367 research outputs found

    Quantum Cryptography for Wireless Network Communications

    Get PDF

    Fuzzy Switching Controller for the Security in 802.11 Networks

    Get PDF

    A novel approach to quality-of-service provisioning in trusted relay Quantum Key Distribution networks

    Get PDF
    In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions.Web of Science28118116

    Kak's three-stage protocol of secure quantum communication revisited: Hitherto unknown strengths and weaknesses of the protocol

    Full text link
    Kak's three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak's protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak's protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude damping and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.Comment: Kak's protocol is not suitable for quantum cryptography in presence of nois

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Distribution of quantum keys over commercial networks

    Get PDF
    [EN]Modern cryptography – as it was conceived – is under a threat by the development of quantum mechanics applications. The abilities of quantum computers for solving complex mathematical problems, as a strong computational novelty, is the root of that risk. The main challenge is to find commercial exploits of quantum properties and developments, following these directions for both, theoretic and test tube environments. This work proposes a pilot experiment that implements a quantum communication system on a commercial fiber optic network, covering an area of almost 100,000 km2

    Key Generation in Wireless Sensor Networks Based on Frequency-selective Channels - Design, Implementation, and Analysis

    Full text link
    Key management in wireless sensor networks faces several new challenges. The scale, resource limitations, and new threats such as node capture necessitate the use of an on-line key generation by the nodes themselves. However, the cost of such schemes is high since their secrecy is based on computational complexity. Recently, several research contributions justified that the wireless channel itself can be used to generate information-theoretic secure keys. By exchanging sampling messages during movement, a bit string can be derived that is only known to the involved entities. Yet, movement is not the only possibility to generate randomness. The channel response is also strongly dependent on the frequency of the transmitted signal. In our work, we introduce a protocol for key generation based on the frequency-selectivity of channel fading. The practical advantage of this approach is that we do not require node movement. Thus, the frequent case of a sensor network with static motes is supported. Furthermore, the error correction property of the protocol mitigates the effects of measurement errors and other temporal effects, giving rise to an agreement rate of over 97%. We show the applicability of our protocol by implementing it on MICAz motes, and evaluate its robustness and secrecy through experiments and analysis.Comment: Submitted to IEEE Transactions on Dependable and Secure Computin

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research
    • …
    corecore