, 91].  It developed into a very robust search algorithm applicable to a wide variety of 

problems and attracted significant attention and interest, becoming quite mature over the years.  

Eventually, a number of variations of GAs were applied to optical and electro magnetic design 

problems [92-96]. 

The central concept of evolutionary optimization algorithms is a group, or population, of 

potential solutions in parameter space.  The quality, or fitness, of the solutions is evaluated using 

whatever criteria is appropriate for the given optimization problem.  The solutions are then 

shifted in a quasi-random manner with a bias toward points in parameter space previously 

identified to be more optimal.  In GAs, the better solutions are selected to pass on their 

information to future generations and directly exchange information through a process known as 

crossover.  The parameters of two solutions from the current generation are combined together to 

form two “children” solutions for the next generation, allowing the solutions to quickly move 

around parameter space while exchanging information about optimal points.  An additional 

operation known as mutation takes a single solution and shifts it in parameter space by some 

relatively small perturbation, allowing the more optimal individuals of the population to perform 

a localized search and zero in on a globally optimal solution. 

The success of the GA approach spurred additional research into using behavior from 

nature to solve mathematical and physical problems.  In 1995, the swarming or flocking nature 

of insects and birds was first applied to mathematical search problems in what was termed 

Particle Swarm Optimization [97, 98].  Instead of using a genetic approach where genes compete 



 82

to pass on their information to future generations, the solutions behave as social insects moving 

randomly through space and adjusting their velocities towards other solutions that identify more 

optimal positions. 

There is no specific selection operator in PSO whereby lesser solutions are eliminated 

from the “gene pool.”  However, since the solutions (termed particles) are continuously moving, 

they have a low probability of returning to non-optimal positions in space.  Instead, each particle 

is accelerated slightly towards the best point in parameter space it had previously located, 

providing a means of localized search akin to the mutation operator of the GA.  Additionally, the 

particles communicate information to each other about the current global optimum, and each 

experiences an acceleration towards this point [99]. 

PSO has been applied to a wide variety of problems and has been found to perform 

extraordinarily well, in many cases locating an optimal solution faster and more efficiently than 

GAs and other similar search methods [99, 100].  With the interest surrounding PSO, it was 

quickly applied to electrical and electro magnetic design problems [101, 102], and very recently 

to problems in the optical regions of the spectrum [103, 104]. 

4.3 Particle Swarm Mechanics 

4.3.1 Initialization 

The PSO algorithm consists of a population of M individual particles moving around in 

N-dimensional parameter space.  In each iteration or generation of the population, all particles 

are updated according to their current velocity vectors.  The mth particle of the nth generation is 

defined according to 

  N
n

m x,...x,x,xX 321  (4.3) 



 83

and its velocity vector is defined as 

  N
n

m v,...v,v,v 321V  (4.4) 

The initial particle positions and velocities are generated based on a uniform random distribution 

across parameter space as indicated in Figure 4-2. 

 
Figure 4-2: Initial Particle Distribution in Parameter Space. 

 

4.3.2 Solution Evaluation 

Prior to updating the particles further, one must evaluate each proposed solution based on 

the given design criteria.  A cost or fitness function accepts the particle position vector as input 

and returns a scalar quantity describing the performance of the given solution.  The cost function 

is the only point of the PSO algorithm where the particles receive any meaning and are treated in 

anything other than an abstract manner.  Each design problem will require a different cost 

function incorporating various evaluation criteria.  Also, it is convenient to incorporate penalties 
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of various sorts into the cost function to push particles away from solutions that might 

mathematically appear optimal but offer unrealistic or undesirable behavior. 

In designing the PSO algorithm, one must choose whether to maximize or minimize the 

cost function.  The PSO used here minimizes the fitness function of the population.  If certain 

aspects of the design are expressed in terms of maximizing characteristics of the optical 

performance (Q-factors of resonators for example), we will simply take the inverse to obtain a 

fitness value that may be minimized. 

Prior to updating the velocities and positions, the PSO algorithm evaluates the fitness of 

each particle: 

  n
m

n
m XFf   (4.5) 

At this point, one must determine how the current generation matches up against previous ones.  

PSO keeps track of both the best point located globally and the best points located by the 

individual particles: 
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The current global optimum, Xgbest, is simply the best of the Xm
pbest solutions. 

4.3.3 Particle Motion 

Prior to allowing the particles to move, the velocity vectors are perturbed with small 

accelerations toward optimal points in parameter space.  One component accelerates the particles 

toward the current global optimum, Xgbest, offering the communication between particles needed 

for good global searching of parameter space.  An additional acceleration component pushes 
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each particle towards the best position it has located on its own, Xm
pbest.  Thus, the velocity 

update equation takes the form 

    n
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n
m XXrcXXrcwVV 
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where w, c1, and c2 are constants describing the relative contributions of each velocity 

component, and r1 and r2 are random numbers between 0 and 1, which provide a degree of 

randomness to the search algorithm.  The exact values of the parameters w, c1, and c2 for 

efficient optimization vary somewhat from problem to problem.  However, while varying the 

parameter values may increase the speed of the optimization, it rarely effects the ability of the 

PSO to ultimately converge [99]. 

The first of the coefficients, w, describes the particle’s inertial weight and defines what 

fraction of the initial velocity is maintained from one time step to the next.  It effectively 

provides a balance between localized and global exploration.  Larger values result in fast moving 

particles that explore more globally, while smaller values cause the particle to focus more on 

localized searches and information about local minima provided by other particles.  Better 

convergence may be obtained by initially setting this parameter to a larger value (near unity) and 

decreasing it over time to allow the swarm to move globally early on, while gradually shifting 

toward local refinement late in the simulation [105]. 

The other two coefficients, c1 and c2, are the cognitive and social coefficients 

respectively.  They provide the accelerations toward the global and nearest local minima.  Exact 

values are not usually critical, though fine tuning can increase the speed of convergence [106].  

In the absence of fine tuning, a standard choice of values is c1 = c2 = 2 [107]. 
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An additional constraint found to aid convergence is a vector that defines maximum 

velocity.  Since there is no immediate constraint on velocity in Eqn. 4.7, large accelerations can 

induce the particle to jump past minima and miss them altogether.  Angeline [100] found that 

imposing a maximum velocity threshold, Vmax, in each dimension significantly aided 

convergence.  The magnitude of each component of the velocity vector is compared to the 

corresponding component of Vmax and is set to that value if that component exceeds the 

maximum.  Large values of Vmax result in particles moving across parameter space too quickly 

and missing solutions, while small values impede the global search mechanism.  Suitable values 

for bounded problems are around one quarter to one half of the allowed range in each dimension. 

Once the velocity vector is appropriately updated, it is added to the current particle 

position: 

 tVXX n
m

n
m

n
m   11  (4.8) 

In general, we may simply define the time step, Δt, to be unity and incorporate any desired 

variation to this into the velocity update parameters in Eqn. 4.7 [101].  Others have shown that 

the time step may be replaced by a velocity constriction factor that scales the velocity to prevent 

too large or too small of a step through parameter space.  However, similar behavior may be 

obtained through the inertial weight and the maximum velocity thresholds outlined above [99, 

100]. 

The process of the velocity and position update is illustrated in Figure 4-3.  The dark blue 

arrows indicate the initial velocity vectors, while the dashed arrows denote acceleration 

components towards the particle’s previous best location (light blue) and the current globally 

optimal solution (orange).  The black arrows indicate the resulting velocity vector that is used to 
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update the particle position.  This also becomes the initial velocity for the next generation 

(second dark blue arrow). 

 
Figure 4-3: Particle Movement. 

4.4 Boundary Conditions 

An additional consideration of importance in developing the PSO algorithm involves the 

range of physically realizable geometries available for the cavity or other design problem.  

Standard PSO implementation offers no constraints to bound parameter space, yet this can lead 

to completely unrealistic solutions such as negative layer thicknesses or cavity radii too small to 

be fabricated.  Such behavior may lead the search algorithm toward undesirable solutions and 

can produce unexpected and meaningless results from the fitness function.  For the types of 

problems considered in this research and in other related electromagnetic design problems it is 

appropriate to constrain the particles to specified limits [101].  The bounds may typically be 
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expressed a priori based on known fabrication capabilities and from rough estimations of cavity 

shapes suitable for the design target. 

The concept of bounding search space for electromagnetic problems is not unique to this 

research.  Robinson [101] expressed three conceptual approaches to the processing of particles 

that cross over the boundary.  Absorbing boundaries stopped incongruous particles at the 

boundary and zeroed out the normal component of said particles’ velocity.  Reflecting 

boundaries resulted in the particles bouncing completely off the edges of parameter space and 

reversed the sign of the normal component of the particles’ velocity.  Invisible boundaries 

allowed the particles to wander at will but prevented erroneous fitness calculations from 

occurring on particles that strayed outside the bounds.  Instead, the fitness was set to an 

extremely poor value to prevent it from enticing additional particles to cross the edges of defined 

parameter space.  Figure 4-4 illustrates the mechanics of the (a) absorbing, (b) reflecting, and (c) 

invisible boundary conditions.  Robinson found modest differences in the rate of convergence 

between these types of boundaries depending on the problem considered. 

 
(a)    (b)   (c)   

Figure 4-4: Standard Particle Swarm Boundary Conditions. 
 

In this research, I developed a more generalized boundary system that allows one to 

specify how repulsive the parameter space walls are to the particles.  In keeping with the concept 

of particles moving through parameter space, they are forced to bounce off the parameter bounds 
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in the manner of Robinson’s reflecting boundaries.  However, I generalized the expression to 

define an elasticity of the boundary.  In like manner to the mechanical analog, a fully elastic wall 

(elasticity parameter of 1) was perfectly reflecting while an inelastic wall (elasticity parameter of 

0) forced the particle to stop at the boundary and lose all momentum normal to the boundary.  

Elasticity values between zero and one indicated reflections off the boundaries with loss of 

momentum. 

There are also occasions where optimal solutions are expected to occur near or outside of 

the specified extents of parameter space.  In such cases, negative values of the elasticity 

parameter can be used to allow the particles to pass through the boundaries to varying degrees.  

When it is set to a value of -1, the effective result is to allow the particle to completely ignore the 

boundaries altogether.  Smaller negative values result in a deceleration of the particle as it 

crosses the boundary.  This allows limited searching outside the edges of parameter space with 

acceleration components tending to pull the particles back inside. 

Figure 4-5 illustrates a particle that is violating the defined boundaries as a result of the 

position update defined in Eqn. 4.8.  The updated particle’s distance outside the boundaries may 

be expressed in vectoral form by 

 BXD n   (4.9) 

where B gives the vector form of the boundaries.  The sign of the components of the distance 

vector, D, are given by 
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where uk are the components of the upper bounds and lk are the components of the lower bounds. 

 
Figure 4-5: Particle Attempting to Leave Bounded Parameter Space. 

 
After defining the distance vector for a straying particle, its position and velocity vector 

components corresponding with nonzero values of the distance vector are updated according to 
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where  is the elasticity parameter for the boundaries.  Physically speaking, the position is reset 

to the boundary and then pushed back inside (or outside if the sign of  is negative) by a distance 

proportional to the elasticity.  The final position of the particle for both the (a) positive and the 

(b) negative case of the elasticity coefficient is illustrated in Figure 4-6. 

(a)  (b)  
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Figure 4-6: Particle Swarm Boundary Transforms. 
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4.5 Direct Comparison of Particle Swarm and Genetic Algorithm Approaches 

As a test of the optimization speed of PSO in comparison to that of the GA approach for 

the optical filters under consideration in this research, I formulated a test case for both 

algorithms.  A micro-cavity filter geometry was optimized to have a high Q-factor resonance for 

the TE011 mode at a specified wavelength (as will be discussed in detail in later chapters).  The 

two algorithms were implemented and supplied with the same fitness function.  The resulting 

curves for optimal fitness as a function of iteration number are illuminating. 

It was immediately evident that the rate of convergence can vary greatly depending on 

how close the random initial populations of solutions are to optimal values.  Additionally, 

restricting the parameter space as much as possible significantly speeds the rate of convergence.  

With these factors in mind, both algorithms were supplied with identical boundaries and initial 

populations.  The few parameters specific to PSO were set to default values as outlined earlier in 

this chapter.  The GA used in this comparison was supplied by MathWork’s MATLAB software.  

Default settings for most parameters were also used for this case, with one exception.  The 

intermediate value approach was used for the crossover option, which produces “children” from 

a weighted average of two parent solutions.  This offers a better approach for problems 

composed of a small number of continuous (real-valued) parameters as opposed to long strings 

of binary or integer-valued data (in which case a direct exchange of values between parents is the 

preferred approach [91]). 

Figure 4-7 shows the results of the comparison optimizations with (a) the optimal and 

average fitness as a function of generation for the GA and (b) the fitness of the best particle in 

the PSO.  It is clear that the GA is able to quickly move the population into the region of an 
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optimal solution much faster than the PSO.  However, it gets caught in a local minimum (in this 

case, a higher order mode) and is never able to fully jump out.  In fact, after about 200 

generations the entire population appears to consist of solutions in the close neighborhood of this 

non-optimal solution.  In contrast, the PSO steps downward toward an optimal solution at a more 

gradual rate.  However, since the particles are continuously moving throughout parameter space, 

they are far less likely to get permanently stuck in a non-optimal local minimum. 

 
(a)      (b) 

Figure 4-7: (a) Genetic Algorithm Versus (b) Particle Swarm Convergence Rate. 

4.6 Particle Swarm Optimization Summary 

PSO provides a unique and efficient approach to a variety of probabilistic optimization 

problems.  It provides an extremely general framework and a means to efficiently obtain a global 

minimum, making it particularly suitable for a variety of electromagnetic design problems.  It is 

quite efficient and demonstratedly more robust than the more conventional GA approach for the 

types of problems of interest in this research. 

Various authors [61, 63, 66, 68] have thoroughly explored choices for algorithm 

parameters of a number of different optimization problems and have provided very reasonable 
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values for efficient optimization.  Thus, all that remains is to determine a well-defined fitness 

function that can take a vector string of numbers, interpret it as a geometrical description of an 

optical device, and evaluate its optical performance, returning a scalar numerical value 

expressing that performance.  This is typically straightforward, as we might express the 

geometrical aberrations of an optical system defined by the vector [94] or the difference from a 

desired diffraction pattern resulting from a given grating filter [104], should that be the design 

problem in question.  More pertinent to this research, the vector may be easily used to express 

the geometry of a cavity resonator, dispersive waveguide, or Bragg structure, while the cost 

function evaluates these in terms of resonant frequency, loss, and spectral output. 
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CHAPTER 5 
DISPERSIVE WAVEGUIDE FILTERS 

Dispersive waveguides and delay lines have filter responses that are primarily phase-

based over the range of operation of the device2.  In the absence of scattering and leakage losses, 

the response function takes the form 

    LieH    (5.1) 

where the propagation constant may be expressed as 
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These expressions were discussed in more detail in Chapter 1.2.  The design of these 

structures involves the task of tuning the group velocity, vg, and the second order dispersion, D, 

to obtain a specific filter response.  The specific focus of this discussion is to design a waveguide 

with a very large dispersive magnitude, which allows these types of structures to provide 

potential solutions to challenges in the area of pulse broadening and compression. 

5.1 Dispersion in Standard Waveguides 

Ridge waveguides operating near cutoff tend to have a rather significant amount of 

dispersion.  Figure 5-1 shows the dispersion for a 400nm x 200nm silicon ridge waveguide on a 

silicon dioxide substrate as determined by the effective index method.  The structure must be this 

small in order to maintain a single-mode profile.  The dispersive magnitude is relatively high, 
                                                 

2 Scattering and leakage losses are certainly critical components of the filter response function but are difficult to 
control and rarely provide meaningful frequency-dependent effects in these types of structures.  We usually attempt 
to minimize these effects rather than try to tune them for specific filtering applications.   
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and it can be increased by a factor of 5 or more by shrinking the ridge down to 320 nm x 160 nm 

since it pushes the operation very close to modal cutoff.  Similar structures (termed nano-wires) 

have been tuned for a dispersion peak as high as 80,000 ps nm-1 km-1 albeit with a very difficult 

and sensitive fabrication process [108, 109]. 

However, such structures have some intrinsic drawbacks.  With such a minute waveguide 

size, coupling light into the structure becomes highly problematic, though not impossible.  

Additionally, the high index contrast results in a highly confined mode in a very small area.  

Confining a pulse of any significant intensity to such a tiny area virtually guarantees that 

nonlinear effects will play a significant role.  Depending on the application, this may be an 

advantage, but for pulse compression and stretching applications, nonlinearities tend to hurt 

much more than they help. 

 
Figure 5-1: TE Mode Dispersion in Ridge Waveguide. 

 

5.2 Nanostructured Waveguides 

While coupling and nonlinear issues can be accounted for, it would be advantageous to 

have a much more reasonably sized waveguide while simultaneously maintaining (or increasing) 
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the overall device dispersion.  SiON has a significantly lower index than Si and could provide 

one alternative in the area of nano-wires.  However, this research presents another option.  

Instead of restricting ourselves to simple ridge structures, we make use of a grating-based 

structure in the shape of a ridge [17].  The high dispersion of a ridge-like waveguide can be taken 

advantage of, but the grating nature lowers the effective index of the ridge and forces the mode 

to spread over a much larger area.  If the period is too large, the structure will act as a diffraction 

grating and spread the light in multiple orders.  However, for an appropriate choice of structure 

size and period, only the fundamental diffraction order will propagate and the structure forms a 

single-mode waveguide.  Figure 5-2 illustrates the geometry of such a structure with a 275 nm 

period, 150 nm fins, and 1.25 micron depth.  6 periods are used in this structure. 

 
Figure 5-2: Nano Dispersion Amplified Waveguide Structure. 

 

5.3 Analysis of Dispersion Amplified Waveguides 

Comsol’s FEMLab software implements a finite element solver which is used to evaluate 

the waveguide propagation constants as a function of wavelength for the two different types of 
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modes, TE and TM.  The TE-like modes are an expression of the wave equation in terms of Hz 

and are based on the assumption that there is no component of the E-field along the z-axis.  The 

TM-like modes are solutions of the formulation of the wave equation in terms of Ez with the 

assumption that the H-field is entirely transverse to the z-axis.  The formulation for the TE-like 

case is 
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and for the TM-like case is 
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Note that this definition for the TE and TM modes is not specifically identical to the more 

traditional definition in the waveguide community where the TE mode is defined in terms of E-

fields parallel to the grating vector for this structure (in the horizontal direction in all the 

waveguide profile diagrams) and the TM mode is based on H-fields parallel to the grating vector 

for this structure (with the E-fields primarily lying in the vertical direction in the waveguide 

profile diagrams).  In contrast, this definition is more reminiscent of the radial types of TE and 

TM modes defined for fibers.  For the remainder of this chapter, “TE”, “TM”, “TE-like”, and 

“TM-like” will refer to the FEMLab definition of the modes, while “true TE” and “true TM” will 

refer to the traditional definitions used in the waveguide community as defined above. 

The mode equations were expressed as eigensystems and were solved for the eigenmode 

propagation constant, .  The results were additionally verified using an independent solver 

based on standard finite difference methods [79].  The finite difference solver was based on a 
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fixed rectangular grid and thus had a significantly lower accuracy than the FEMLab results, but 

the results agreed to within a few percent and added confidence in the FEMLab simulations.  

Additionally, the simulations were tested for convergence based on grid sampling to further 

ensure the accuracy of the simulations.  Dispersion is calculated using the finite difference 

approximation to the second derivative of the propagation constants.  Although this assumes 

negligible material dispersion, we know that material dispersion provides nowhere near the 

dispersive magnitude we require and should be negligible in comparison to the desired large 

waveguide dispersion. 

The mode profile for the propagating TE mode in the designed nano dispersion amplified 

waveguide (Nano-DAWG) operating at 1.55 microns is shown in Figure 5-4.  The plot coloration 

indicates the Hz field component, while the arrows illustrate the E-field.  Figure 5-4 provides a 

graph of the energy density of the propagating TE and TM modes.  It is interesting to note that 

the majority of the energy for the TE case is actually in the substrate instead of the fins, while the 

converse is true of the TM mode. 

 
Figure 5-3: TE Mode Profile in Nano-DAWG Structure. 
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In some ways this seems counterintuitive, but in reality it is consistent with what appears 

to be occurring.  In the TE case the short period of the fins results in an effective medium above 

the substrate layer that has an effective refractive index too low to support a mode by itself, but it 

is sufficient to allow a mode to propagate just beneath it in a similar manner to modes formed in 

a silicon layer just beneath a small silicon ridge.  In the TE case, the energy is obviously much 

more tightly confined, but it is still spread over a significantly larger area than the single moded 

ridge waveguide mentioned earlier.  Additionally, one should note that shorter wavelengths have 

propagation constants further from cutoff, and thus the energy shifts out of the substrate and back 

into the fins, resulting in a situation more reminiscent of the energy distribution for the presented 

TM case.  Interestingly, this offers additional possibilities because the structure could potentially 

be used in an amplifier configuration where the pump beam is used to excite a signal in a 

neighboring medium. 

 
(a)      (b) 

Figure 5-4: Energy Density for (a) TE Mode and (b) TM Mode in Nano-DAWG Structure.  
 

After solving for the propagation constants (and hence the effective refractive indices) at 

a range of incident wavelengths, the software evaluates dispersion through a difference 

approximation to the second derivative. The TE mode has remarkably high calculated dispersion, 
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while the TM case, although having reasonably high dispersion, is not single moded.  The 

dispersion for the principle modes in both cases is shown in Figure 5-5. 

  
Figure 5-5: Dispersion Curves for Nano-DAWG Structure. 

 
Of additional interest is the extreme birefringence this structure exhibits.  The refractive 

index for the principle TE mode at a wavelength of 1.55 microns is 1.4663, while the index for 

the TM mode at that wavelength is 2.7078.  The equation for the birefringent beat length, 
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gives a beat length magnitude of 1.25 microns.  Typical polarization-maintaining fibers (PMFs) 

have beat lengths on the order of 2-3 mm. 

The silicon-air interface introduces an index contrast that is quite large, and hence the 

mode is highly confined.  Using SiON (index of 2.0) for the fins instead of Si (index of 3.47) 

allows the energy to spread out across the interfaces to a much greater degree and further 

increases the dispersion.  Additionally, the lower guiding index means that the fins must be 

significantly larger to maintain a single-moded guiding structure, which makes fabrication 

somewhat easier.  The TE case is single-moded for the SiON Nano-DAWG with a period of 825 

nm.  The duty cycle is maintained between the two cases (which gives 450 nm width fins), as is 
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the grating height (1.25 microns).  The energy density for the TE and TM cases are presented in 

Figure 5-6. 

 
(a)       (b) 

Figure 5-6: Second Nano-DAWG Structure.  (a) TE Mode Energy Density; (b) TM Mode 
Energy Density. 

 

Once again, dispersion for the TE and TM modes is calculated from the propagation 

constants.  Figure 5-7 shows a plot of dispersion for each case.  Interestingly, the dispersion is 

double that of the first Nano-DAWG design.  Also, the calculated beat length for this design at a 

wavelength of 1.55 microns is 6.556 microns. 

As can be seen, the Nano-DAWG dispersion is nearly a full order of magnitude greater 

than that of the ridge waveguide structures, albeit about an order of magnitude less than that 

available to chirped Bragg structures.  Also there is a noticeable higher-order dispersion 

component present, which limits the bandwidth a great deal more than for the grating structures.  

However, the bandwidth, structure length, and dispersive magnitude are not so closely 

interlinked for these structures.  Increasing the length of these devices to obtain a greater 

dispersive delay is simply a matter of fabricating a longer device, whereas in the grating systems 
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such an increase requires a corresponding decrease in grating chirp per unit length to maintain 

the magnitude of second-order dispersion. 

  
Figure 5-7: Dispersion Curves for Second Nano-DAWG Structure. 

 

5.4 Theoretical Analysis 

There are several interesting characteristics in these structures.  First, the grating provides 

an additional dispersion effect.  The effective index for the true TE mode in a grating structure 

includes a higher order dependency on the ratio of wavelength to grating period [110] 
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f is the grating fill factor,  is the grating period, ng is the refractive index of the grating, and nc 

is the refractive index of the surrounding region.  While this expression indicates the presence of 

a higher-order grating dispersion, it is not entirely accurate in this case due to the high contrast 
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materials and the extremely small size of the grating period.  As such, to fully analyze these 

structures, many more terms from the permittivity expansion need to be incorporated.  We turned 

to a rigorous coupled wave analysis (RCWA) [111] to calculate an effective index for the Nano-

DAWG structures.  The effective index and corresponding dispersion for an infinite grating 

using the design parameters for the first structure are shown in Figure 5-8. 

 
Figure 5-8: Effective Index and Dispersion for True TE Mode in an Infinite Grating. 

 
Although the dispersion is of a similar magnitude to the Nano-DAWG dispersion, its 

slope is in the opposite direction.  However, as noted earlier and illustrated in Figure 5-4(a) and 

Figure 5-6(a), much of the mode energy is not actually contained in the ridge.  In addition, the 

slope of the dispersion in Figure 5-1 is of the same sign as what we see from the model of the 

Nano-DAWGs.  This suggests that the structures are actually acting much more like ridge 

waveguides very close to cutoff, which we would expect to have high dispersion.  For 

comparison, a model was made of a ridge waveguide of the same dimensions as the first Nano-

DAWG.  The cladding and substrate region were kept the same as in the fin structure, but the 

grating region was replaced by a solid rectangular guiding region with an index of 1.567, which 

is the effective index of the grating at a wavelength of 1.55 according to the RCWA.  The 
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dispersion of this structure gives the limit for the Nano-DAWG structure where the grating effect 

goes to zero.  The dispersion is the dotted line in Figure 5-9. 

The shape of the curve was very similar to the curves for the Nano-DAWGs, though the 

magnitude was noticeably smaller.  To analyze this further, the constant refractive index of the 

ridge structure was replaced by the index values predicted from the RCWA at each wavelength 

analyzed.  The propagation constants were then found and analyzed at each wavelength to 

determine dispersion.  The modal analysis predicted that there were no propagating modes for 

wavelengths above 1.55 m.  Below that cutoff point, this representation provided an upper limit 

for the Nano-DAWG dispersion where the grating effect reaches the highest magnitude.  

Dispersion for the propagating mode is plotted as the dashed line in Figure 5-9. 

The dispersion for the infinite grating limit is much higher than what was predicted for 

the Nano-DAWGs.  However, the infinite grating structure is non-guiding at frequencies where 

the Nano-DAWG actually supports a mode, which suggests that the RCWA is not an entirely 

accurate indicator of the effective index in the guiding structure.  This is a sensible conclusion 

since the RCWA is predicated on an infinite grating structure whereas the actual Nano-DAWG 

contains only six grating periods.  On the other hand, the infinite grating limit and constant index 

limit do provide an upper and lower bound to the expected dispersion for the actual structure.  As 

the figure demonstrates, the modeled Nano-DAWG dispersion falls comfortably between the two 

limits, as we would expect. 
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Figure 5-9: Dispersion for TE Mode in a Similarly Dimensioned Ridge Waveguide 

Operating Near Cutoff. 
 

Essentially then, there are two effects present in the Nano-DAWG structures.  The 

dominant one is the waveguide effect for a ridge-like waveguiding structure with an extremely 

low index contrast.  The grating nature allows us to fabricate a ridge with a substantially lower 

index contrast than could be obtained with standard materials.  The second effect is the grating 

dispersion.  This induces a decrease in the effective index as a function of wavelength, which 

amplifies the tendency of the waveguide to approach cutoff at higher wavelengths and causes the 

slope and magnitude of the dispersion to be increased even further. 

These combined effects offer broader insight into the nature of the dispersion plots in 

Figure 5-5(a) and Figure 5-7(a).  The first Nano-DAWG design actually has an extrema in the 

dispersion curve.  It seems that below 1.54 m the structure is far enough from cutoff that the 

waveguide effect is no longer dominant and the grating effect plays a larger role, giving the 

curve a negative slope.  Also, the second design actually has a significantly larger dispersion 

despite lower-index materials and a significantly larger structure.  However, this makes sense 
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when we note that the configuration approximates a ridge waveguide near cutoff, since the 

energy is spread over a much larger area than in the first design.  Hence, in light of a low index 

contrast ridge-like waveguide approximation, the dispersion curves do make a great deal of 

sense. 

5.5 Alternative Configurations 

One significant concern regarding these structures is the ability to accurately fabricate 

such small grating lines with a large aspect ratio.  There are a few alternative configurations that 

could alleviate these fabrication issues.  If we rotate the fin sections by 90 degrees relative to the 

substrate we can fabricate them by means of deposition of layers of alternating materials with 

different refractive indices.  Depending on the nature of the materials, it would be possible to 

utilize different etch responses and induce undercutting in alternating layers to increase the index 

contrast between them (Figure 5-10). 

 
Figure 5-10: Energy Density and Electric Field for Alternative Fin Waveguide Layout. 

 
The illustrated horizontally-layered example Nano-DAWG consists of a 4-period 

structure.  The longer layers have a width of 1 micron, height of 0.1um, and refractive index of 
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2.5.  The smaller layers have a width of 0.8um, height of 0.1um, and refractive index of 1.6.  

This structure also supports only a single propagating TE mode.  However, the previous 

structures attained high dispersive magnitudes when the mode was pushed downward into the 

substrate region, a characteristic unavailable to the horizontally-layered structures.  Indeed, the 

calculated dispersion for the horizontal structure is on the order of 800 ps nm-1 km-1 – nearly an 

order of magnitude smaller than the original design.  It is possible that further optimization of the 

geometry could yield a higher dispersive magnitude, particularly if it operates closer to cut-off 

conditions.  However, since the mode cannot be pushed out into an adjacent substrate region so 

easily (without losing the grating effect altogether) the structure is unlikely to attain dispersive 

magnitudes as large as the previous one. 

There is another fabrication approach that offers significant merit.  When plasma-

enhanced chemical vapor deposition (PECVD) is used to grow an oxide layer in a narrow trench, 

the physical dynamics of the process results in a layer that bulges slightly towards the center of 

the trench and tapers off toward the edges.  This effect has been exploited to produce structures 

termed “trench-bulge waveguides” [112, 113].  Because of the very wide shallow nature of the 

waveguides, they contain only a single propagating TE mode.  All others are cut off.  They also 

exhibit fairly significant leakage into the resulting slab waveguide on top of the substrate, though 

fabrication processes can alleviate that somewhat. 

The design of these structures can become much more involved because the available 

parameters consist solely of the refractive indices of the layers, the deposition times, and the 

dimensions of the trench.  The exact layer thicknesses have to be calculated from these 

parameters based on PECVD deposition models [114, 115].  While these structures were not 
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actively explored in the course of this research, it is possible to estimate a possible geometry and 

simulate the propagating mode.  The energy density and electric field for an approximation to the 

guide illustrated in Error! Reference source not found. and a version with a large number of 

layers are both presented in Figure 5-11.  When the layer thicknesses are designed for operation 

close to cutoff, the calculated dispersion is approximately 106 ps nm-1 km-1.  This simulation does 

not account for leakage losses, which would certainly pose a significant issue for any 

applications for these structures, but the magnitude of the dispersion suggests that this may be a 

valuable avenue to pursue to obtain viable Nano-DAWG structures. 

    
(a)      (b) 

Figure 5-11: Energy Density and Electric Field in (a) Dual-Layer and (b) Multi-Layered 
Trench Bulge Waveguides. 

 

5.6 Coupling Considerations 

Perhaps the other most significant concern for these structures is the ability to couple 

light into and out of them.  With the strange shape for the mode profile it is expected that 

significant losses will be present at the interface, so direct end-fire coupling is unlikely to 

provide a reasonable approach.  The most likely candidate is an evanescent coupling scheme 

using a propagation constant-matched ridge waveguide structure.  In this case, a 1um square 

ridge waveguide composed of a SiON layer with refractive index 1.7125 is sufficiently matched 

to allow a pair of coupled modes to exist between it and the original Nano-DAWG structure.  
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The symmetric and antisymmetric modes are shown in Figure 5-12.  With a 3um center-to-center 

spacing, the effective refractive indices of the two modes are 1.46639 and 1.46604 respectively.  

The coupling length is given by 

  as nn
L







2





 (5.8) 

For this configuration, the coupling length is expected to be approximately 2.2mm. 

(a)   

(b)    
Figure 5-12: (a) Symmetric and (b) Antisymmetric Modes for Nano-DAWG Coupling 

Approach. 
 

Interestingly, this configuration may provide an additional approach of merit.  

Specifically, coupling between highly dissimilar waveguides of otherwise modest dispersion can 

result in extremely high dispersion [10, 11].  The symmetric an antisymmetric each exhibit 

significant dispersion but with opposite signs.  This effect occurs when two waveguides with 
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differing group velocities are coupled.  At the wavelength where both waveguides have identical 

propagation constants the dispersion for the two coupled modes peaks.  The values at a given 

frequency, , can be estimated from 
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where D0 is the average dispersion of the individual waveguides and ω0 is the frequency at which 

the individual propagation constants are equal.  The characteristic bandwidth, , is given by 
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where  is the coupling constant and 1 and 2 are the group velocity of the individual guides.  

By decreasing the coupling constant and increasing the difference of the group delays between 

the two waveguides, one may obtain extremely large dispersive magnitudes. 

5.7 Nano-DAWGS as Delay Lines 

The Nano-DAWGs were designed and optimized for large second-order dispersion rather 

than a substantial group delay.  However, it is worth exploring the delay-line applications of 

these structures as well.  As discussed previously, FIR filters, including these devices, lack a 

structural enhancement to the delay and primarily achieve large phase delays simply by 

increasing the length of the structure.  Delay peaks generally occur near band edges [4], which 

are not present in the Nano-DAWGs.  Additionally, large group delay is often associated with 

small bandwidth as was illustrated in section 1.5.3.  The substantial bandwidth (100nm) of the 

Nano-DAWGs further suggests that the overall group delay will be limited. 
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Since delay scales with structure length, it is advantageous to express a group delay 

figure of merit independent of length.  The ratio of the delay time to the structure length is (when 

multiplied by c) the structure’s group index (Eqn. 1.9).  The group index for the two Nano-

DAWG designs is shown in Figure 5-13.  As expected, these structures provide a relatively 

minor increase of about 30% over a simple optical fiber [27].  Thus, while the Nano-DAWGs 

offer remarkable dispersive properties, they are only marginally better the other much simpler 

waveguide geometries for delay line purposes.  

 

      
(a)      (b) 

Figure 5-13: Group Index for (a) First and (b) Second Nano-DAWG designs. 
 

5.8 Dispersive Waveguide Summary 

This chapter has presented the design and analysis of transmission-based dispersive 

optical filters.  These filters have a uniform cross-section in the longitudinal direction and were 

designed to exhibit a great deal of second-order dispersion.  The Nano-DAWG structures operate 

close to cutoff conditions and their filtering capability is enhanced by the grating nature of the 

structures. 
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These designs offer a number of challenges, particularly in terms of fabrication and 

coupling.  In addition, since they operate near cutoff and fabrication is likely to induce roughness 

and discontinuities in the structure, one could reasonably expect a relatively significant degree of 

scattering loss.  However, Nano-DAWGS are not without their benefits as well.  While they have 

significantly lower dispersion than similarly sized Bragg grating structures, they involve a 

uniform structure that may be wrapped in a spiraling manner [116] to form a structure with 

significant group delay.  Additionally, the structure dispersion and structure length are 

independent of each other, unlike the grating devices.  This means that total dispersive delay is 

far less limited for these structures, though losses certainly provide an upper bound on it. 

As far as the coupling and fabrication issues go, a number of approaches have been 

presented.  Evanescent coupling may be obtained through a properly designed ridge waveguide, 

though the coupling constant is fairly small, which means that a fairly significant coupling length 

is required.  However, the evanescent coupling may also provide a means to further increase the 

overall structure dispersion rather substantially. 

Alternative configurations for Nano-DAWGS have been presented, including a 

horizontally-oriented structure and a trench-bulge waveguide formulation.  Fabrication is much 

more straightforward for both alternatives since dielectric layers can be deposited with a great 

deal of uniformity, and alignment of separate patterns is not required for this case.  Hence, the 

only fabrication step requiring careful consideration and optimization is the etching and possible 

undercutting of alternating layers, though the methods for these operations are fairly well 

documented. 
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CHAPTER 6 
SPIRAL BRAGG GRATING FILTERS 

Bragg structures and chirped Bragg gratings are the result of a periodic (or slightly 

aperiodic) perturbation of the refractive index along the length of a given optical guiding 

structure [117].  The fabrication of permanent Bragg gratings in fibers was demonstrated by Hill 

in 1978 [118], and the concept of linearly adjusting the grating period to yield a constant 

dispersion structure was later noted by Ouellette [20].  Today these structures find myriad 

applications in telecommunications areas such as dispersion compensation [19], wavelength 

selection and multiplexing [119], and fiber lasers [120], as well as optical storage [121], sensing 

[122], and delay line [4] uses.  The periodic corrugation of the refractive index profile couples an 

incident signal from one propagating mode into another mode (either forwards or backwards 

propagating) [21, 22] in a manner highly dependent on frequency, or more specifically, on the 

ratio of the grating frequency to the propagating wave frequency.  One of the biggest drawbacks 

with these structures is the inherent fabrication limitations which inevitably result in the 

introduction of non-ideal dispersion in the form of group delay ripple (GDR) to the system.  

Various studies have considered the magnitude of the impact of the GDR on the quality of the 

system as a whole [2, 23, 24], while others have considered a variety of means to compensate for 

this problem [25, 26].  Additional difficulties with chirped Bragg structures include the 

significant length of the structures needed to obtain a sufficient degree of dispersion and the 

coupling loss for the typical Bragg reflector arrangement (where reflected signals have to be 

separated from the incident signal). 
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Much of the attention given to Bragg structures focuses on fiber-based filters due to their 

low losses and ready incorporation into other telecommunication devices.  However, there is also 

a great deal of interest in wafer-based Bragg waveguide structures [123, 124].  Such structures 

allow one to utilize a wider range of fabrication techniques to more directly tailor the waveguide 

and grating shapes to a specific application and improve the filter response [125] and to access 

more exotic guiding and regeneration materials.  Unfortunately, waveguides typically have 

somewhat higher losses than optical fibers and the high precision required from the grating 

fabrication can introduce significant challenges, but the ability to directly incorporate the Bragg 

structures into other wafer-based devices without resorting to fiber-wafer coupling can largely 

mitigate these issues for a variety of applications. 

6.1 Bragg Filter Characteristics 

Bragg grating structures provide one of the more common approaches to optical filtering.  

Unlike dispersive waveguides, Bragg structures introduce both amplitude and phase changes to 

the incident signal.  Eqns. 1.24 give the complete complex filter response for a forward and 

backward propagating beam assuming a uniform constant-period grating.  In such structures, the 

amplitude response is completely determined by the phase response by a Hilbert Transform and 

vice versa. 

In the more general case where the grating period can vary, the response can no longer be 

expressed analytically, and the phase and amplitude responses become independent of each 

other.  When the resulting grating can be approximated by a sequence of constant-period gratings 

(where L  for each section) the overall response can be formulated in terms of the product 

of 2x2 transfer matrices whose components are given by a form of the solutions expressed in 
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Eqns. 1.24 (with the caveat that the boundary condition that the amplitude of backward 

propagating waves goes to zero at z = L must be removed) [18].  However, for rapid changes in 

the grating period or index modulation, a more accurate response requires a different set of 

transfer matrices that consider a single grating period at a time [126].  In either case, the filter 

response may be calculated numerically.  The goal at this point is to design and optimize the 

grating period to tune the filter to a desired response. 

6.2 Spiral Bragg Structure Description 

In a wafer-based Bragg structure, attempting to accurately vary a grating period from 

point to point along the waveguide in a quasi-arbitrary manner can be very difficult.  However, it 

is possible to completely decouple the waveguide from the grating.  In this way, the grating can 

be fabricated to an extremely high precision and reproduced using such techniques as nano-

imprint.  Afterwards, a waveguide can be aligned to the grating and fabricated in such a way that 

its trajectory produces the desired grating chirp.  This offers a number of advantages, the biggest 

of which is the wide range of dispersion curves accessible from a single grating structure.  

Additionally, measurable errors in the grating structure can be compensated somewhat by 

applying an appropriate perturbation to the waveguide trajectory.  The advantages become 

particularly evident when we consider the possibility of a radial grating combined with a spiral 

waveguide trajectory, which allows us to obtain arbitrarily long waveguides (and 

correspondingly large group delays) on a single substrate. 

The grating function, P(r,q), and the waveguide trajectory, f(q) (both expressed in polar 

coordinates), can be defined completely independently of each other.  The two are then 

combined to obtain an extremely flexible functional dependence of grating period on distance 
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traveled in a waveguide in the manner illustrated in Figure 6-1.  Although a transmissive filter 

requires the waveguide to exit the center of the spiral by crossing over itself, the nearly 

perpendicular nature of the intersections and small waveguide width help minimize scattering 

losses at those points. 

   
Figure 6-1: Spiral Waveguide, Radial Grating, and the Resulting Combination. 
 

This decoupling also allows one to design a specific grating structure and use it 

repeatedly for a number of completely different filter response functions.  In most cases we will 

make use of the simplest case for the grating function and assume that it has no azimuthal 

dependence 

   r
r

rP
0

0,


  (6.1) 

where r0 is some initial radius at which the actual period takes on the initial value, 0. 

If the desired filter response can be translated to a simple analytic functional form for the 

grating period, the exact waveguide trajectory can often be obtained analytically.  However, the 

more general case involves an arbitrary numerically-expressed filter response.  The waveguide 

+ = 
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trajectory is then best designed through an iterative optimization approach (such as PSO).  The 

trajectory is expressed in terms of the radius and has a functional dependence on the angular 

coordinate.  For a realistic waveguide, the function must be continuous and smooth (continuous 

in the first derivative).  The simplest expression would be a polynomial dependence expressed as 

       ...aarf  2
02010 1   (6.2) 

where r0 and ai are optimized parameters. 

0 is not an independent parameter but may be included to describe a final angle.  This is 

specifically useful if the desired filter response would be better described in piecewise fashion 

with different trajectories connected together at specific radii and angles.  In such cases, the 

separate waveguide sections must merge smoothly to ensure minimal scattering losses.  This is 

sufficiently accomplished by continuity of the functions and their first derivatives.  If we assume 

the sections fn and fn+1 are to meet at angle n+1, the appropriate constraints on the second 

waveguide are given by 
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 (6.3) 

6.3 Linearly Chirped Bragg Structure 

The standard and most obvious case of a Bragg filter is a simple linearly-chirped Bragg 

grating.  The grating period is given by 

   ss  0  (6.4) 
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where 0 is the initial grating period, s is the distance along the waveguide, and  is a constant 

describing the grating chirp per unit length.  For convenience, let us define another constant, , 

which we will label the chirp parameter, by 

 






 00 L


  (6.5) 

where  describes the total chirp over the length of the grating, and L is the length of the 

grating.  With this definition, we rewrite Eqn. 6.4 in the following manner: 
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We can now equate Eqns. 6.6 and 6.1 to solve for the waveguide trajectory 
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where s is the total arc length of the waveguide, which is given in calculus texts in terms of the 

radial function as 
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If we assume the total desired chirp to be very small in comparison to the length of the grating, 

the overall change in radius must be quite small in comparison to the radius of curvature of the 

waveguide, and we can expect 
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 (6.9) 

Therefore, 
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by equating the arc length with Eqn. 6.7 and letting the radius, r, take the functional dependence 

f(q).  The solution of this equation is a simple exponential dependence of the waveguide radius 

on angle 
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where q is given in radians and is allowed to take on positive values.  We can substitute Eqn. 

6.11 back into Eqn. 6.1 to solve for the angle at which a given final period 0 -  is reached: 
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By numerical comparison to the exact result determined from Eqn. 6.8, the error based on 

the assumption expressed by Eqn. 6.9 is less than 1urad over a total angular extent of tens of 

radians for reasonable sets of design parameters.  Thus the assumption may be considered 

appropriate. 

As a final point, it is worth noting the physical significance of the chirp parameter, , 

which is directly related to the relative time delay experienced by two different incident 

wavelengths: 
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6.4 Coupling Strength Considerations 

Section 1.5.1 showed that the complex filter responses for the transmitted and reflected 

beams are given by 
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where 22   , κ is the coupling constant expressed as 
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and the detuning parameter, , is given by 
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Again, at the Bragg wavelength the reflectance becomes  LtanhR 2 , but towards the 

edges of the stop band, defined by   , the reflectance starts to drop off.  The sharpness of the 

band edges and the overall structure reflectance are directly related to the product L, though the 

structure bandwidth is determined solely by the coupling constant, and ultimately by the grating 

index contrast.  While larger bandwidth and reflectance are generally desirable, there are a 

couple drawbacks to a higher index contrast.  First, the very nature of corrugations on top of a 
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waveguide results in some degree of scattering, particularly at frequencies that are not Bragg-

matched.  For a typical waveguide, index contrasts on the order of 5% results in loss of about 3 

dB/mm, while contrasts of 1% and less produce losses more than an order of magnitude smaller 

[127].  Secondly, higher contrast results in a larger overall impact on the optical signal from each 

grating period, and any fabrication errors due in surface roughness or period size will have a 

more pronounced influence on the optical signal. 

Since the grating reflectance depends strongly on a combination of the grating length and 

the coupling strength, the two factors can be used to compensate for each other.  For good band 

extinction, the product should be reasonably large.  However, reflectance starts to drop off 

towards the edges of the band.  At L = 2 the reflectance at the center of the band is about 93% 

but is only 90% of that at  9.0 .  When L > 4, reflectance is over 98% for 90% of the 

rejection band.  More of the band becomes useable as the product increases, but L = 4 serves as 

a suitable working minimum for coupling strength and grating length. 

This leads to a limitation on the maximum possible chirp (and bandwidth) of the spiral 

grating structure.  The difficulty comes from the length necessary to provide good reflectance 

over the entire band.  As the waveguide spirals inwards, the grating period, and hence the 

effective Bragg wavelength, decreases.  We require that a given incident wavelength remain in 

the reflection band for a minimum distance L.  Based on the analysis above, it is reasonable to 

require the wavelength in question, 0, to remain within the 90% of full bandwidth for the 

structure, meaning that the coupling constant (which determines the bandwidth) plays a 

significant role. 
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Thus, over a waveguide length of 
2

L
 the Bragg wavelength is allowed to decrease from 

0 to the point where  9.0 .  From Eqn. 6.16 and the definition of the coupling constant, we 

find 
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For small index contrasts, we may approximate the maximum chirp by 
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If we make use of the assumption noted above that the minimum length is given by L > 4, we 

may express the maximum chirp per unit length: 
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which clearly increases with the square of the grating index contrast.  Based on the analysis in 

Eqn. 6.13, we can obtain a minimum relative delay: 
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For reasonable index contrasts and confinement factors, this works out to a minimum relative 

delay of approximately 1.2 ps/nm. 

6.5 Additional Design Constraints 

It is important at this point to note that the spiral cannot simply be made arbitrarily small.  

The minimum radius of curvature is strongly limited by bend leakage.  A method for estimating 

the leakage loss of these guides as a function of curvature is outlined in section 3.6.3.  For 
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dielectric waveguides in the spectral region of interest, the loss grows exponentially with 

curvature and is on the order of a few dB per mm for radii of curvature around 2-3mm [128].  

Based on this, we take 5mm as a reasonable minimum for the radius of curvature to have 

minimal losses.  This gives the minimum possible radius for the spiral structure.  Further, if the 

device is to be used in transmission, the innermost spiral loop will have to curve 180 degrees and 

exit through the center of the spiral.  This final bend has double the curvature of the highest 

curvature of the spiral, and thus, if the radius of curvature of any part of the structure is to be no 

less than 5 mm, the innermost radius for the spiral can be no less than 10mm. 

Another important quantity to consider is the distance between successive loops of the 

spiral.  To have minimal coupling between waveguide loops, a minimum reasonable separation 

distance between them is about 15-20um.  From analysis of Eqn. 6.11, we find the radial distance 

between two rings to be 
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This distance takes on a minimum value when f(q) is at a minimum (i.e. the radius from 

Eqn. 6.1 at which the final grating period is obtained).  For a linearly chirped grating, given a 

desired grating period, total chirp, initial waveguide radius, and minimum allowed radial 

distance between rings, Eqn. 6.21 in combination with Eqn. 6.5 can yield a maximum grating 

length.  In most cases this is not a severe limitation.  If the initial radius is 30mm, initial period is 

500nm, and total chirp is 10nm stretched out over a length of 5m, the smallest radial separation 

between successive loops is still 22um while the structure’s delay is 1.67ns/nm. 
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In more general terms, we can rewrite this as a maximum grating chirp parameter in 

terms of the initial radius and grating periods, the minimum radial separation between spiral 

loops, and the overall structure chirp: 

  
 

  













1

min
ln

2
max

00

0

0

r

r

r
  (6.22) 

Since the minimum radial spacing is much smaller than the initial spiral radius, a Taylor series 

expansion simplifies this to 
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Using Eqn. 6.13, we can also derive a maximum relative delay for a structure (assuming multiple 

spiral loops are required): 
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While a delay of 1.67ns/nm was noted for a larger structure above, if we instead assume a 

smaller spiral structure with an outer radius of 10mm and a minimum loop spacing of 25um, a 

period of 500nm with a chirp of 10nm yields a maximum relative delay of 164ps/nm. 

6.6 Quantification of Fabrication Issues 

An additional potential advantage of the decoupling of the grating function from the 

waveguide trajectory involves fabrication accuracy.  It can be quite difficult to position grating 

lines with an accuracy significantly better than 1nm.  Yet grating lines snapped to the nearest 

nanometer will not produce a desirable uniform phase response, and in the extreme case can 

result in a discrete reflection spectrum similar to that illustrated in Figure 6-2.  The radial nature 
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of the grating and the curved waveguide trajectory allow one to overcome any sort of finite grid 

issues introduced by fabrication limitations [6]. 
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Figure 6-2: Nonideal Bragg Grating Chirp. 

 

In a straight-line grating, the pixel snapping would be uniform across the width of the 

grating, but because of the angular nature of the grating lines in the spiral method, the grating 

period varies significantly point by point across the width of a single segment (see Figure 6-3).  

However, while the edge will theoretically be written in a very jagged manner, the spacing 

between the points is on the order of 1.25nm (depending on the resolution used during e-beam 

writing).  Further, the nature of the grating fabrication process will usually cause pixilations to 

wash out, resulting in a smooth line.  This results in an averaging of the period length and 

spreads out any remaining errors over the length of the structure. 
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Figure 6-3: Pixilation of a Single Grating Period. 

 

To model the grating structure, we calculated the exact snapped distance between grating 

lines for pairs of corresponding points in the waveguide.  The calculations were repeated and 

averaged for several hundred points spanning the width of each section of waveguide.  This 

provided a numerical approximation to the averaging the light mode actually undergoes.  Ideally 

the successive periods would demonstrate a smooth linear curve according to Eqn. 6.6.  

Simulations indicate that there is still a degree of error in the periods due to e-beam pixel 

snapping, but the errors are reduced by several orders of magnitude from the straight-line case.  

In the case of a grating written with a 1.25nm resolution (the best resolution achievable on the e-

beam system), three standard deviations of the error in the periods fall within 0.235nm, which is 

substantially better than one might expect.  Also, this calculation was based on a very 

rudimentary estimation that overestates the error.  A more accurate error determination should 

yield significantly better results.  Sumetsky [24] provides an analytic and quantitative analysis of 
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how such errors in the grating periods will affect the group delay curve of the system.  Figure 6-4 

illustrates the calculated reflectance and group delay for the designed structure.  Figure 6-5 

shows the group delay ripple expected for structures written with 1.25nm and 5nm pixels. 

 
Figure 6-4: Expected Reflectance and Group Delay for 1m Linearly Chirped Bragg 

Structure. 

 
Figure 6-5: Expected Group Delay Ripple for Linearly Chirped Structure Written with 

1.25nm and 5nm Pixels. 
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6.7 Alternative Group Delay Functions 

6.7.1 Constant Period Delay Line 

Another application of Bragg grating structures is in the area of delay lines.  Although the 

relative delay across the reflection band is not particularly substantial, transmitted frequencies at 

the edge of the band experience dramatic group delay as predicted by [32]: 
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These structures have a very small bandwidth, and the grating should maintain a fixed 

period to keep the specified frequency at the band edge.  This would be accomplished via a 

waveguide with constant radius.  Note however that the geometrical concept is amenable either 

to multiple waveguides acting in parallel or to a single waveguide that curves inwards a short 

distance to yield a different effective grating periods for subsequent waveguide sections. 

For structures of this sort, it is advantageous to produce as much delay as possible over a 

short distance.  Thus, we employ a reasonably large index contrast without going so large as to 

incur substantial scattering penalties.  The central Bragg wavelength was taken to be 1.55um, 

and the grating layers had indices of 1.57 and 1.56.  This gives an expected coupling constant of 

0.013um-1 and a reflection bandwidth of 6.3nm.  A 2mm length structure is therefore sufficient to 

yield a very sharp bandedge at 1.5468um.  If we take the expected waveguide loss to be 

0.1dB/mm and the scattering loss due to the grating to be another 0.3dB/mm, and the bend loss 

to be 1dB/mm, the overall loss is less than 3dB.  The structure offers a delay of 0.7ns over the 

2mm grating length, which gives a group index of 105.  On the other hand, if the index contrast 

is reduced by 50%, the coupling is cut in half and the structure must be doubled in length to 
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obtain the same sharp bandedge, albeit at a slightly longer wavelength.  In this case the delay is 

twice as much, but the overall group index remains the same.  In addition, since radiation losses 

due to the curvature of the waveguide are expected to dominate, the shorter device experiences 

significantly lower loss.  Group delay for both structures is illustrated in Figure 6-6. 

 
(a)      (b) 

Figure 6-6: Group Delay from Constant Radius Waveguide with (a) 0.01 and (b) 0.005 
Index Differential. 

6.7.2 Long Period Gratings 

An additional design consideration involves longer period gratings.  At certain periods, 

longer period gratings have been used to couple light into forward-propagating cladding modes 

for band rejection and dispersion purposes [129], but they may also be designed to couple to 

reverse-propagating modes at a higher diffraction order.  In particular, when the grating period is 

given by  
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the Bragg condition is still met for the backwards propagating mode. 
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The larger period eases fabrication tolerances somewhat, but does introduce the 

possibility of scattered diffraction orders (though these don’t meet the Bragg condition for 

maximum diffraction efficiency).  This also means that the coupling strength is reduced and the 

minimum waveguide length is increased, but for a dispersion-type application we are rarely 

working near the minimum grating length for reasonable reflectance.  There is also significantly 

higher scattering loss as the propagating mode can couple to radiating diffraction orders.  On the 

other hand, there are significant advantages to this approach, particularly when fabrication issues 

are considered.  Small errors in the period sizes pose a much more significant problem when the 

grating periods themselves are small.  Figure 6-7 illustrates this situation.  A 1nm amplitude 

normally distributed random perturbation was applied to normal first-order gratings and long-

period third-order gratings (both based on the same design as the dispersive Bragg structure 

outlined in the previous section).  Clearly the GDR is substantially worse for the short-period 

structure, and sufficiently so as to have a larger impact on device performance than the additional 

loss terms introduced by the long-period structure. 

 
(a)      (b) 

Figure 6-7: Group Delay Ripple for (a) First-Order Bragg Grating and (b) Third-Order 
Bragg Grating with 1nm Normally Distributed Random Perturbations to Period Size. 
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6.7.3 Tailored Phase Delay for Dispersion Compensation 

Earlier, this chapter indicated that a uniform linear delay slope requires an exponential 

dependence in the waveguide trajectory.  However, it is illustrative to consider the filter response 

for a waveguide with a linear dependence on angle: 

     0rf  (6.27) 

Based on the arc length formulas above, the path length as a function of angle becomes 
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Thus, instead of obtaining a linear relationship between the grating period and grating length we 

instead have 
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which suggests that the resulting group delay curve will be of a quadratic nature.  Indeed, Figure 

6-8 demonstrates the difference between the resulting group delay and the linear curve produced 

by the exponential spiral. 

It is worth noting that this deviation is only about 0.5% and would likely be swallowed 

up in the GDR noise from a realistic grating structure.  However, structures with larger overall 

group delays and greater bandwidths could experience a much larger impact from this effect.  On 

the other hand, with appropriate optimization, the dispersion introduced by a structure of this 

form could easily be used to compensate for other devices that introduce unwanted dispersion 

and phase distortions. 
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Figure 6-8: Departure from Linear Group Delay Curve for Waveguides with Linear 

Angular Dependence. 

6.7.4 Spiral Bragg Structures as Amplitude Response Filters 

Another potential application for these structures involves amplitude filtering of closely 

spaced spectral bands for wavelength division multiplexing (WDM) related devices.  In this case 

we are not looking for a continuous group delay, but rather a band of closely spaced transmission 

(or reflection) bands.  As is discussed in CHAPTER 7, coupled resonant cavities yield sharp 

closely spaced resonant transmission lines.  While it is difficult to obtain the same behavior with 

Bragg waveguide structures without introducing extremely large waveguide curvatures, the 

concept is suggestive of a potential approach utilizing the decoupling method. 

Instead of spiraling the waveguide inward in a continuous manner to obtain a smooth 

group delay curve, we designed the waveguide to have a constant radius with the exception of a 

periodic perturbation of the form 

     20sin8
0

2 errf  (6.30) 
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This results in a trajectory of the form shown in Figure 6-9.  Note that the periodic ripple has 

been exaggerated significantly to demonstrate the overall shape.  With an initial radius of 

23.9mm, the actual total radial shift was approximately 130um for this structure. 

 
Figure 6-9: Sinusoidal Waveguide Trajectory (Exaggerated for Effect). 

 

As may be expected, the trajectory produces a periodic variation in the grating period as 

shown in Figure 6-10, and the amplitude response of the structure is shown in Figure 6-11.  The 

reflection bands are spaced by approximately 0.2nm, though they are not particularly uniform in 

this case.  However, a more complete optimization of the structure should be suitable to obtain a 

better overall response. 

 
Figure 6-10: Sinusoidal Grating Periods. 
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Figure 6-11: Amplitude Response for Sinusoidal Waveguide Trajectory. 

 

6.8 Spiral Bragg Filter Summary 

This chapter presented a unique approach to Bragg grating filter design in which the 

functional forms of both the waveguide trajectories and grating structures are fully independent 

and quite arbitrary.  The method provides for reuse of gratings and eased fabrication tolerances 

while offering a great deal of flexibility in terms of applications and optical delay curves. 

Design constraints included a minimum radius of curvature to prevent significant radial 

leakage and a minimum grating chirp to prevent coupling between successive spiral loops.  

Coupling strength as a result of corrugation depth plays a significant role in the overall structure 

response by introducing scattering loss and determining the width of the rejection band.  

Additionally, by incorporating higher-order grating periods into the device design fabrication 

errors can be substantially mitigated.  Based on the derivations presented herein, this approach is 

capable of providing relative delays between spectral components of anywhere between 1 ps/nm 

and 2 ns/nm depending on the chosen design constraints.  While dispersion compensation is one 
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direct application of this approach, this range of relative delay values offers a unique approach 

for WDM-related applications and tunable sources. 

The radial nature of the grating lines and the curved waveguide trajectory combine 

through very straightforward fabrication processes.  The angular nature of the structure 

components average out fabrication errors and offer a substantially reduced GDR than can be 

obtained with linear gratings fabricated with the same processes.  This chapter demonstrated the 

design process and the response model for a structure incorporated a 1m long waveguide onto a 

standard wafer.  The structure had a flat reflectance band over a bandwidth of about 40nm and a 

dispersive delay of 250ps/nm.  In addition, we provided a delay line approach utilizing high 

index contrast gratings to obtain an extremely large group delay with an effective group index of 

105 with expected leakage well below 3 dB. 

Alternative trajectory designs were also presented as examples, demonstrating the wide 

range of filtering applications attainable with this approach.  Long period gratings offer reduced 

fabrication complexity.  Other simple functional forms of the waveguide trajectory may be used 

to obtain a variety of nonlinear delay curves, which lend themselves well to correcting and 

offsetting frequency delay already present in an incident signal.  On the other hand, an 

appropriately designed periodic perturbation to the waveguide trajectory can be used to obtain 

unique transmission bands for selecting specific frequency components.  PSO or other 

optimization approaches are easily applied to the functional forms to obtain specific filter 

responses tailored to a wide range of applications. 
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CHAPTER 7 
AXISYMMETRIC RESONANT CAVITY FILTERS 

Optical cavities offer another type of resonant structure that finds uses in many different 

applications.  While more commonly used for optical sources and quantum electrodynamics 

experiments, they may also be used in filtering applications [60].  The standard approach for 

resonant filters involves a ring structure coupled to a waveguide.  In such conditions, the 

response of the signal coupled into and transmitted through the resonator has a narrow bandwidth 

centered on the structure resonances.  The non-resonant bands do not couple into the structure 

and remain in the waveguide.  The filter’s phase response also involves large group delays near 

the resonant frequencies. 

In this chapter we explore the application of three-dimensional axisymmetric cavity 

structures to optical filtering and different ways to approach these types of structures.  In general, 

a good resonance-based filter must have a large Q-factor.  Certain geometries may be exploited 

to obtain this with a single cavity, though such structures are often better suited for optical 

sources and various other electrodynamics applications than to direct filtering of transmitted and 

reflected signals.  On the other hand, chains of weakly coupled low-Q cavities can be built up 

into a guiding structure with significant filtering properties. 

7.1 Single Cavity Optimization 

Earlier in this work methods for analyzing and modeling microcavity resonators were 

outlined and discussed in detail.  Of interest in this section is to apply those tools and the 

optimization approach discussed previously to design and optimize resonators for specific 



 137

spectral outputs and resonance characteristics.  In particular, we would like to provide an 

optimization program with a set of design criteria that specify that a designed cavity should 

resonate with the highest Q-factor possible at a given frequency, 0, and with a specified mode 

number (e.g. TE011).  The program then returns the cavity geometry necessary to obtain those 

characteristics. 

In general, the design and optimization of resonant cavities is nontrivial.  Although 

certain aspects can be determined analytically – such as the dimensions required for a basic 

cylindrical structure to resonate at a specified frequency – an optimal resonator design may 

reasonably be expected to come only through a numerical optimization approach.  Further, the 

process can be rather time consuming.  Each newly proposed design suggested by the 

optimization algorithm must be modeled and tested for the desired resonant characteristics.  In a 

PSO approach, an average swarm size of 30 particles must be re-evaluated at every iteration.  A 

typical optimization that may take 200 iterations to converge then requires 6000 separate cavity 

models.  Time domain simulations, which can take anywhere from a few minutes to several 

hours to provide a full diagnostic of a given cavity, become completely unusable in this scenario.  

On the other hand, the eigenmode analysis, discussed earlier in this work, has been shown to 

work well with PSO for the cavity design process [130]. 

7.1.1 Particle Swarm Optimization of Cavity Designs 

One of the most significant difficulties in the design problem comes when we consider 

the range of geometric parameters available to the optimization algorithm.  For example, 

consider the cavity geometries illustrated in Figure 7-1.  The cavity radius and length would 

nearly always be optimized to obtain the desired resonant frequency or wavelength.  But a 
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dielectric cavity by itself has a rather low Q-factor, and one must additionally optimize the 

surrounding regions to obtain narrow resonances.  In the pillar structure, one might optimize the 

individual layers to adjust for a tapering of the structure width introduced during fabrication [35, 

42, 131].  In pillars, radial confinement is provided simply by the index contrast in a longitudinal 

guiding situation. 

One alternative use relies on refractive index contrast in the vertical direction while 

introducing a highly reflective confinement medium in the radial direction.  Cavities encased by 

metallic films are common in microwave applications, but the lossy nature of metals at optical 

frequencies tends to be far too great to be useful in these types of configurations.  However, 

highly reflective radial confinement structures with no intrinsic absorptive loss are capable of 

supporting extremely high Q-factors under certain conditions [47, 49].  It is useful to optimize 

the geometry to obtain this effect, which may be further accentuated by optimizing layers 

separating the cavity from a bulk substrate region. 

 
 

Figure 7-1: Depiction of Single-Cavity Geometries. 
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With such a large parameter space to consider, particularly when we have noted 

previously that the resonance characteristics can have very narrow peaks in parameter space (see 

Figure 3-3), an exhaustive or deterministic search algorithm would be hopelessly inefficient.  

Further, it is very reasonable to assume that parameter space will contain a number of locally-

optimal solutions that perform far worse than some globally-optimal cavity design, which means 

that calculus-based search algorithms will inevitably fail.  This makes the cavity resonator design 

an ideal problem for the PSO algorithm discussed earlier. 

7.1.2 Mode Choice 

It has been shown [132] that cylindrical waveguides surrounded by metallic cladding 

layers offer substantially reduced absorptive loss to the TE01 propagating mode.  This results 

from the electric field being polarized tangential to the dielectric-metallic interface.  In like 

manner, a TE01p mode maintains a fixed relationship between electric polarization and the 

interface between the cavity and the confinement region.  The difficulty of coupling to and from 

the cavity require that the light be focused to as small a spot as possible.  Radially symmetric 

modes may be focused to a significantly smaller spot than can linearly polarized or other hybrid 

modes [133, 134].  Additionally, modes of this type are significantly smaller than the higher-

order hybrid modes, which allow for smaller cavities and reduced mode volumes. 

One of the principle reasons this mode is largely ignored is the difficulty in coupling to it.  

The HE111 modes involve linearly polarized light, which is easy to obtain.  Thus, mode matching 

to cavities based on that mode is fairly straightforward, allowing one to couple light in and out of 

such structures without tremendous difficulty.  On the other hand, obtaining azimuthally (TE01) 

and radially (TM01) polarized propagating modes is not nearly so trivial.  An approach for 
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coupling to azimuthally and radially polarized resonant modes will be explored in subsequent 

sections. 

7.1.3 Determination of Cavity Fitness 

To provide a robust optimization approach for the construction of resonant filters, all 

important design criteria have to be appropriately represented and given suitable weight.  An 

improperly defined fitness function may result in undesirable solutions that may behave well in 

some aspects and very poorly in others.  In the case of cavity resonators, the most crucial 

requirement is that the cavity resonate at a specified wavelength, 0, with as high a Q-factor as 

possible.  It is also worthwhile to include a component to force this wavelength to correspond to 

a specific mode number. 

Thus, the eigenmode solver outlined in an earlier chapter offers a suitable tool to obtain 

the metrics needed for the fitness function.  The eigenmode solver will take the cavity geometry 

as an input and return the resonant wavelengths, Q-factors, and electric field distributions.  Since 

the problem is assumed to be axisymmetric and the azimuthal mode number is specified as an 

input to the eigenmode solver, it need not factor into the fitness function.  On the other hand, the 

field distribution can be used to determine the radial and axial mode numbers.  These may all be 

combined into a single fitness mapping function of the following form: 

        321
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In this expression, 0 gives the design wavelength and Mr0 and Mz0 specify the desired radial and 

axial mode numbers respectively (typically both unity).  , Mr, and Mz are the corresponding 

characteristics of the nearest resonant mode of given cavity geometry.  Q is the calculated quality 
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factor of the cavity.  The three parameters in the exponent, a1, a2, and a3 (all assumed to be 

positive-valued) provide weights for each of the cavity characteristics.  The remaining 

coefficient, A, is simply a scale factor to remove units from the expression and determines what 

magnitude of difference between the desired and actual wavelengths is significant.  For example, 

a value of 100um-1 essentially means that deviations of the resonant wavelength from design are 

not significant until they are of the magnitude of 10nm-100nm. 

This formulation of the cavity fitness function provides several features.  The function is 

designed to be minimized, so values smaller than 1 necessitate high Q-factors.  The different 

cavity characteristics are combined geometrically rather than algebraically, which prevents the 

function from relying solely on a single aspect while neglecting the others.  Since the mode 

number is integer-valued, it makes sense that it should have no impact on the overall cavity 

fitness, so long as it matches the desired mode.  As such, in this formulation, the portion dealing 

with mode numbers becomes unity when they are correct.  Likewise, the resonant wavelength 

contribution also approaches unity as it nears the design wavelength.  This leaves the Q-factor 

alone to produce the required small fitness value. 

A very respectable resonant cavity design would have a Q-factor about 10,000.  The 

design criteria used for optimization in this research assumed that a sufficiently optimized cavity 

would have a TE011 resonant mode at a wavelength near 1.5um with a Q-factor over 100,000.  

Based on trial and error, the exponent weights in Eqn. 7.1, a1 and a2, for the Q-factor and 

resonant wavelength were set to 2.  This allowed the fitness function to be sufficiently narrowed 

in the region of an optimal solution so as to force the particles down into it quickly while still 

being sufficiently wide that the particles did not speed by without locating it.  The wavelength 
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scaling coefficient, A, was set to 100um-1, which forced the resonance to be within about 50nm 

of the design wavelength.  The exponent weight on the mode numbers, a3, was set to 8, which 

increased the fitness value by over two orders of magnitude for cavity resonant modes other than 

the specified design mode number.  With these fitness function parameters, the design criteria 

were satisfied with a fitness value smaller than 10-10.  This was chosen as the convergence 

threshold for the PSO approach. 

7.1.4 High Q-factor Cavity Design 

Under very specific combinations of cavity dimensions a very strong enhancement in the 

Q-factor is observed if a lossless highly reflective region surrounds the cavity in the radial 

direction [47, 49].  This effect was discussed by Ibenescu and demonstrated numerically using 

PECs as a surrounding medium.  The basic concept is demonstrated in Figure 7-2 and the 

resonances were calculated and plotted in Figure 3-3 as a benchmark for the eigenmode solver.  

Essentially, for this type of situation, the geometry causes a repulsion between polarization states 

resulting in a region with very small group velocity at some point in the dispersion relationship 

[49].  This occurs at very specific values of cavity radius and geometry depending on the 

reflectivities at either end of the cavity. 

PEC
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Dielectric 
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Figure 7-2: High Q-factor HE111 Microcavity. 
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While PECs used for radial confinement allow the Q-factors to reach 104-105, replacing 

them with real metal films results in a dramatic reduction of the Q-factor.  It should be noted that 

metal films work well in the microwave region of the spectrum (and have been used to form 

microcavities for decades) where the frequency-dependent permittivity approaches that of a PEC.  

Further, when media with sufficiently high gain are present, such structures have been shown to 

function as low-threshold lasers [135].  There is an alternative approach to the geometry that 

offers a similar effect.  Yariv originally proposed the idea of a radial Bragg grating encasing 

optical fibers [136], and the concept has also been used to aid confinement in microcavities [137, 

138].  This configuration has similar peaks of the Q-factor for certain combinations of 

geometrical parameters as in the PEC-encased cavity scenario [47]. 

Because of the narrow range of parameters offering enhanced Q-factors, PSO offers a 

convenient approach as a microcavity design tool [130, 139].  An example of an optimized DBR-

encased cavity and its corresponding amplitude response is shown in Figure 7-3, and the 

resonant wavelengths and Q-factors for various combinations of cavity lengths and radii are 

shown in Figure 7-4.  Notice that the resonant wavelength depends primarily on the radius, while 

the Q-factor is affected more strongly by the cavity length. 

    
Figure 7-3: Cylindrical-Bragg Microcavity and Amplitude Response. 
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(a)      (b) 

Figure 7-4: (a) Resonant Wavelength and (b) Q-factor for Combinations of Cavity 
Geometries. 

 

To improve confinement further, it is worth exploring a means of reducing leakage into 

the substrate.  A conventional approach is to place a set of DBR layers between the substrate and 

the cavity (as shown in Figure 7-5(a)) to reduce downward propagation.  Indeed, in our 

simulations, this improved the peak Q-factor from around 30,000 to about 50,000.  However, it 

has been noted previously [139, 140] that the small size of the cavities results in a great deal of 

diffraction at the ends of the cavity.  Thus, the longitudinal leakage consists of a large range of 

wave vectors, which reduces the effectiveness of the DBR.  The structure may be optimized 

somewhat to provide the highest reflection for the peak wave vector, but this offers only a small 

improvement.  An alternative is to optimize each reflecting layer independently.  This was seen 

to increase the Q-factor by nearly a factor of 2 to approximately 90,000. 



 145

          
(a)      (b) 

Figure 7-5: Cavity with Longitudinal Confinement Provided by (a) DBR Layers and (b) 
Optimized Reflecting Layers. 

 

7.2 Coupling to Axisymmetric Modes 

While we may optimize single cavities for high Q-factors at specific resonance 

frequencies, we would like to apply these cavities to the field of optical filtering.  As such, it is 

absolutely essential to be able to couple an incident signal into the structure and obtain a well-

defined response for the signals transmitted through and reflected from the device.  In the case of 

axisymmetric cavity modes, this involves converting a signal to either a radial or azimuthal 

polarization state and focusing it down to a sufficient size for mode matching with the cavity in 

the manner illustrated in Figure 7-6. 
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Figure 7-6: Coupling Methodology for Microcavity Resonators. 

 

A suitable polarization-converting element was originally fabricated by Mohammed 

[132] and was developed into an appropriate structure for oxide wafers by Rumpf and Mehta 

[141].  The latter case, a spatially polarizing autocloned element (SPACE) based on a spatially-

varied effective-index grating structure has been used experimentally to convert a linearly 

polarized incident beam into both azimuthal and radial polarizations.  The structure and its 

output beam are illustrated in Figure 7-7. 

       
Figure 7-7: SPACE Structure and Output Azimuthally Polarized Beam. 

 

Once the incident beam is in the correct polarization state, it must also be focused down 

to the appropriate size to couple into the cavity filters.  Notice that for the appropriate cavity radii 

Polarization Converting 
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Focusing Lens 
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LP Beam 

TE01 Beam 
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for the resonances we have described, the spot size is below the geometrical diffraction limit of 

most lenses.  Thus, we need a high-NA lens and we should numerically calculate the resulting 

spot size directly using the full diffraction integral since polarization state will strongly influence 

the resulting spot size and shape for such lenses [142, 143].  With modern fabrication methods it 

is possible to formulate an ultra-high NA lens on a small scale.  An example of such a lens 

(courtesy of P. Srinivasan) is shown in Figure 7-8. 

 
Figure 7-8: High NA Lenses (NA = 1.45). 

 

To obtain the resulting field distribution for the spot at the focus of such a lens, we turn to 

vector diffraction theory [133].  In the case of large Fresnel numbers, we can ignore diffraction 

effects from the edge of the lens and decompose the incident signal into a series of plane waves.  

At the focus of the lens, the resulting field distribution is calculated according to the 

superposition of each plane wave 
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where A is the complex vector amplitude of the plane waves on transmission through the lens 

aperture.  If we assume an azimuthally polarized beam (TE01) incident on the lens given by 
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the resulting field at the spot may be expressed according to 
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where z is the axial distance between the observation plane and the lens focus, f is the focal 

length of the lens, and 1 is the maximum angular extent of the lens as seen from the focal point.  

This distribution is illustrated in Figure 7-9 for several values of the focusing lens numerical 

aperture.  Similarly, if the polarization of the incident field is switched to the radial direction, the 

resulting field distribution becomes 
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Clearly the TM01 case has both longitudinal and radial polarization components.  These are 

shown in Figure 7-10, while the resulting electric field intensity is demonstrated in Figure 7-11. 

 
Figure 7-9: Azimuthally Polarized Field at High NA Lens Focus. 
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(a)       (b) 

Figure 7-10: (a) Er and (b) Ez Components of Radially Polarized Beam at High NA Lens 
Focus. 

 
Figure 7-11: Electric Field Intensity of Radially Polarized Beam at High NA Lens Focus. 

 

7.3 Coupled Resonator Filters 

So far we have demonstrated a reasonable approach to designing and optimizing single 

cavities for narrow resonances and we have outlined a feasible method to couple an incident 

signal into such structures.  The final step needed to construct a useful optical filter is to express 

the effects introduced by coupling multiple cavities to each other in a chain.  In such a situation it 

is readily apparent that the exotic geometries discussed earlier in this chapter do not lend 

themselves well to a multiplexed device.  However, the chaining of a large number of cavities 

together allows us to make use of much weaker resonators without introducing large loss terms 

to the response function. 
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7.3.1 Coupled Resonator Optical Waveguides 

There are a number of ways to approach a structure composed of coupled resonators.  A 

very simplistic first-order approximation may be obtained by noting that each successive 

resonator receives as input the filtered signal output from the previous resonator in the line.  In 

other words, if we ignore backward propagation and oscillations between neighboring cavities, 

the overall amplitude transmission function is approximated by 

 N
N TT 0  (7.6) 

If the impulse response of a single filter is given by a Lorentzian function centered at the cavity’s 

resonant frequency, the output of the second filter will be the Lorentz filter function applied to 

the broadband signal twice, and so on.  Thus, it is reasonable to assume that the Q-factor for an 

N-cavity filter is approximately equal to 0NQ  where Q0 is the Q-factor of a single resonant 

cavity. 

Now this approach obviously ignores coupling and oscillations, which are extremely 

significant factors and have particular implications for the resonant frequency.  The simple case 

of a pair of resonators is comparable to a coupled waveguide structure in which the nominally 

identical propagating modes of two waveguides combine and split into a symmetric mode and an 

antisymmetric mode according to coupled-mode theory.  The difference between the propagation 

constants of the two modes is directly proportional to the coupling constant of the waveguide 

pair [27].  In like manner, a pair of identical coupled resonators will resonate at two different 

modes centered on the original resonant frequency.  The frequency separation between the two 

modes is directly proportional to the coupling constant between the two cavities [144]. 
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Yariv originally proposed that a line of coupled resonators could act as a waveguide with 

minimal loss over a transmission band, even if sharp bends occur in the propagation direction 

[145].  Assuming a quasi-infinite linear combination (parallel to the z-axis) of high-Q resonators, 

one may assume that the solutions for the eigenmodes satisfy the Bloch theorem.  Thus, 
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where  rE


  is the eigenmode of the individual resonators,  is the single-cavity resonant 

frequency, and L is the spacing between resonators.  Under the assumption that the individual 

eigenmode is normalized to 1 and that the full filter mode,  rEK


 satisfies Maxwell’s Equations, 

Yariv shows that the following dispersion relation holds: 

 
















0

022

1

1

n

inKL
n

n

inKL
n

K e

e




  (7.8) 

where , n, and n are coupling constants given by (n  0) 
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and where  is the permittivity distribution for a single resonator and ’ is the permittivity due to 

the additional resonators.  In the weak coupling limit (and assuming identical cavities so that  

= 0), the dispersion relation reduces to 

   KLK cos1 1   (7.10) 
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where 1 = 1 - 1.  It should be noted for completeness that the “+” in Eqn. 7.10 should in 

reality be replaced by “” to account for positive and negative group velocities, though the latter 

is unlikely to occur physically [146].  From this relationship we can obtain a group index: 

  
L

c
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1
  (7.11) 

Note that this indicates an increase in the initial group delay by a factor of approximately 
1

1
 . 

From Eqn. 7.10 we can easily derive the full frequency bandwidth of the structure: 

  12use  (7.12) 

The eigenmodes of the coupled resonator structure are spaced evenly in K-space with values 

ranging from 0 to L
  [147].  Thus, if the wave vectors are spaced out by 
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the frequency spacing of the modes is approximated by 
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This means that the eigenfrequencies should be closely spaced toward the edges of the band and 

spread out more toward the middle.  However, when a relatively small number of cavities is 

present, the separation is less easily expressed, and the average spacing can offer greater 

meaning. 

Based on the derived group index, we can calculate the time required to traverse a single 

resonator: 
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Consequently, the leakage out of one resonator into the next, which corresponds to its effective 

Q-factor, can be expressed in the following manner [148]: 
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The overall Q-factor for a resonance of the entire device is also easily obtainable.  The transit 

time through the device is simply the single-cavity lifetime, , scaled by the number of cavities, 

N.  Thus, the Q-factor for a device resonance line may be expressed as 

 
1

N
Qdev   (7.17) 

This derivation does not directly account for radial losses out of the overall structure or 

potential intrinsic absorptive losses which may be expressed in terms of an intrinsic Q-factor.  A 

more detailed accounting for these losses may be found elsewhere [148], though it is worth 

noting that so long as the intrinsic cavity lifetime is substantially larger than the lifetime due to 

coupling ( from Eqn. 7.15 above), which occurs when effint QQ  , the effective Q-factor will 

dominate in the expression of overall response function.  In other words, as long as signal energy 

leaks out of the device significantly slower than it is allowed to move between successive 

resonant cavities, the cavity coupling dominates the overall filter response. 

7.3.2 Coupling of Low Q-factor Resonators 

This analysis has assumed relatively large Q-factors for the coupled resonators.  The 

standard coupled-resonator optical waveguides (CROW) approaches make use of either ring 
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resonators [146, 149] or photonic crystal (PC) [148, 150] structures.  One limitation of both 

approaches is their confinement to a two-dimensional plane: the filters may be tiled in only a 

single direction.  A more flexible approach would enable free-space optics to couple incident 

light into a two-dimensional array of three-dimensional optical filters. 

The simplest approach to this problem is to fabricate an array of cylindrical coupled-

resonator filters.  Unfortunately, simple cylindrical dielectric resonant cavities tend to have 

relatively low Q-factors.  This introduces a number of variations to the previous analysis.  First, 

and most obviously, the low Q-factor means that energy is not stored in individual resonators for 

as long, meaning that the overall structure delay is expected to be significantly reduced.  

Additionally, the large frequency bandwidth of the resonators means that the filter transmission 

band will be significantly larger than if high-Q resonators are used.  However, as noted above, 

the Q-factor for device resonances can be expected to scale with the number of resonators used. 

Another issue results from the low modal confinement.  This leads directly to much 

higher coupling than one would expect from high-Q filters.  From Eqns. 7.8 and 7.9 we expect to 

find multiple spectral orders in the transmission and reflection bands.  On the other hand, as the 

coupling strength is reduced, one may reasonably expect fewer and narrower resonance lines.  As 

an example, consider an isolated (in air) cylinder of SiON (refractive index 1.936) with radius 

400nm and height 300nm.  The resonant wavelength is approximately 1.4um and the Q-factor is 

approximately 10.  The amplitude response for a stack of 16 uniformly spaced identical cylinders 

as the center-to-center spacing varies from 400nm to 600nm is demonstrated in Figure 7-12.  

Notice the widely separated bands that close in and narrow as the separation increases and the 

coupling constant decreases. 
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(a)    (b)    (c) 

Figure 7-12: Amplitude Response of 16 Coupled Cylindrical Cavities Separated by (a) 100 
nm, (b) 200 nm, and (c) 300 nm. 

 

A final consideration for these 3-D structures involves the regions separating the resonant 

cavities.  In the case of ring resonators and PC cavities there is no guiding provided in the 

separating regions.  However, if we are making use of pillars composed of layers of different 

dielectric materials, it is likely that certain ranges of structure geometries will provide substantial 

confinement and guiding in the regions between cavities.  Such structures will still have CROW 

aspects but will additionally act, in part, as Bragg grating structures.  This means that, in addition 

to the resonance peaks, we can expect large band rejection regions corresponding to the various 

Bragg grating orders in the transmission spectrum.  While this complicates a full analysis of the 

structures, it also suggests a means for eliminating some of the transmission lines introduced by 

strong coupling between resonators. 

7.3.3 GaAs/AlAs Cavity Filter 

As the basis for a coupled resonator optical filter, we begin with a cylindrical GaAs 

cavity (refractive index 3.5) supported by an AlAs post (refractive index 3.0) with a slightly 

smaller radius (as shown in Figure 7-13).  The cavity was optimized for a resonance near 1.5um, 

and the resulting radius was 383nm and the cavity length was 523nm.  The AlAs post radius was 
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200nm, which has a cutoff for propagating modes at approximately 1.5um.  The resulting 

structure had a resonant wavelength of 1.48um with a Q-factor of 6.  A radial cross section of the 

resonant azimuthal (TE0mn) eigenmode at this wavelength is illustrated in Figure 7-14(a), while 

Figure 7-14(b) demonstrates the filter’s amplitude response given an incident source based on 

the results of the high-NA coupling described above. 

   
Figure 7-13: Cross-Section and 3-D Profile of GaAs/AlAs Filter Unit Cell. 

 

     
(a)      (b) 

Figure 7-14: (a) Resonant Eigenmode and (b) Amplitude Response of GaAs/AlAs Filter. 
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7.3.3.1 Multiplexed Filter Device 

It is readily apparent that a significant portion of the incident energy is scattered radially 

out of the filter, and only light within a specific band passes through the structure to any 

significant degree.  The more interesting case occurs when we begin to build a coupled network 

of these structures as is illustrated in Figure 7-15.  In this case the center-to-center spacing 

between cavities was 923nm (pillar length was 400nm). 

 
Figure 7-15: Multiplexing of GaAs/AlAs Cavity Filter. 

 

As was outlined above, several different effects begin to occur.  First, the subsequent 

transmission of a filtered signal from one cavity to the next results in a steady narrowing of the 

transmission peak.  Additionally, the alternating regions of high and low effective index 

produces a Bragg grating effect, which means we should expect to see a strong reflection band in 

the amplitude response as the number of cavities grows.  Finally, strong coupling between the 

cavities results in a splitting of the resonant modes.  This produces multiple closely-spaced peaks 

in the structure response function.  The amplitude response of a structure with (a) 4 and (b) 64 

cavities is shown in Figure 7-16.  All three of these features are clearly evident in the response 

curves. 
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(a)      (b) 

Figure 7-16: Amplitude Response of a Device with (a) 4 and (b) 64 Cavities. 
 

7.3.3.2 Bragg Reflections and Cavity Spacing Dependence 

The Bragg reflections may be explained quantitatively if we look at the effective index of 

the propagating modes in the two different filter regions.  As is shown in Figure 7-17, the 

support post operates fairly close to cutoff in the region of interest.  This suggests a subtle 

connection to the Nano-DAWG filters explored previously and might imply that dispersive 

effects could play an important role in these structures.  Additionally, note that in the wavelength 

band near the Bragg reflection peak (centered at approximately 1.37um), the effective index of 

the post is about 1.2, and that of the cavity region is roughly 3.0.  This results in a Bragg 

wavelength of 4.14um, which has a third diffraction-order reflection peak at 1.38um. 
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(a)      (b) 

Figure 7-17: Effective Index of Propagating Mode in (a) Cavity and (b) Post Regions. 
 

Thus, the effective index approach to the calculation of the reflectance spectrum is in 

agreement with the observed values.  It is also suggestive of a means to tailor the response 

function; if the spacing between cavities is reduced, two effects will occur.  First, the cavities 

will couple more strongly, resulting in a larger separation between eigenfrequencies, which 

should lead to a wider transmission bandwidth.  Additionally, the Bragg reflection will shift to 

shorter wavelengths.  For a slight increase in cavity spacing, the opposite will occur for both 

phenomena.  Based on the effective index calculations, it is reasonable to expect that a 50nm 

shift in the spacing will yield a shift in the third diffraction-order Bragg reflection peak of 

roughly 40nm.  Amplitude responses for cavity spacings of (a) 100nm, (b) 375nm, (c) 425nm, 

and (d) 475nm are shown in Figure 7-18. 
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(a)      (b) 

        
(c)      (d) 

Figure 7-18: Amplitude Response with Cavity Spacing of (a) 100nm, (b) 375nm, (c) 425nm, 
and (d) 475nm. 

 

7.3.3.3 Resonance Shift and Cavity Size Dependence 

A final interesting perturbation that may be applied to the cavity geometry to tune the 

overall response involves a variation in the cavity radius.  This is a bit more complex than the 

cavity spacing situation, as it directly changes the resonant frequencies as well as the cavity 

effective index (which will shift the Bragg reflection peaks).  Figure 7-19 shows the change in 

the filter response when the radius is decreased or increased by 26nm.  It is very clear that the 

resonant wavelength shifts by about 0.7um in each case while the Bragg reflection band shifts 
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much less.  What is particularly interesting is that in the case of a 357nm radius, the transmission 

peak moves inside the reflection band.  The dramatic change in the amplitude response for a 

relatively small change in the cavity geometry indicates that these structures require very careful 

tuning to obtain a desired response function, though it is also highly suggestive of a possible 

application.  Specifically, an optically active material in the cavity regions could receive a small 

electrically- (or temperature-) induced variation to its refractive index (which offers a similar 

effect as a change in cavity radius) and could easily switch the resonant transmission line on and 

off by pushing it into or out of the reflection band. 

         
(a)      (b) 

Figure 7-19: Amplitude Response for Cavity Radius of (a) 357nm and (b) 409nm. 
 

7.3.3.4 Feasible Structure Response 

While the structure response has been demonstrated and evaluated with 64 cavities 

present, such a device is extremely difficult to fabricate.  Since the period is nearly 1um, the 

structure would consist of an 800nm diameter free-standing pillar nearly 60um tall.  This would 

severely stretch the bounds of reasonable fabrication processes and is therefore unrealistic.  A 

more appropriate design would consist of 16 periods.  Such a structure would be slightly less 
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than 15um tall.  While this is still difficult to create, it is not impossible (and a slightly shorter 

structure consisting of 12-14 periods would not have a significantly different response function).  

The amplitude response of this structure calculated via (a) MOL and (b) FDTD is shown in 

Figure 7-20.  Note that the time domain requires a much lower spatial resolution to perform the 

calculations in a reasonable time frame and is thus not quite as accurate.  However, the 

agreement between the two simulations offers some reassurance that the spectral results are 

correct.  The time domain simulation is also capable of plotting the single-frequency CW field 

inside the structure at peak transmission, as shown in Figure 7-21. 

       
(a)      (b) 

Figure 7-20: Amplitude Response for 16-Cavity Filter Calculated via (a) Method of Lines 
and (b) Finite Difference-Time Domain. 

 
Figure 7-21: Radial Cross-Section of Resonant Frequency Field Intensity in Filter. 
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The FWHM bandwidth of the transmission line is approximately 30nm, which 

corresponds to a device Q-factor of 50.  While this is not particularly high in terms of spectral 

selection, the nature of the structure is suggestive of reasonable delay line functionality.  The 

magnitude and phase of the transmitted and reflected modes are plotted in Figure 7-22.  The 

transmitted signal has a reasonably flat phase across it, which could be suitable for calculating 

phase delay as a function of frequency. 

   
(a)       (b) 

Figure 7-22: (a) Transmitted and (b) Reflected Signals. 
 

A better approach is to apply a Hankel Transform to both the incident and transmitted 

signals.  The transform pair takes the form 
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where F is the transformed signal and J is a Bessel function of the first kind with order .  This 

approach is the cylindrical analog to using the Fourier Transform to express a signal in terms of 

plane waves.  Here we express the signal in terms of an infinite sum of Bessel functions, which is 

appropriate for cylindrical coordinates since the solutions to the wave equations naturally take 

this form. 
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For azimuthal polarizations, it is appropriate to make use of first-order Bessel functions 

and refer to the propagating Bessel-wave with peak amplitude.  The frequency-dependent 

variation of the phase on this wave provides an adequate means of estimating the structure’s 

dispersion.  Figure 7-23 shows the amplitude response and group delay for (a) the transmitted 

and (b) reflected signals.  Note that the delay in the reflected signal grows quite large at the band 

edges, while the transmitted signal delay is roughly flat across the entire bandwidth as was 

previously predicted and observed in the case of ring-resonator and photonic crystal CROWs 

[149, 150].  From Eqn. 1.9 we may estimate the group index of the structure to be 8.1.  By 

reducing the inter-cavity coupling and increasing the Q-factor of the individual resonators it is 

reasonable to expect that the delay could be increased significantly. 

         
(a)      (b) 

Figure 7-23: Amplitude Response and Group Delay for (a) Transmitted and (b) Reflected 
Signals. 

 

7.3.4 Coupled High-Q Cavities Filter 

For a variety of other applications it is desirable to design structures with significantly 

increased group delay over a fairly small transmission bandwidth.  To obtain such structures 

without sacrificing the ease of fabrication and the ability to multiplex them in a two-dimensional 
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array, it is useful to return to micropost cavities composed of monolithic pillars of alternating 

dielectric layers (in the form of DBRs for confinement purposes) surrounding a small cavity 

layer [35, 131].  These structures do not require any exotic fabrication methods beyond standard 

deposition, lithography, and etching.  Further, coupled cavity filters may be formed by adding 

thicker cavity layers after a specified number of DBR layer pairs as illustrated in Figure 7-24.  

The principle fabrication concern involves the aspect ratio of the resulting pillar.  As additional 

cavities are stacked, the pillar height grows, which can pose a substantial challenge for accurate 

fabrication processes. 

 
Figure 7-24: Coupled Cavity Dielectric Pillar Filter. 

7.3.4.1 Single Cavity Response 

Resonant cavity design largely follows the method outlined earlier in this chapter.  Based 

on characterized fabrication processes, we chose to use dielectric films with refractive indices of 

1.936 (SiON) and 1.4496 (SiO2).  Additionally, the large index contrast offered higher 

reflectance and confinement which provided higher Q-factors without requiring extra DBR 

layers.  The pillar radius was set to 1um, and the optimal cavity layer thickness was found to be 
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0.53um.  This results in a TE012 resonant mode at 1.55um.  With this operating wavelength, one 

would normally expect the quarter-wave thicknesses for the two Bragg layers to be 200nm and 

267nm.  However, the narrow structure diameter decreases the effective index of the various 

layers substantially.  To compensate and obtain the desired reflectance, the layer thicknesses 

were increased to 245nm and 328nm respectively.  Figure 7-25 demonstrates the amplitude 

response of this cavity with (a) 4, (b) 6, and (c) 8 DBR layer pairs on either side of it.  Clearly, as 

DBR layers are added, the bandwidth of the resonance line decreases, resulting in an increased 

cavity Q-factor.  The calculated value of the Q-factor for each case is (a) 65, (b) 210, and (c) 

530.  Note that the response is based on coupling a realistic source condition into the resonator 

and back out again.  Thus, the reduced reflectance ceiling is due to scattering losses as the 

incident signal couples to a propagating mode. 

 
(a)    (b)    (c) 

Figure 7-25: Single Cavity Amplitude Response with (a) 4 DBR Pairs; (b) 6 DBR Pairs; and 
(c) 8 DBR Pairs. 

7.3.4.2 Coupled Resonator Structure 

To form a coupled cavity system, the structure described in the previous section receives 

an additional cavity and set of DBR layers directly on top.  Thus, the 6 DBR coupled structure 

has two cavities separated by 6 DBR layer pairs with additional sets of 6 pairs on either end for a 

total of 21 layers (the middle DBR section requires an extra low-index layer for symmetry).  
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Note that the coupling constant in the case of the single cavity (which described coupling the 

incident signal to the structure) is now identical to that describing coupling between the cavity 

pairs.  Thus, based on the analysis of section 7.3.1, we should expect the two cavity structures to 

have Q-factors approximately double that of the single cavity case, and the spacing between 

resonances to decrease as additional DBR layers are used since the resulting coupling constant is 

reduced.  Figure 7-26 illustrates the amplitude response of the two cavity structures.  (a) shows 

the 4 DBR layer pair case and has a resonance spacing of 46.3nm and an average Q-factor of 

130; (b) has 6 DBR pairs, a spectral separation of 24.9nm and an average Q-factor of 450; in (c) 

the 8 DBR pairs case has a wavelength separation of 14.5nm and a Q-factor of 1000. 

 
(a)    (b)    (c) 

Figure 7-26: Coupled Cavity Pair Amplitude Response with (a) 4 DBR Pairs; (b) 6 DBR 
Pairs; and (c) 8 DBR Pairs. 

 

Although these results have merit, a more applicable structure would have significantly 

more cavities present.  Thus, we extend the structure pattern and demonstrate the response for 4- 

and 8-cavity devices in Figure 7-27.  Notice that the structure bandwidth matches closely with 

that of Figure 7-26(b).  In this case the average Q-factors were 1080 and 2000 respectively, and 

the average resonance spacings were 13.8nm and 7.0nm.  This matches well with the theoretical 
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analysis outlined above.  The Q-factor scales linearly with the number of cavities present, while 

the line spacing is inversely proportional to the same. 

 
(a)      (b) 

Figure 7-27: (a) 4 Coupled Cavities and (b) 8 Coupled Cavities Amplitude Response with 6 
DBR Layer Pairs. 

 

7.3.4.3 Stronger Coupling for Flat Transmission Bands 

While the results thus far have matched well with theoretical predictions and offer comb-

function transmission filters suitable for a variety of applications, we are specifically targeting a 

device with a relatively broad transmission band and extremely high group delay.  Unfortunately, 

by making the inter-cavity coupling constant the same as the end-coupling constant we have 

prevented the transmission peaks from overlapping.  In other words, as additional DBR layers 

were added to separate the cavities, thereby reducing the inter-cavity coupling and narrowing the 

free spectral range (FSR), the single-cavity Q-factor correspondingly increased and the 

transmission lines narrowed.  A better approach would allow one to tune the coupling constant 

independent of the intrinsic cavity characteristics. 
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To this end, we began by inserting a low-index (1.4496) layer midway between each of 

the resonance cavities and attempted to optimize this layer thickness to obtain a relatively flat 

transmission band.  Unfortunately, this had the undesired effect of creating an additional set of 

resonance cavities.  The overlapping set of coupled resonances resulted in a rather convoluted 

filter response.  A better approach would involve a separation layer that only supported leaky 

modes, thus reducing the chance for a secondary Fabry-Perot effect to occur. 

The new design had a pillar radius of 0.65um and a cavity layer thickness of 0.525um.  

The low-index DBR layer had a refractive index of 1.65 and a thickness of 288nm while the 

high-index (1.936) layer was 245nm thick.  The separation layer had a refractive index of 1.4496 

and a thickness of 0.3um.  With 10 DBR layer pairs present, the single-cavity structure had a 

resonance at 1.521um with a Q-factor of 470.  The amplitude response of the structure with (a) 1, 

(b) 2, (c) 4, and (d) 8 coupled cavities is shown in Figure 7-28.  Note that the transmission band 

is relatively flat without significant ripples due to the additional cavities present.  As cavities are 

added, the band edges become much sharper in like manner to Bragg reflection gratings.  

 
(a)      (b) 
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(c)      (d) 

Figure 7-28: (a) 1, (b) 2, (c) 4, and (d) 8 Coupled Cavities with Increased Coupling 
Constant. 

 

Since the bandwidth for these structures is constant, obtaining a Q-factor for the structure 

is not immediately intuitive and has limited meaning besides.  However, the characteristic of 

interest is the structure’s group delay, which is shown in Figure 7-29.  Notice that the delay 

peaks strongly at the band edge and is reasonably flat, though somewhat reduced, across the 

middle.  Based on the layer thicknesses and the calculated delay, Eqn. 1.9 gives a group index of 

16 for the structure near the middle of the transmission band and 24 for frequencies at the edge 

of the band.  However, it is reasonable to expect that a minor increase in the spacer layer 

thickness should substantially increase the delay and the structure’s group index.  Note though 

that this degree of delay compares quite favorably to that obtained by other CROW structures.  

For example, a CROW consisting of 12 ring resonators offered a total delay of 110ps for a group 

index of 23 but with a bandwidth of less than 0.2nm [149]. 
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7.3.4.4 Increased Mode Confinement for Higher Group Delay 

The delay for the demonstrated pillar cavities is substantial, but one would reasonably 

expect that it could be increased further if the Q-factors of the individual cavities could be 

substantially increased.  Section 7.1.4 outlined a means for increasing modal confinement and 

demonstrated a marked improvement in the Q-factors for such structures.  Specifically, encasing 

the pillar structure radially in a highly-reflective layer dramatically increases its Q-factor. 

 
Figure 7-29: Group Delay for Reduced Coupling Constant Structures. 

 

To exploit this effect, I used the same basic pillar structure surrounded radially by a PEC 

layer.  Similar results should be attainable from realistic reflecting structures such as highly 

reflective metallic films (especially in the microwave region of the spectrum) and the radial 

Bragg gratings discussed earlier.  I returned to the 1.936/1.4496 index layers design and re-

optimized the cavity radius and thickness and the overall thickness of the Bragg layers to obtain 

a high-Q structure resonant near 1.5um.  The resulting structure (illustrated in Figure 7-30) had a 

diameter of 1.6um, a cavity thickness of 450nm, and DBR layer thicknesses of 271nm and 

362nm.  With 8 DBR pairs on either side of the cavity, the single-cavity pillar resonated at 
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1.469um with a Q-factor of 11,000.  Even with only 6 DBR pairs present, the structure still had a 

Q-factor of 1500.  The single cavity amplitude response for both cases is shown in Figure 7-31. 

 

 
Figure 7-30: High Confinement Couple Cavities. 

 

 
(a)       (b) 

Figure 7-31: Single Cavity Amplitude Response with (a) 6 and (b) 8 DBR Layer Pairs. 
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As was noted in the previous section, the transmission band can be flattened out 

somewhat if int, the intrinsic cavity coupling constant (which defines the coupling into the 

overall filter), is adjusted independently of eff, the inter-cavity coupling constant.  Figure 7-32 

demonstrates the transmittance for 4 coupled cavities separated by 12 DBR layer pairs (L) as the 

DBRs at each end of the filter, L0, is adjusted from 5 to 7 layer pairs.  The amplitude response 

over the transmission band is flattest when the intrinsic coupling constant is sufficiently larger 

than the cavity to cavity coupling constant, that is, when there are twice as many DBR layer pairs 

between cavities as at either end of the structure.  If the intrinsic coupling strength is increased 

too much, it begins to dominate the overall filter response and becomes a larger factor in the 

structure bandwidth (which also results in a significant reduction in group delay).  Conversely, 

when the intrinsic coupling is reduced sufficiently below the inter-cavity coupling strength, the 

transmission lines narrow and the amplitude response becomes bumpy.3 

 
Figure 7-32: Amplitude Response as a Function of Coupling Constants. 

                                                 

3 This issue is less significant when a large number of cavities can be coupled.  However, these pillar structures are 
somewhat limited in their overall length due to fabrication difficulties, and thus, the number of cavities that may be 
present is severely restricted. 
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While it appears likely that a finer tuning of the coupling constants could further smooth 

the transmission curve (as was explored in the preceding section), setting the cavity spacing to be 

twice the number of DBR pairs surrounding a single cavity provides reasonable results.  Under 

this assumption, the phase response for coupled cavities separated by 10, 12, 14, and 16 DBR 

layer pairs was calculated.  The results are summarized in Table 7-1 and illustrated in Figure 

7-33. 

Table 7-1: Summary of PEC-Encased Coupled Cavities Phase Response. 
Cavity Spacing Single Cavity 

Length (um) 
Approx. 8 Cavity 

Delay (ps) 
Group Index Approx. 

Bandwidth (nm) 
10 DBR pairs 6.512 8 46 2.5 
12 DBR pairs 7.779 20 96 0.93 
14 DBR pairs 9.046 50 210 0.35 
16 DBR pairs 10.312 140 510 0.13 

 

 
(a)       (b) 
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(c)       (d) 

Figure 7-33: Phase Response of Coupled Cavities Spaced by (a) 10 (b) 12 (c) 14 and (d) 16 
DBR Layer Pairs. 

 

7.3.4.5 Tolerance to Pillar Sidewall Angles 

One of the most significant difficulties in the fabrication of pillar structures is the 

introduction of nonzero sidewall slopes.  When we are considering such narrow resonance lines, 

perturbations in the sidewalls can produce significant variations to the output spectrum.  Indeed, 

section 7.3.3.3 demonstrated that a shift of 50nm in the radius changes the transmission spectrum 

dramatically. 

To quantify the effect for high-Q cavities, I made use of the 8-DBR design presented in 

section 7.3.4.2.  The cavity-to-cavity spacing for that structure was 4.7um, which meant that a 

0.5 sidewall angle shifted the effective radius of successive cavities by 41nm.  In addition, there 

are two other elements affecting the structure response.  First, as noted in section 7.3.4.1, the 

reflection band for a given set of DBR layers is dependent on the pillar diameter.  Thus, a 

substantial variation in diameter will adversely affect the ability of the DBRs to confine the 

intended resonance lines.  Likewise, the propagation direction has a strong influence on the filter 
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response.  Specifically, when light is incident on the narrow end of the pillar, the first cavity will 

reflect much of the longer wavelength band which would otherwise be transmitted through the 

resonance lines of successive cavities.  The opposite would be true for light incident on the large 

end of the pillar.  The former case is represented by positive sidewall angles and the latter by 

negative angles. 

Figure 7-34 demonstrates the 2- and 4-cavity filter response due to a ±0.5 sidewall 

angle.  The variations in cavity radii caused the resonances to spread substantially, especially for 

the outer resonance lines of the 4-cavity structure.  The central resonance lines shifted outward 

by approximately 1.5nm, while the outer lines moved roughly 9nm.  However, the resonance 

lines for the positive and negative angles did occur at the same wavelengths.  The principle effect 

of the sidewall angle sign was to determine whether the lower or higher wavelength resonances 

would be better transmitted. 

 
(a)       (b) 

Figure 7-34: Amplitude Response Changes Due to Sloped Sidewalls for (a) 2 Cavity and (b) 
4 Cavity Structures. 
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7.3.5 Three-Dimensional Filters 

One of the motivations behind coupled cavity pillar filters is the ability to tile them across 

a wafer, forming a truly three-dimensional filter.  In addition, it is useful to be able to 

individually tune sections of the array to obtain different transmission bands.  This has been 

obtained in the past via PC structures [151].  However, this work suggests another alternative.  

The coupled cavity structures (particularly the high-Q structures demonstrated in section 7.3.4.4) 

offer filter functions with high group delay and extremely narrow bandwidth.  By simply 

adjusting the pillar diameter, one may obtain a shift in the transmission band.  Calculations for 

the PEC-encased pillar with cavities separated by 12 DBR layer pairs suggest that a variation of 

20nm in the pillar diameter (a shift of 1.25%) moves the transmission band by approximately 

8.5nm, nearly 10 times the structure bandwidth, without noticeably affecting the phase response.  

Thus, one could reasonably create a three-dimensional filter with very high group delay and a 

spatially dependent transmission spectrum. 

 
Figure 7-35: Amplitude Response as a Function of Coupling Constants. 
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7.4 Microcavity Filters Summary 

Much like Bragg gratings, microcavities rely on resonance effects, multiple reflections, 

and low group velocity to obtain a strong filter response.  However, whereas Bragg grating 

structures are designed around a reflection band, these filters have a narrow transmission line at 

the resonance wavelength.  Additionally, microcavity filters are three-dimensional free-space 

structures which may easily be placed in a large array for large-scale filtering, while Bragg 

gratings and dispersive waveguides are confined to the surface of a substrate in a single 

waveguide. 

However, to use such structures as optical filters, one must be able to couple light into 

and out of them.  Since the cavities focused on in this research involved the azimuthally and 

radially polarized modes in ultra-small regions, we needed a way to convert incident light to 

these polarization states and focus it to a small enough spot.  The optics necessary for both 

aspects of the coupling method have previously been demonstrated theoretically and 

experimentally.  An autocloned polarization converting element, which takes a linearly polarized 

beam and converts it to either the TM01 or TE01 propagating modes, and adequate high-NA 

lenses have both been fabricated in our facilities.  A theoretical analysis of the focusing of the 

two different polarizations suggests that a lens with an NA of 2.0 focusing through a region with 

refractive index 3.5 should be more than sufficient for GaAs/AlAs cavities.  Slightly smaller NA 

lenses will also work, though coupling to the resonant modes is somewhat reduced. 

This discussion focused on the design and optimization of microcavities in two different 

configurations.  First, we explored an optimization approach to enhance the Q-factors of single 

microcavities.  Through this approach, the geometry was designed and adjusted to contain the 
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optical energy at the resonance wavelength.  To better achieve this, the cavity geometry and a set 

of reflecting layers between the cavity and substrate were optimized using the Particle Swarm 

approach.  The optimized reflecting layers offered nearly a 3-fold improvement over a bare 

substrate and almost doubled the Q-factor achieved with a simple DBR. 

While isolated high-Q cavities are ideal for certain applications, coupled cavities offer a 

much greater range of filtering capabilities, particularly since relatively low-Q cavities may be 

chained together in a long sequence to obtain an improved filter response.  The filtering 

capabilities of a chain of GaAs/AlAs cavities was evaluated and discussed at length.  The 

amplitude response is controlled by three different factors: 1) cut-off of the propagating modes; 

2) Bragg reflections due to the periodicity of the structure; and 3) weakly coupled resonant 

microcavities resulting in a narrower transmission line than a single isolated structure.  Each of 

these three features combines to produce the overall response function, and each one depends 

heavily on the overall filter geometry.  In addition to the amplitude response, the phase response 

was obtained.  There is a relatively flat band across the width of the transmission line with a 

significant group delay.  Similarly, the reflection band due to the Bragg effect has a relatively flat 

delay across its center but has large delay peaks at the edges. 

Although the coupled low-Q devices have a relatively wide transmission line and 

moderate phase delay, the ability to tune the transmission lines into and out of reflection bands is 

suggestive of a potential switching application.  This is especially true in the case of a two-

dimensional array of independently controlled structures of very similar design.  Spatially 

separated transmission bands could be independently switched on and off with relative ease. 
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On the other hand, high-Q coupled filters offered extremely large group delay 

magnitudes, albeit over very narrow transmission bandwidths.  By separating cavities by DBR 

layers and further confining the modes through highly reflective radial coatings we were able to 

obtain a delay-per-unit-length as much as 300 times that offered by the other filter structures 

explored in this research.  While the fabrication tolerances of these structures were shown to be 

particularly tight, we demonstrated that slight variations in pillar diameters may be exploited 

over a two-dimensional filter array to achieve a spatially-dependent filter response. 
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CHAPTER 8 
CONCLUSION 

8.1 Background 

This work developed a body of knowledge essential for the design and optimization of 

nanostructured optical filters.  The basics and overall theory concerning filters in general and the 

classes specifically investigated in this research were outlined at length in CHAPTER 1.  Three 

types of filters were explored at length and innovations to each category are presented here.  We 

designed and optimized each filter for different target applications and provided a full analysis of 

the resulting structures and their filter functions. 

8.2 Optical Filter Design and Modeling 

This research made use of a variety of numerical methods to obtain suitable optical filter 

designs.  The principle modeling methods (described in CHAPTER 3) were frequency-based and 

incorporated Maxwell’s curl equations into a suitable form for a variety of different types of 

filters.  They directly related given filter geometries to actual filter responses for given incidence 

conditions and offered a means to characterize different optical structures.  PSO provided the 

optimization approach required to adjust the filter geometries iteratively and converge on optimal 

structure designs.  This algorithm was outlined in detail in CHAPTER 4. 

8.2.1 Numerical Modeling Tools 

Eigenvalue simulations were based on the assumption that the field vectors in Maxwell’s 

Equations could be expressed as traveling waves.  The problem geometry was converted into 

matrix form in such a way that the problem’s eigenvalues represented the propagation constants 
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for the fields.  This approach was particularly convenient for long structures with constant cross-

sections, such as the Nano-DAWGs.  While it did not immediately account for coupling and 

amplitude response for the given structure, it did provide a means for quickly characterizing the 

group delay and dispersion of the device. 

The eigenfrequency simulation was well suited for the design and optimization of optical 

cavities.  It provided a quick and efficient way to obtain the resonance characteristics of a given 

structure geometry.  However, the approach lacked the ability to express the filter response for a 

given source condition.  To obtain a complete structure response, the equations were 

reformulated in a manner similar to the eigenvalue problems, but were not solved directly for the 

propagation constants.  Instead, this MOL approach expressed Maxwell’s Equations in matrix 

form such that its product with an incident source vector represented either the reflected or 

transmitted field.  This meant that both the phase and amplitude of the reflected and transmitted 

signals could be calculated for arbitrary source conditions.  Such an approach was vital for fully 

characterizing the coupled cavity filters, and a variation of this method was used to calculate the 

response of the spiral Bragg structures. 

8.2.2 Numerical Optimization Approach 

PSO was used in conjunction with the modeling tools to complete the optical filter 

design.  The algorithm was quite simple while also extremely general and was well suited to a 

wide variety of problems, so long as a well-defined fitness function could be expressed.  While 

the overall optimization speed was not always quite as fast as other approaches such as GAs, the 

PSO was quite robust and consistently converged to good solutions that the GA was occasionally 

unable to locate. 
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8.3 Summary of Results 

8.3.1 Nano-DAWGs 

CHAPTER 5 described and characterized dispersive waveguide structures termed Nano-

DAWGs.  These devices consisted of an exotic waveguide cross-section optimized to contain a 

single TE mode propagating near mode cutoff.  The periodicity of the structure coupled with the 

mode cutoff condition resulted in extremely high second-order dispersion ranging from 5000 to 

15,000 ps nm-1 km-1.  The actual group delay of the structures was relatively low, particularly 

when expressed in terms of delay per unit length, though that was not the central motivation for 

the design. 

In addition to characterizing the structures, a method for evanescently coupling light into 

the waveguides was described.  Further, a number of variations to the structures were identified 

and described, offering specific avenues of exploration for this class of optical filters. 

8.3.2 Spiral Bragg Structures 

An innovative approach to the fabrication of Bragg grating structures was described in 

CHAPTER 6.  Instead of attempting to directly apply a specific grating period to a given 

waveguide, the two were described independently of each other.  In the examples presented, the 

grating was given a radial geometry, and a waveguide trajectory was optimized to obtain specific 

filter responses when used in conjunction with the grating.  The linearly chirped structure was 

1m long with a bandwidth of 40nm and relative group delay of about 5ns.  This corresponds to a 

constant dispersion of 250,000 ps nm-1 km-1. 

The approach offered a few advantages.  First, fabricating the structures independently 

allowed the gratings to more closely approximate the specific design required despite potential 
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fabrication errors.  The magnitude of GDR introduced through e-beam writing of the gratings 

was quantified to demonstrate the efficacy of this approach.  The second advantage of this 

approach is the extreme flexibility offered in terms of potential filter responses and applications.  

Specific examples demonstrated in the chapter described both phase responses for dispersion 

compensation and amplitude responses for WDM filtering applications. 

Additional applications included tunable sources and WDM-related structures where very 

precise relative time delays between frequency components are critical.  This research 

demonstrated that the spiral structures are capable of providing relative delays over a range of 

1ps/nm to 2ns/nm. 

8.3.3 Coupled Cavity Filters 

Microcavity filters were described at length in CHAPTER 7.  These resonant structures 

operate principally as band-pass filters in contrast with the Bragg structures that reflect the 

spectral band of interest.  The initial discussion involved ways to increase confinement and 

narrow the resonance of a single cavity to produce a high-Q cavity with a specific designed 

resonance wavelength.  PSO was instrumental in optimizing the cavity geometry, and Q-factors 

of nearly 105 were observed. 

Coupling to the cavity structures was obtained through polarization converting elements 

and high NA lenses previously fabricated by the research group.  The coupling characteristics 

were described analytically and quantified so that additional simulations could make use of 

realistic incident source conditions. 

The discussion also explored the coupling of successive microcavities to obtain ultra-high 

group delays.  The single cavity work was applied to the coupled cavity pillar structure to 
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increase the intrinsic Q-factors and realize higher delay magnitudes.  The structures were fully 

characterized with realistic incident signals to give a meaningful amplitude and phase response.  

Although the total group delay was about 140ps for the best structures, the required structure 

length was only 82um, meaning that the delay per unit was over 300 times larger than that of the 

other filters presented, albeit over a transmission bandwidth of 0.13nm.  Also, by slight 

adjustment of the structure diameter the transmission band can be shifted significantly without 

affecting the group delay profile. 

8.3.4 Filter Comparisons 

This research has explored three different classes of very different optical filters suitable 

for a variety of different applications.  There is a degree of overlap between each of the 

structures, though they all are focused in slightly different directions and tailed for different 

applications.  Each has a variety of quite divergent characteristics, some of which are 

summarized in Table 8-1. 

Table 8-1: Comparison of Optical Filter Designs. 
 Nano-DAWGs Spiral Bragg Structures Coupled Microcavities 

Principle Characteristic High second order 
dispersion over wide 

transmission band 

Constant dispersion over 
wide reflected band 

High group delay over 
narrow transmission 

band 
Group Index 1.9 1.5-105 510 
Bandwidth 100nm 40nm (or larger) 0.13nm 

Structure Length 100mm+ 1m+ 82um 

 

In addition to the listed distinctives, Nano-DAWGs provide a fairly flexible approach for 

dispersive waveguides.  Coupling is challenging but somewhat straightforward, and one need not 

be concerned with separating incident and reflected signals. 
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Conversely, spiral Bragg structures can offer a similar degree of dispersion over a 

comparable bandwidth.  However, the signal is reflected, which requires one to separate it from 

the source, which introduces an immediate 3dB loss to the system.  On the other hand, the 

approach is extremely general and coupling does not introduce further difficulties. 

Finally, the coupled microcavities offer extremely high group delays and a very narrow 

transmission band.  The structures are quite compact and can be arrayed across a wafer to 

provide a spatial variation to the complete optical filter device.  Coupling and fabrication 

sensitivities are the greatest challenges with these structures, although further work may be able 

to obviate these issues somewhat. 

8.4 Recommendations for Future Work 

This work has described, explored, and characterized three different classes of optical 

filters.  However, the work in each area has indicated additional areas of development, several of 

which have been specifically outlined in the text. 

While the Nano-DAWGS offer a unique approach to dispersive waveguide design and 

has been further explored elsewhere [152], other geometries, such as dissimilar coupled 

waveguide and trench-bulge structures, offer other approaches that make use of the same ideas.  

In particular, the trench-bulge concept makes use of the low confinement and periodic nature of 

the structure in a manner that is much more convenient to fabricate.  On the other hand, the 

evanescent coupling approach offers a means not only to shift optical energy into the Nano-

DAWG structure but also to further increase the overall device dispersion. 

The decoupling approach to Bragg grating structures is an innovative concept offering a 

great deal of promise.  Specific areas of future work include fabricating and optically testing the 
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structures and further optimizing the waveguide trajectories for alternative applications.  In 

particular, such structures have the potential to operate in much the same manner as the coupled 

cavity designs, only with reduced fabrication difficulties.  By using a non-constant radial grating 

function in conjunction with appropriate waveguides, one should be able to obtain resonant 

regions in the waveguide separated by Bragg reflectors.  Further, identical waveguides fabricated 

at a variety of radial coordinates should offer an array of slightly offset transmission bands with 

extremely high group delay. 

The coupled resonant microcavity structures provide a means of obtaining large group 

delays over very narrow transmission bands.  The fabrication tolerances of these devices are 

quite narrow, and a particular area for additional work would be to develop a less sensitive 

geometry that is more easily fabricated.  One option would involve rectangular waveguides 

fabricated along the length of a wafer rather than the described pillar geometry.  

Correspondingly, the designs should be expanded to other polarization states both for other 

applications and for ease of coupling to and from the resonant modes.  Finally, specific realistic 

geometries should be defined for increasing the mode confinement and intrinsic cavity Q-factor 

to replace the PECs used in the high group delay designs. 

 

 

 



 188

REFERENCES 

1. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis (John Wiley, New 
York, 1999). 

2. X. Liu, L. F. Mollenauer, and X. Wei, "Impact of group-delay ripple in transmission 
systems including phase-modulated formats," IEEE Photonics Technology Letters 16, 305-307 
(2004). 

3. R. Ramaswami, and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan 
Kaufmann Publishers Inc., San Francisco, 1998). 

4. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical delay lines based on 
optical filters," IEEE Journal of Quantum Electronics 37, 525-532 (2001). 

5. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, "Bragg solitons in the nonlinear 
Schrodinger limit: experiment and theory," J. Opt. Soc. Am. B 16, 587–599 (1999). 

6. J. D. Brown, A. Mehta, H. Hockel, and E. G. Johnson, "Improved fabrication accuracy of 
Bragg gratings," Proceedings of SPIE 5720, 139 (2005). 

7. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, "Dispersive 
properties of optical filters for WDM systems," IEEE Journal of Quantum Electronics 34, 1390-
1402 (1998). 

8. E. J. Murphy, T. F. Adda, W. J. Minford, R. W. Irvin, E. I. Ackerman, and S. B. Adams, 
"Guided-wave optical time delay network," IEEE Photonics Technology Letters 8, 545-547 
(1996). 

9. G. Griffel, "Synthesis of optical filters using ring resonator arrays," IEEE Photonics 
Technology Letters 12, 810-812 (2000). 

10. Y. Lee, T. Mishima, S. Kominami, K. Shinoda, and H. Uchiyama, "Dispersion 
compensation by two vertically coupled asymmetric ridge waveguides," Applied Optics 43, 
4101-4105 (2004). 



 189

11. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion 
compensation in fiber transmission," Applied Physics Letters 67, 2111 (1995). 

12. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal 
nanoparticle chain waveguides," Physical Review B 67, 205402 (2003). 

13. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," 
Physical Review Letters 93, 137404 (2004). 

14. V. N. Astratov, "Heavy photon dispersions in photonic crystal waveguides," Applied 
Physics Letters 77, 178 (2000). 

15. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon 
photonic crystal optical waveguides," Journal of Lightwave Technology 18, 1402-1411 (2000). 

16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, 
"Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," 
Physical Review Letters 87, 253902 (2001). 

17. J. Brown, E. Johnson, and M. Moharam, "Nano dispersion amplified waveguide 
structures," Optics Express 12, 1228-1237 (2004). 

18. T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology 15, 1277-1294 
(1997). 

19. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for 
dispersion compensation in transmission: theoretical model and design criteria for nearly ideal 
pulserecompression," Journal of Lightwave Technology 15, 1303-1313 (1997). 

20. F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in 
optical waveguides," Optics Letters 12, 847-849 (1987). 

21. T. J. Eom, S. J. Kim, T. Y. Kim, C. S. Park, and B. Lee, "Optical pulse multiplication and 
temporal coding using true time delay achieved by long-period fiber gratings in dispersion 
compensating fiber," Optics Express 12, 6410-6420 (2004). 



 190

22. E. Peral, and A. Yariv, "Supermodes of grating-coupled multimode waveguides and 
application to mode conversion between copropagating modes mediated by backward Bragg 
scattering," Journal of Lightwave Technology 17, 942-947 (1999). 

23. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, "Influence of nonideal 
chirped fiber grating characteristics ondispersion cancellation," IEEE Photonics Technology 
Letters 10, 1476-1478 (1998). 

24. M. Sumetsky, B. Eggleton, and C. de Sterke, "Theory of group delay ripple generated by 
chirped fiber gratings," Optics Express 10, 332-340 (2002). 

25. T. Komukai, T. Inui, and M. Nakazawa, "Group delay ripple reduction and reflectivity 
increase in a chirped fiber Bragg grating by multiple-overwriting of a phase mask with an 
electron-beam," IEEE Photonics Technology Letters 12, 816-818 (2000). 

26. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. 
Deshmukh, and C. Soccolich, "Group-delay ripple correction in chirped fiber Bragg gratings," 
Optics Letters 28, 777-779 (2003). 

27. K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000). 

28. M. Yamada, and K. Sakuda, "Analysis of almost-periodic distributed feedback slab 
waveguides via a fundamental matrix approach," Applied Optics 26, 3474-3478 (1987). 

29. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge 
laser: A new approach to gain enhancement," Journal of Applied Physics 75, 1896 (1994). 

30. J. D. Brown, A. Mehta, and E. G. Johnson, "Nanostructure devices for band-edge gain 
enhancement," in Optics in the Southeast(Charlotte, NC, 2006). 

31. S. H. Kwon, "Photonic bandedge lasers in two-dimensional square-lattice photonic 
crystal slabs," Applied Physics Letters 83, 3870 (2003). 

32. P. S. J. Russell, "Bloch wave analysis of dispersion and pulse propagation in pure 
distributed feedback structures," Journal of Modern Optics 38, 1599-1619 (1991). 



 191

33. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New 
York, 1997). 

34. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). 

35. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-
dimensional micropost microcavities for cavity quantum electrodynamics," Physical Review A 
66, 23808 (2002). 

36. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid 
microcavity on a chip," Nature 421, 925-928 (2003). 

37. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," 
Physical Review Letters 58, 2059-2062 (1987). 

38. P. Rigby, and T. F. Krauss, "Photonics: The Vs and Qs of optical microcavities," Nature 
390, 125 (1997). 

39. J. A. Kong, Electromagnetic Wave Theory (Wiley, 1986). 

40. C. G. Someda, Electromagnetic Waves (CRC Press, New York, 1998). 

41. D. H. Staelin, A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves (Prentice 
Hall, Englewood Cliffs, NJ, 1994). 

42. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, 
"Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," 
Physical Review Letters 81, 1110-1113 (1998). 

43. G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from 
a single quantum dot in a three-dimensional microcavity," Physical Review Letters 86, 3903-
3906 (2001). 

44. R. J. Thompson, G. Rempe, and H. J. Kimble, "Observation of normal-mode splitting for 
an atom in an optical cavity," Physical Review Letters 68, 1132-1135 (1992). 



 192

45. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Physical 
Review 69, 681 (1946). 

46. R. V. Baltz, "Photonic structures: atoms, molecules, wires, and crystals," in Spectroscopy 
of systems with spatially confined structures, B. D. Bartolo, ed. (International School of Atomic 
and Molecular Spectroscopy, Erice, Sicily, 2001). 

47. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, 
"Anomalous dispersion relations by symmetry breaking in axially uniform waveguides," 
Physical Review Letters 92, 63903 (2004). 

48. B. Maes, M. Ibanescu, J. D. Joannopoulos, P. Bienstman, and R. Baets, "Microcavities 
based on multimodal interference," Optics Express 15, 6268-6278 (2007). 

49. M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, "Microcavity 
confinement based on an anomalous zero group-velocity waveguide mode," Optics Letters 30, 
552-554 (2005). 

50. A. Hasegawa, and F. Tappert, "Transmission of stationary nonlinear optical pulses in 
dispersive dielectric fibers. I. Anomalous dispersion," Applied Physics Letters 23, 142 (2003). 

51. A. Hasegawa, and F. Tappert, "Transmission of stationary nonlinear optical pulses in 
dispersive dielectric fibers. II. Normal dispersion," Applied Physics Letters 23, 171 (2003). 

52. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. 
Aktsipetrov, G. Marowsky, V. A. Yakovlev, G. Mattei, N. Ohta, and S. Nakabayashi, "Giant 
optical second-harmonic generation in single and coupled microcavities formed from one-
dimensional photonic crystals," Journal of the Optical Society of America B 19, 2129-2140 
(2002). 

53. D. E. Thompson, J. D. McMullen, and D. B. Anderson, "Second-harmonic generation in 
GaAs 'stack of plates' using high-power CO laser radiation," Applied Physics Letters 29, 113 
(1976). 

54. J. P. van der Ziel, M. Ilegems, P. W. Foy, and R. M. Mikulyak, "Phase-matched second 
harmonic generation in a periodic GaAs waveguide," Applied Physics Letters 29, 775 (1976). 



 193

55. Y. Wu, and X. Yang, "Quantum theory for microcavity enhancement of second harmonic 
generation," Journal of Physics B: Atomic, Molecular, and Optical Physics 34, 2281-2288 
(2001). 

56. V. Berger, "Nonlinear photonic crystals," Physical Review Letters 81, 4136-4139 (1998). 

57. V. Berger, "Second-harmonic generation in monolithic cavities," Journal of the Optical 
Society of America B 14, 1351-1360 (1997). 

58. M. Liscidini, and L. Claudio Andreani, "Second-harmonic generation in doubly resonant 
microcavities with periodic dielectric mirrors," Physical Review E 73, 16613 (2006). 

59. C. Flueraru, and C. P. Grover, "Overlap integral analysis for second-harmonic generation 
within inverted waveguide using mode dispersion phase match," IEEE Photonics Technology 
Letters 15, 697-699 (2003). 

60. A. Jugessur, P. Pottier, and R. De La Rue, "Engineering the filter response of photonic 
crystal microcavity filters," Optics Express 12, 1304-1312 (2004). 

61. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, S. 
T. Ho, and N. T. Inc, "GaAs microcavity channel-dropping filter based on a race-track 
resonator," IEEE Photonics Technology Letters 11, 1620-1622 (1999). 

62. D. M. Sheen, "Numerical modeling of microstrip circuits and antennas," Ph. D. 
dissertation, Department of Electrical Engineering and Computer Science at MIT, Cambridge 
(1991). 

63. S. Dey, and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) 
algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave and 
Guided Wave Letters 7, 273 (1997). 

64. J. F. Epperson, An Introduction to Numerical Methods and Analysis (Wiley, New York, 
2002). 

65. J. B. Cole, "A high-accuracy realization of the Yee algorithm using non-standard finite 
differences," IEEE Transactions on Microwave Theory and Techniques 45, 991-996 (1997). 



 194

66. R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations (World 
Scientific, Hackensack, NJ, 1994). 

67. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s 
equations," IEEE Transactions on Antennas and Propagation 14, 302-307 (1966). 

68. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference 
Time-Domain Method (Artech House, Norwood, MA, 2000). 

69. Y. Liu, "Fourier analysis of numerical algorithms for the Maxwell equations," Journal of 
Computational Physics 124, 396–416 (1996). 

70. Z. S. Sacks, D. M. Kingsland, and R. Lee, "A perfectly matched anisotropic absorber for 
use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation 43, 
1460-1463 (1995). 

71. J. P. Berenger, "Three-dimensional perfectly matched layer for the absorption of 
electromagnetic waves," Journal of Computational Physics 127, 363-379 (1996). 

72. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the 
truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation 44, 1630-1639 
(1996). 

73. S. Shi, L. Yang, and D. W. Prather, "Numerical study of axisymmetric dielectric 
resonators," IEEE Transactions on Microwave Theory and Techniques 49, 1614-1619 (2001). 

74. F. L. Teixeira, and W. C. Chew, "Systematic derivation of anisotropic PML absorbing 
media in cylindrical and spherical coordinates," IEEE Microwave and Guided Wave Letters 7, 
371-373 (1997). 

75. D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated 
dielectric resonators," IEEE Transactions on Microwave Theory and Techniques 32, 1609-1616 
(1984). 



 195

76. J. F. Lee, G. M. Wilkins, and R. Mitra, "Finite-element analysis of axisymmetric cavity 
resonator using a hybrid edge element technique," IEEE Transactions on Microwave Theory and 
Techniques 41, 1981-1987 (1993). 

77. A. Navarro, M. J. Nunez, and E. Martin, "Study of TE0 and TM0 modes in dielectric 
resonators by a finite difference time-domain method coupled with the discrete Fourier 
transform," IEEE Transactions on Microwave Theory and Techniques 39, 14-17 (1991). 

78. A. Cwikla, M. Mrozowski, and M. Rewienski, "Finite-difference analysis of a loaded 
hemispherical resonator," Microwave Theory and Techniques, IEEE Transactions on 51, 1506-
1511 (2003). 

79. K. Kawano, and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley, New 
York, 2001). 

80. M. Rewienski, "High performance algorithms for large scale electromagnetic modeling," 
Ph. D. dissertation, Department of Electronics, Telecommunications, and Computer Science at 
Technical University Gdansk, Gdansk, Poland (1999). 

81. S. L. Lin, and G. W. Hanson, "An efficient full-wave method for analysis of dielectric 
resonators possessing separable geometries immersed in inhomogeneous environments," IEEE 
Transactions on Microwave Theory and Techniques 48, 84-92 (2000). 

82. S. Shi, D. W. Prather, L. Yang, and J. Kolodzey, "Influence of support structure on 
microdisk resonator performance," Optical Engineering (Bellingham, Washington) 42, 383-387 
(2003). 

83. Q. H. Liu, and W. C. Chew, "Analysis of discontinuities in planar dielectric waveguides: 
An eigenmode propagation method," IEEE Transactions on Microwave Theory and Techniques 
39, 422-430 (1991). 

84. R. Pregla, and W. Pascher, "The method of lines," in Numerical techniques for 
microwave and millimeter wave passive structures, T. Itoh, ed. (Wiley, New York, 1989), 381-
446. 

85. U. Rogge, and R. Pregla, "Method of lines for the analysis of strip-loaded optical 
waveguides," Journal of the Optical Society of America B 8, 459–463 (1991). 



 196

86. U. Rogge, and R. Pregla, "Method of lines for the analysis of dielectric waveguides," 
Journal of Lightwave Technology 11, 2015-2020 (1993). 

87. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988). 

88. H. A. Jamid, and M. N. Akram, "Analysis of deep waveguide gratings: An efficient 
cascading and doubling algorithm in the method of lines framework," Journal of Lightwave 
Technology 20, 1204-1209 (2002). 

89. J. O'Daniel, "Integrated wavelength stabilization of broad area semiconductor lasers 
using a dual grating reflector," Ph. D. dissertation, College of Optics at University of Central 
Florida, Orlando (2006). 

90. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, 
New York, 1996). 

91. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning 
(Addison-Wesley Longman Publishing, Boston, 1989). 

92. E. G. Johnson, and M. A. G. Abushagur, "Microgenetic-algorithm optimization methods 
applied to dielectric gratings," Journal of the Optical Society of America A 12, 1152–1160 
(1995). 

93. E. G. Johnson, M. A. G. Abushagar, and A. Kathman, "Phase grating optimization using 
genetic algorithms," in Optical Design for Photonics (OSA, Washington, D.C., 1993), 71–73. 

94. J. D. Brown, "Genetic algorithm optimization of lenses using the y-ybar diagram," in 
47th International Science and Engineering Fair (Tucson, Arizona, 1996). 

95. R. L. Haupt, "An introduction to genetic algorithms for electromagnetics," in IEEE 
Antennas and Propagation Magazine(1995), 7-15. 

96. J. Jiang, J. Cai, G. P. Nordin, and L. Li, "Parallel microgenetic algorithm design for 
photonic crystal and waveguide structures," Optics Letters 28, 2381-2383 (2003). 



 197

97. R. Eberhart, and J. Kennedy, "A new optimizer using particle swarm theory," in 
Proceedings of the Sixth International Symposium on Micro Machine and Human Science 
(1995), 39-43. 

98. J. Kennedy, and R. Eberhart, "Particle swarm optimization," in IEEE Proceedings of the 
Conference on Neural Networks (IEEE, 1995), 1942-1948. 

99. K. E. Parsopoulos, and M. N. Vrahatis, "Recent approaches to global optimization 
problems through particle swarm optimization," Natural Computing 1, 235-306 (2002). 

100. P. J. Angeline, "Evolutionary optimization versus particle swarm optimization: 
Philosophy and performance differences," in Proceedings of the 7th International Conference on 
Evolutionary Programming VII (1998), 601-610. 

101. J. Robinson, and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," 
IEEE Transactions on Antennas and Propagation 52, 397-407 (2004). 

102. S. Genovesi, R. Mittra, A. Monorchio, and G. Manara, "Particle swarm optimization for 
the design of frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters 5, 
277-279 (2006). 

103. S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan, "Particle swarm 
optimization for the design of low-dispersion fiber Bragg gratings," IEEE Photonics Technology 
Letters 17, 615-617 (2005). 

104. M. Shokooh-Saremi, and R. Magnusson, "Particle swarm optimization and its application 
to the design of diffraction grating filters," Optics Letters 32, 894-896 (2007). 

105. Y. Shi, and R. C. Eberhart, "Parameter selection in particle swarm optimization," 
Evolutionary Programming 7, 611–616 (1998). 

106. J. Kennedy, "The behavior of particles," in Proceedings of the 7th International 
Conference on Evolutionary Programming VII (1998), 581-589. 

107. A. Carlisle, and G. Dozier, "An off-the-shelf PSO," in Proceedings of the Particle Swarm 
Optimization Workshop (2001), 1–6. 



 198

108. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, 
"Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 
(2003). 

109. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-
diameter silica and silicon wire waveguides," Optics Express 12, 1025-1035 (2004). 

110. D. H. Raguin, and G. M. Morris, "Antireflection structured surfaces for the infrared 
spectral region," Applied Optics 32, 1154-1167 (1993). 

111. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable 
and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal 
of the Optical Society of America A 12, 1068-1076 (1995). 

112. M. Krause, H. Renner, A. Harke, J. Muller, and E. Brinkmeyer, "Leakage loss in trench-
bulge waveguides," Journal of Lightwave Technology 23, 1890-1895 (2005). 

113. J. Muller, D. Peters, J. P. Schmidt, and O. Blume, "Trench bulge waveguides for 
integrated optical circuits," Frequenz 45, 245-250 (1991). 

114. T. S. Cale, and G. B. Raupp, "A unified line-of-sight model of deposition in rectangular 
trenches," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer 
Structures 8, 1242 (1990). 

115. R. C. Rumpf, "Design and optimization of nano-optical elements by coupling fabrication 
to optical behavior," Ph. D. dissertation, College of Optics and Photonics at University of Central 
Florida, Orlando, FL (2006). 

116. D. Portch, R. R. A. Syms, and W. Huang, "Folded-spiral EDWAs with continuously 
varying curvature," IEEE Photonics Technology Letters 16, 1634-1636 (2004). 

117. K. O. Hill, G. Meltz, C. R. Center, and O. Ottawa, "Fiber Bragg grating technology 
fundamentals and overview," Journal of Lightwave Technology 15, 1263-1276 (1997). 

118. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber 
waveguides: Application to reflection filter fabrication," Applied Physics Letters 32, 647 (1978). 



 199

119. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, "Compact all-fiber add-drop-
multiplexer using fiber Bragg gratings," IEEE Photonics Technology Letters 8, 1331-1333 
(1996). 

120. G. A. Ball, and W. W. Morey, "Compression tuned single frequency Bragg grating fiber 
laser," Optics Letters 19, 1979-1981 (1994). 

121. T. Erdogan, V. Mizrahi, A. Partovi, P. J. Lemaire, W. L. Wilson, T. A. Strasser, and A. 
M. Glass, "Volume gratings for holographic storage applications written in high-quality 
germanosilicate glass," Applied Optics 34 (1995). 

122. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. 
Putnam, and E. J. Friebele, "Fiber grating sensors," Journal of Lightwave Technology 15, 1442-
1463 (1997). 

123. S. W. Ahn, K. D. Lee, D. H. Kim, and S. S. Lee, "Polymeric wavelength filter based on a 
Bragg grating using nanoimprint technique," IEEE Photonics Technology Letters 17, 2122-2124 
(2005). 

124. B. E. Benkelfat, R. Ferriere, B. Wacogne, and P. Mollier, "Technological implementation 
of Bragg grating reflectors in Ti: LiNbO/sub 3/waveguides by proton exchange," IEEE Photonics 
Technology Letters 14, 1430-1432 (2002). 

125. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with 
apodized sidewall gratings via spatial-phase-locked electron-beam lithography," Journal of 
Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20, 2753 (2002). 

126. S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, 
"Modeling of nonideal volume bragg reflection gratings in photosensitive glass using a perturbed 
transmission matrix approach," IEEE Journal of Quantum Electronics 40, 580-590 (2004). 

127. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," 
IEEE Transactions on Microwave Theory and Techniques 23, 123–133 (1975). 

128. R. Pregla, "The method of lines for the analysis of dielectric waveguide bends," Journal 
of Lightwave Technology 14, 634-639 (1996). 



 200

129. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, 
"Long-period fiber gratings as band-rejection filters," Journal of Lightwave Technology 14, 58-
65 (1996). 

130. J. D. Brown, and E. G. Johnson, "Micro-cavity resonator optimization using particle 
swarm optimization," in IPNRA (OSA, Salt Lake City, Utah, 2007). 

131. M. Pelton, J. Vukovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, "Three-
dimensionally confined modes in micropost microcavities: Quality factors and purcell factors," 
IEEE Journal of Quantum Electronics 38, 170-177 (2002). 

132. W. S. Mohammed, M. Pitchumani, J. D. Brown, and E. G. Johnson, "Polarization 
converting element for minimizing the losses in cylindrical hollow waveguides," Proceedings of 
SPIE 5720, 212 (2005). 

133. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "The focus of light-theoretical 
calculation and experimental tomographic reconstruction," Applied Physics B: Lasers and Optics 
72, 109-113 (2001). 

134. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter 
spot," Optics Communications 179, 1-7 (2000). 

135. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, "Low 
threshold gain metal coated laser nanoresonators," Optics Letters 33, 1261-1263 (2008). 

136. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," Journal of the Optical Society 
of America A 68, 1196-1201 (1978). 

137. A. Jebali, D. Erni, S. Gulde, R. F. Mahrt, and W. Bächtold, "Analytical calculation of the 
Q-factor for circular-grating microcavities," Journal of the Optical Society of America B 24, 
906-915 (2007). 

138. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdré, and U. 
Oesterle, "High-finesse disk microcavity based on a circular Bragg reflector," Applied Physics 
Letters 73, 1314 (1998). 



 201

139. J. D. Brown, and E. G. Johnson, "Innovative micro-cavity resonator design using particle 
swarm optimization," in Frontiers in Optics (OSA, San Jose, CA, 2007). 

140. J. D. Brown, and E. G. Johnson, "Design and optimization of TE011 resonant modes in 
metallic-dielectric cavities," IEEE Photonics Technology Letters 20, 255-257 (2008). 

141. A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, "Spatially 
polarizing autocloned elements," Optics Letters 32, 1935-1937 (2007). 

142. R. Dorn, S. Quabis, and G. Leuchs, "The focus of light-linear polarization breaks the 
rotational symmetry of the focal spot," Arxiv preprint physics/0304001 (2003). 

143. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," 
Physical Review Letters 91, 233901 (2003). 

144. R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, "Coupled 
semiconductor microcavities," Applied Physics Letters 65, 2093 (1994). 

145. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A 
proposal and analysis," Optics Letters 24, 711-713 (1999). 

146. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis 
of microring coupled-resonator optical waveguides," Optics Express 12, 90-103 (2004). 

147. S. Mookherjea, "Spectral characteristics of coupled resonators," Journal of the Optical 
Society of America B 23, 1137-1145 (2006). 

148. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical 
waveguide delay lines," Journal of the Optical Society of America B 21, 1665-1673 (2004). 

149. J. K. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of 
microring coupled-resonator optical waveguides," Optics Letters 31, 456-458 (2006). 

150. S. Mookherjea, and A. Yariv, "Coupled resonator optical waveguides," IEEE Journal of 
Selected Topics in Quantum Electronics 8, 448-456 (2002). 



 202

151. R. C. Rumpf, A. Mehta, P. Srinivasan, and E. G. Johnson, "Design and optimization of 
space-variant photonic crystal filters," Applied Optics 46, 5755-5761 (2007). 

152. H. G. Yoo, Y. Fu, D. Riley, J. H. Shin, and P. M. Fauchet, "Birefringence and optical 
power confinement in horizontal multi-slot waveguides made of Si and SiO2," Optics Express 
16, 8623-8628 (2008). 
 
 


	Design And Optimization Of Nanostructured Optical Filters
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Basics of Optical Filtering
	1.2 Frequency-Dependent Phase and Dispersion
	1.2.1 Group Delay
	1.2.2 Quadratic Dispersion
	1.2.3 Higher Order Dispersion
	1.2.4 Summary and Description of Dispersion

	1.3 Classes of Optical Filters
	1.4 Dispersive Guiding Structures
	1.4.1 Types of Dispersion in Waveguides
	1.4.2 Highly Dispersive Guiding Structures
	1.4.3 Design of Dispersive Waveguides

	1.5 Bragg Grating Filters
	1.5.1 Bragg Grating Theory
	1.5.2 Principles of Chirped Bragg Gratings
	1.5.3 Group Velocity in Bragg Gratings
	1.5.4 Design of Bragg Structures

	1.6 Nano-Scale Resonant Structures
	1.6.1 Resonant Optical Filters
	1.6.2 Modes of Optical Resonators
	1.6.2.1 Wave Equation for Cavity Resonators
	1.6.2.2 Cylindrical Symmetry
	1.6.2.3 Solutions for Dielectric Cylinder
	1.6.2.4 Radial Solution
	1.6.2.5 Longitudinal Solution

	1.6.3 Loss Mechanisms and Quality Factors
	1.6.4 Mode Volume
	1.6.5 Resonant Enhancements
	1.6.5.1 Spontaneous Emission and Purcell Factors
	1.6.5.2 Group Velocity and Slow Light
	1.6.5.3 Nonlinear Effects

	1.6.6 Design of Resonant Cavities

	1.7 Sign Conventions
	1.8 Optical Filter Design Summary

	CHAPTER 2 RESEARCH OVERVIEW
	2.1 Optical Filter Design
	2.2 Design and Optimization Tools
	2.2.1 Numerical Analysis of Optical Filters
	2.2.2 Optimization of Optical Filters

	2.3 Dispersive Waveguide Filter Design
	2.4 Bragg Grating Filter Design
	2.5 Microcavity Filter Design
	2.6 Research Summary

	CHAPTER 3 FREQUENCY DOMAIN MODELING OF OPTICAL FILTERS
	3.1 Eigenstates of Optical Filters
	3.2 Modeling Fields on a Grid
	3.2.1 Finite Difference Approximations
	3.2.2 Field Representation

	3.3 Maxwell’s Equations Formulation
	3.4 Perfectly Matched Layer Boundary Conditions
	3.4.1 Material Tensor Expressions
	3.4.2 Cylindrical Coordinates
	3.4.3 Modification of Maxwell’s Equations

	3.5 Eigenfrequency Calculations
	3.5.1 Problem Symmetry
	3.5.2 Derivative Operators and Boundary Conditions
	3.5.3 Transverse Modes
	3.5.3.1 TE0mp Modes
	3.5.3.2 TM0mp Modes

	3.5.4 Higher Order Modes
	3.5.5 Quality Factors of Eigenfrequencies
	3.5.6 Model Benchmarks

	3.6 Eigenmode Calculations
	3.6.1 Mode Expression
	3.6.2 Dispersion Calculations
	3.6.3 Bent Waveguide Modes
	3.6.3.1 Model Formulation
	3.6.3.2 Bent Waveguide TE Modes
	3.6.3.3 Bent Waveguide TM Modes
	3.6.3.4 Loss Terms


	3.7 Method of Lines Calculations
	3.7.1 Method of Lines Formulation
	3.7.2 Derivation of Transfer Matrix
	3.7.3 Evaluation of Matrix Functions
	3.7.4 Layer Transitions
	3.7.5 Doubling Algorithm

	3.8 Frequency Domain Models Summary

	CHAPTER 4 OPTIMIZATION OF ELECTRO MAGNETIC STRUCTURES
	4.1 Principles of Optimization
	4.2 Methods of Probabilistic Searches
	4.3 Particle Swarm Mechanics
	4.3.1 Initialization
	4.3.2 Solution Evaluation
	4.3.3 Particle Motion

	4.4 Boundary Conditions
	4.5 Direct Comparison of Particle Swarm and Genetic Algorithm Approaches
	4.6 Particle Swarm Optimization Summary

	CHAPTER 5 DISPERSIVE WAVEGUIDE FILTERS
	5.1 Dispersion in Standard Waveguides
	5.2 Nanostructured Waveguides
	5.3 Analysis of Dispersion Amplified Waveguides
	5.4 Theoretical Analysis
	5.5 Alternative Configurations
	5.6 Coupling Considerations
	5.7 Nano-DAWGS as Delay Lines
	5.8 Dispersive Waveguide Summary

	CHAPTER 6 SPIRAL BRAGG GRATING FILTERS
	6.1 Bragg Filter Characteristics
	6.2 Spiral Bragg Structure Description
	6.3 Linearly Chirped Bragg Structure
	6.4 Coupling Strength Considerations
	6.5 Additional Design Constraints
	6.6 Quantification of Fabrication Issues
	6.7 Alternative Group Delay Functions
	6.7.1 Constant Period Delay Line
	6.7.2 Long Period Gratings
	6.7.3 Tailored Phase Delay for Dispersion Compensation
	6.7.4 Spiral Bragg Structures as Amplitude Response Filters

	6.8 Spiral Bragg Filter Summary

	CHAPTER 7 AXISYMMETRIC RESONANT CAVITY FILTERS
	7.1 Single Cavity Optimization
	7.1.1 Particle Swarm Optimization of Cavity Designs
	7.1.2 Mode Choice
	7.1.3 Determination of Cavity Fitness
	7.1.4 High Q-factor Cavity Design

	7.2 Coupling to Axisymmetric Modes
	7.3 Coupled Resonator Filters
	7.3.1 Coupled Resonator Optical Waveguides
	7.3.2 Coupling of Low Q-factor Resonators
	7.3.3 GaAs/AlAs Cavity Filter
	7.3.3.1 Multiplexed Filter Device
	7.3.3.2 Bragg Reflections and Cavity Spacing Dependence
	7.3.3.3 Resonance Shift and Cavity Size Dependence
	7.3.3.4 Feasible Structure Response

	7.3.4 Coupled High-Q Cavities Filter
	7.3.4.1 Single Cavity Response
	7.3.4.2 Coupled Resonator Structure
	7.3.4.3 Stronger Coupling for Flat Transmission Bands
	7.3.4.4 Increased Mode Confinement for Higher Group Delay
	7.3.4.5 Tolerance to Pillar Sidewall Angles

	7.3.5 Three-Dimensional Filters

	7.4 Microcavity Filters Summary

	CHAPTER 8 CONCLUSION
	8.1 Background
	8.2 Optical Filter Design and Modeling
	8.2.1 Numerical Modeling Tools
	8.2.2 Numerical Optimization Approach

	8.3 Summary of Results
	8.3.1 Nano-DAWGs
	8.3.2 Spiral Bragg Structures
	8.3.3 Coupled Cavity Filters
	8.3.4 Filter Comparisons

	8.4 Recommendations for Future Work

	REFERENCES

