5,541 research outputs found

    Thinning-free Polygonal Approximation of Thick Digital Curves Using Cellular Envelope

    Get PDF
    Since the inception of successful rasterization of curves and objects in the digital space, several algorithms have been proposed for approximating a given digital curve. All these algorithms, however, resort to thinning as preprocessing before approximating a digital curve with changing thickness. Described in this paper is a novel thinning-free algorithm for polygonal approximation of an arbitrarily thick digital curve, using the concept of "cellular envelope", which is newly introduced in this paper. The cellular envelope, defined as the smallest set of cells containing the given curve, and hence bounded by two tightest (inner and outer) isothetic polygons, is constructed using a combinatorial technique. This envelope, in turn, is analyzed to determine a polygonal approximation of the curve as a sequence of cells using certain attributes of digital straightness. Since a real-world curve=curve-shaped object with varying thickness, unexpected disconnectedness, noisy information, etc., is unsuitable for the existing algorithms on polygonal approximation, the curve is encapsulated by the cellular envelope to enable the polygonal approximation. Owing to the implicit Euclidean-free metrics and combinatorial properties prevailing in the cellular plane, implementation of the proposed algorithm involves primitive integer operations only, leading to fast execution of the algorithm. Experimental results that include output polygons for different values of the approximation parameter corresponding to several real-world digital curves, a couple of measures on the quality of approximation, comparative results related with two other well-referred algorithms, and CPU times, have been presented to demonstrate the elegance and efficacy of the proposed algorithm

    Computer vision

    Get PDF
    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Light scattering by oblate particles near planar interfaces: on the validity of the T-matrix approach

    Get PDF
    We investigate the T-matrix approach for the simulation of light scattering by an oblate particle near a planar interface. Its validity has been in question if the interface intersects the particle’s circumscribing sphere, where the spherical wave expansion of the scattered field can diverge. However, the plane wave expansion of the scattered field converges everywhere below the particle, and in particular at the planar interface. We demonstrate that the particle-interface scattering interaction is correctly accounted for through a plane wave expansion in combination with Fresnel reflection at the planar interface. We present an in-depth analysis of the involved convergence mechanisms, which are governed by the transformation properties between spherical and plane waves. The method is illustrated with the cases of spherical and oblate spheroidal nanoparticles near a perfectly conducting interface, and its accuracy is demonstrated for different scatterer arrangements and materials
    • …
    corecore