8 research outputs found

    New results for the Shannon channel capacity in generalized fading channels

    Full text link

    Performanse kooperativnih bežičnih telekomunikacionih sistema i mogućnosti povećanja kapaciteta kanala u prisustvu fedinga i međukanalne interferencije

    Get PDF
    In order to improve the performance of the wireless signal transmission system in the presence of various types of interference, new methods of combining diversion techniques in the relay and on the receiving side have been proposed. When using diversi, the combining technique has shown a significant improvement in the performance of wireless relay signal transmission, and thus a lower probability of system failure. Increasing the capacity of wireless telecommunications systems is feasible in terms of fixed bandwidth and specified modulation format by using the cooperative concept to increase the signal strength to noise and interference ratio. By using mobile stations as a relay, performance improvement can be achieved in M2M communication, which can be rationally used to increase channel information capacity and transmission reliability. A more detailed analysis has been conducted and can answer questions about quantitative measures of improvement in the conditions of fading and inter-channel interference. The cases of relay transmission are discussed, as well as the possibility of applying a diversion technique to improve performance in conditions of simultaneous reception of a signal through a direct connection and through a relay. For the above cases, standard performance measures will be determined using statistical telecommunications theory

    Design and performance evaluation of RAKE finger management schemes in the soft handover region

    Get PDF
    We propose and analyze new finger assignment/management techniques that are applicable for RAKE receivers when they operate in the soft handover region. Two main criteria are considered: minimum use of additional network resources and minimum call drops. For the schemes minimizing the use of network resources, basic principles are to use the network resources only if necessary while minimum call drop schemes rely on balancing or distributing the signal strength/paths among as many base stations as possible. The analyses of these schemes require us to consider joint microscopic/macroscopic diversity techniques which have seldom been considered before and as such, we tackle the statistics of several correlated generalized selection combining output signal-to-noise ratios in order to obtain closed-form expressions for the statistics of interest. To provide a general comprehensive framework for the assessment of the proposed schemes, we investigate not only the complexity in terms of the average number of required path estimations/comparisons, the average number of combined paths, and the soft handover overhead but also the error performance of the proposed schemes over independent and identically distributed fading channels. We also examine via computer simulations the effect of path unbalance/correlation as well as outdated/imperfect channel estimations. We show through numerical exam ples that the proposed schemes which are designed for the minimum use of network resources can save a certain amount of complexity load and soft handover overhead with a very slight performance loss compared to the conventional generalized selection combining-based diversity systems. For the minimum call drop schemes, by accurately quantifying the average error rate, we show that in comparison to the conventional schemes, the proposed distributed schemes offer the better error performance when there is a considerable chance of loosing the signals from one of the active base stations

    Application of diverse techniques to reduce the impact of α-k-μ-g and k-μ-g feding on wireless performance

    Get PDF
    U ovoj tezi izvršena je analiza performansi bežičnog prenosa_signala_u_prisustvu α-k-μ-g i k-μ-g fedinga_u_kanalu. Izvedeni_su_izrazi u zatvorenom obliku za funkcije_gustine verovatnoće_raspodele i kumulativnu_funkciju_raspodele odnosa signal-šum (SNR) na prijemu kada se bežični prenos vrši kroz kanale sa fedingom. Primenjene_su_standardne_mere_kvaliteta odnosno_performansi_primljenog_signala, kao što su verovatnoća otkaza (OP - Outage probability) i srednji broj osnih preseka (LCR- Level Crossing Rate), koje su_dobijene za_slučajeve_prenosa u funkciji različitih vrednosti parametara sistema. Poboljšanje ovih mera performansi analizirano je za slučaj kada su kada su na prijemnoj_strani_korišćene_prostorne diverziti tehnike_kombinovanja. U tezi je razmatrano nekoliko tehnika_kombinovanja_signala na prijemu. Korišćene_su_tehnika selektivnog_kombinovanja_signala (SC-Selection Combining) i tehnika_kombinacija_signala_sa_maksimalnim_odnosom (MRC-Maximal Ratio Combining), u cilju_procene_mogućnosti_slabljenja_uticaja fedinga pri prenosu signala u kanalu. Izvršena je i analiza_istovremenog_uticaja pojavljive_fedinga i efekta_senke pri bežičnom_prenosu_signala, a razmatrane su mogućnosti_istovremene_primene tehnika makro-diverziti_kombinovanja gore navedenih prostornih diverziti tehnika, kako_bi_se_smanjili ovi štetni efekti uticaja smetnji i poboljšao_kvalitet_signala_na_prijemnoj_strani. Rezultati_dobijeni u_ovoj_tezi, pokazuju da se primenom_pristupa_predloženih u disertaciji_može postići smanjenje štetnih efekata α-k-μ-g i k-μ-g fedinga u kanalu pri_različitim_scenarijima_bežičnog prenosa

    Adaptive Transmission Schemes for Spectrum Sharing Systems: Trade-offs and Performance Analysis

    Get PDF
    Cognitive radio (CR) represents a key solution to the existing spectrum scarcity problem. Under the scenario of CR, spectrum sharing systems allow the coexistence of primary users (PUs) and secondary users (SUs) in the same spectrum as long as the interference from the secondary to the primary link stays below a given threshold. In this thesis, we propose a number of adaptive transmission schemes aiming at improving the performance of the secondary link in these systems while satisfying the interference constraint set by the primary receiver (PR). In the proposed techniques, the secondary transmitter (ST) adapts its transmission settings based on the availability of the channel state information (CSI) of the secondary and the interference links. In this context, these schemes offer different performance tradeoffs in terms of spectral efficiency, energy efficiency, and overall complexity. In the first proposed scheme, power adaptation (PA) and adaptive modulation (AM) are jointly used with switched transmit diversity in order to increase the capacity of the secondary link while minimizing the average number of antenna switching. Then, the concept of minimum-selection maximum ratio transmission (MS-MRT) is proposed as an adaptive variation of maximum ratio transmission (MRT) in a spectrum sharing scenario in order to maximize the capacity of the secondary link while minimizing the average number of transmit antennas. In order to achieve this performance, MS-MRT assumes that the secondary's CSI (SCSI) is perfectly known at the ST, which makes this scheme challenging from a practical point of view. To overcome this challenge, another transmission technique based on orthogonal space time bloc codes (OSTBCs) with transmit antenna selection (TAS) is proposed. This scheme uses the full-rate full-diversity Alamouti scheme in an underlay CR scenario in order to maximize the secondary's transmission rate. While the solutions discussed above offer a considerable improvement in the performance of spectrum sharing systems, they generally experience a high overall system complexity and are not optimized to meet the tradeoff between spectral efficiency and energy efficiency. In order to address this issue, we consider using spatial modulation (SM) in order to come with a spectrum sharing system optimized in terms spectral efficiency and energy efficiency. Indeed, SM can be seen as one of the emerging and promising new technologies optimizing the communication system while reducing the energy consumption thanks to the use of a single radio frequency (RF) chain for transmission. In this context, we propose the adaptive spatial modulation (ASM) scheme using AM in order to improve the spectral efficiency of SM. We also extend ASM to spectrum sharing systems by proposing a number of ASM-CR schemes aiming at improving the performance of these systems in terms of spectral efficiency and energy efficiency. While the use of a single RF-chain improves the energy efficiency of the above schemes, the RF-chain switching process between different transmissions comes with additional complexity and implementation issues. To resolve these issues, we use the concept of reconfigurable antennas (RAs) in order to improve the performance of space shift keying (SSK). In this context, employing RAs with SSK instead of conventional antennas allows for implementing only one RF chain and selecting different antenna-states for transmission without the need for RF switching. Moreover, the reconfigurable properties of RAs can be used as additional degrees of freedom in order to enhance the performance of SSK in terms of throughput, system complexity, and error performance. These RAs-based schemes are also extended to spectrum sharing systems in order to improve the capacity of the secondary link while reducing the energy consumption and the implementation complexity of the SU. In summary, we propose in this thesis several adaptive transmission schemes for spectrum sharing systems. The performance of each of these schemes is confirmed via Monte-Carlo simulations and analytical results and is shown to offer different tradeoffs in terms of spectral efficiency, energy efficiency, reliability, and implementation complexity. In this context, these proposed schemes offer different solutions in order to improve the performance of underlay cognitive radio systems

    Robust Optical Wireless Links over Turbulent Media using Diversity Solutions

    Get PDF
    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed.Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures.This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum ratio combing, equal gain combining, and selective combining, switched diversity simplifies receiver design by avoiding unnecessary switching among receiving apertures. The most significant advantage of generalized combining is its ability to exclude apertures with low quality that could potentially affect the resultant output signal performance.This dissertation also investigates mobile FSO by considering a multi-receiving system in which all receiving FSO apertures are circularly placed on a platform. System mobility and performance are analyzed. Performance results confirm improvements when using angular diversity and generalized selection combining.The précis of this dissertation establishes the foundation of reliable FSO communications using efficient diversity-based solutions. Performance parameters are analyzed mathematically, and then evaluated using computer simulations. A testbed prototype is developed to facilitate the evaluation of optical wireless links via lab experiments

    Application of diversity techniques for solving the problems of the effects impurities in optical fibers on the performance of optical systems

    Get PDF
    We analyzed the methods for reducing the impact of noise and interference, the performance of digital optical IM-DD system. Performances of digital optical telecommunication systems, as well as their improvement, were analyzed using standard criteria for evaluation: outage probability, average probability, channel capacity, and average fading duration. These performance measures are determined on the basis of statistical characteristics of the first and second rows of signal reception and are part of the technical documentation accompanying each of the realized digital optical communication system. Therefore, the closed form of expressions, derived in this dissertation, which can be used to calculate the statistical characteristics of signal reception, represent a significant contribution, in terms of design of digital optical transmission systems. Our analysis is placed on theoretical consideration on so far untreated cases, and therefore the theoretical basis of physical phenomena that affect the transmission through the digital optical systems, well known from the literature, are not further elaborated. We included a procedure for determining the expression for the multidimensional joint probability density distribution with correlated and uncorrelated random variables. The derived expressions have a wide range of applicability and are an excellent basis for further performance analysis of optical digital transmission systems, in terms of correlated channels, as well as the characteristics of the connection by using multiple-input receiver. Their practical use is demonstrated especially in the section that deals λSK optical systems, as well as the part of that processes - the relay optical systems. Improving the transmission reliability and reducing the impact of noise and interference on the performance of digital optical telecommunication systems, with a reduction in power transmission and increasing the distance between the transmitter and receiver, is analyzed through the applying of techniques using spatial diversity reception. The dissertation discussed the various techniques of spatial combining receiving signals from the receiving branches of optical systems, in terms of reducing impact noise and interference. Ratios were formed and interference signals at the entrance combiner branches and under the terms of the previous chapter are determined by the joint probability density of these relationships for all incoming branches and the corresponding joint cumulative probability. Using this statistical feature of the incoming signal and interference are determined and statistical characteristics of signal-to-interference at the output of given combiner, which represents the next significant contribution to the dissertation. The contribution of these derived expressions can be seen from the aspect of using the results obtained for the case of the proposed statistical modeling of the channel model when considering the reduction of the impact of various types of noise and interference, and examination performance enhancements of digital optical telecommunication systems using diversity reception techniques. Specifically, by assigning appropriate values of parameters in the corresponding expressions, which describe the statistical characteristics of the first order of receipt, an analysis of the value of standard measures of performance of optical telecommunication systems, as well as improve their use of spatial diversity techniques, for cases when the communication channel is exposed to various types of interference and noises. Using the derived expressions can be shown to improve all the standard measure of performance of optical telecommunication systems. Also, when transferred unchanged forces the useful signal and interference, and at the same range of connections, get better system performance (lower values of the probability of cancellation, less the value of average bet error probability, lower average fading duration...). Based on these facts can be concluded that the required the outage probability values (ABEP) for the reception, when we apply the described techniques of receipt, in the same range of connections and the same noise power, can achieve the necessary reduction of the useful signal power in transmission, that is, at the same useful signal power, the same level of interference in the channel, the required the outage probability (ASEP) at the reception, when we apply the described techniques of receipt, can be achieved at larger distances from the transmitting terminal
    corecore