19,711 research outputs found

    The estimation of geoacoustic properties from broadband acoustic data, focusing on instantaneous frequency techniques

    Get PDF
    The compressional wave velocity and attenuation of marine sediments are fundamental to marine science. In order to obtain reliable estimates of these parameters it is necessary to examine in situ acoustic data, which is generally broadband. A variety of techniques for estimating the compressional wave velocity and attenuation from broadband acoustic data are reviewed. The application of Instantaneous Frequency (IF) techniques to data collected from a normal-incidence chirp profiler is examined. For the datasets examined the best estimates of IF are obtained by dividing the chirp profile into a series of sections, estimating the IF of each trace in the section using the first moments of the Wigner Ville distribution, and stacking the resulting IF to obtain a composite IF for the section. As the datasets examined cover both gassy and saturated sediments, this is likely to be the optimum technique for chirp datasets collected from all sediment environments

    Rethinking CMB foregrounds: systematic extension of foreground parameterizations

    Full text link
    Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modeling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modeling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line of sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g., mean, dispersion, cross-terms, etc.). The method is illustrated for the superposition of power-laws, free-free spectra, gray-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds but could also be useful for the modeling of X-ray emission in clusters of galaxies.Comment: 19 pages, 8 figures, accepted by MNRAS, minor revision

    Dynamical simulation of DCC formation in Bjorken rods

    Get PDF
    Using a semi-classical treatment of the linear sigma model, we simulate the dynamical evolution of an initially hot cylindrical rod endowed with a longitudinal Bjorken scaling expansion (a ``Bjorken rod''). The field equation is propagated until full decoupling has occurred and the asymptotic many-body state of free pions is then obtained by a suitable Fourier decomposition of the field and a subsequent stochastic determination of the number of quanta in each elementary mode. The resulting transverse pion spectrum exhibits visible enhancements below 200 MeV due to the parametric amplification caused by the oscillatory relaxation of the chiral order parameter. Ensembles of such final states are subjected to various event-by-event analyses. The factorial moments of the multiplicity distribution suggest that the soft pions are non-statistical. Furthermore, their emission patterns exhibit azimuthal correlations that have a bearing on the domain size in the source. Finally, the distribution of the neutral pion fraction shows a significant broadening for the soft pions which grows steadily as the number of azimuthal segments is increased. All of these features are indicative of disoriented chiral condensates and it may be interesting to apply similar analyses to actual data from high-energy nuclear collision experiments.Comment: 38 pages total, incl 26 ps figures ([email protected]

    Wavelet transforms and their applications to MHD and plasma turbulence: a review

    Full text link
    Wavelet analysis and compression tools are reviewed and different applications to study MHD and plasma turbulence are presented. We introduce the continuous and the orthogonal wavelet transform and detail several statistical diagnostics based on the wavelet coefficients. We then show how to extract coherent structures out of fully developed turbulent flows using wavelet-based denoising. Finally some multiscale numerical simulation schemes using wavelets are described. Several examples for analyzing, compressing and computing one, two and three dimensional turbulent MHD or plasma flows are presented.Comment: Journal of Plasma Physics, 201

    Femtosecond Covariance Spectroscopy

    Get PDF
    The success of non-linear optics relies largely on pulse-to-pulse consistency. In contrast, covariance based techniques used in photoionization electron spectroscopy and mass spectrometry have shown that wealth of information can be extracted from noise that is lost when averaging multiple measurements. Here, we apply covariance based detection to nonlinear optical spectroscopy, and show that noise in a femtosecond laser is not necessarily a liability to be mitigated, but can act as a unique and powerful asset. As a proof of principle we apply this approach to the process of stimulated Raman scattering in alpha-quartz. Our results demonstrate how nonlinear processes in the sample can encode correlations between the spectral components of ultrashort pulses with uncorrelated stochastic fluctuations. This in turn provides richer information compared to the standard non-linear optics techniques that are based on averages over many repetitions with well-behaved laser pulses. These proof-of-principle results suggest that covariance based nonlinear spectroscopy will improve the applicability of fs non-linear spectroscopy in wavelength ranges where stable, transform limited pulses are not available such as, for example, x-ray free electron lasers which naturally have spectrally noisy pulses ideally suited for this approach

    Time-varying Huygens' meta-devices for parametric waves

    Full text link
    Huygens' metasurfaces have demonstrated almost arbitrary control over the shape of a scattered beam, however, its spatial profile is typically fixed at fabrication time. Dynamic reconfiguration of this beam profile with tunable elements remains challenging, due to the need to maintain the Huygens' condition across the tuning range. In this work, we experimentally demonstrate that a time-varying metadevice which performs frequency conversion can steer transmitted or reflected beams in an almost arbitrary manner, with fully dynamic control. Our time-varying Huygens' metadevice is made of both electric and magnetic meta-atoms with independently controlled modulation, and the phase of this modulation is imprinted on the scattered parametric waves, controlling their shapes and directions. We develop a theory which shows how the scattering directionality, phase and conversion efficiency of sidebands can be manipulated almost arbitrarily. We demonstrate novel effects including all-angle beam steering and frequency-multiplexed functionalities at microwave frequencies around 4 GHz, using varactor diodes as tunable elements. We believe that the concept can be extended to other frequency bands, enabling metasurfaces with arbitrary phase pattern that can be dynamically tuned over the complete 2\pi range

    Spectral fluctuations of tridiagonal random matrices from the beta-Hermite ensemble

    Full text link
    A time series delta(n), the fluctuation of the nth unfolded eigenvalue was recently characterized for the classical Gaussian ensembles of NxN random matrices (GOE, GUE, GSE). It is investigated here for the beta-Hermite ensemble as a function of beta (zero or positive) by Monte Carlo simulations. The fluctuation of delta(n) and the autocorrelation function vary logarithmically with n for any beta>0 (1<<n<<N). The simple logarithmic behavior reported for the higher-order moments of delta(n) for the GOE (beta=1) and the GUE (beta=2) is valid for any positive beta and is accounted for by Gaussian distributions whose variances depend linearly on ln(n). The 1/f noise previously demonstrated for delta(n) series of the three Gaussian ensembles, is characterized by wavelet analysis both as a function of beta and of N. When beta decreases from 1 to 0, for a given and large enough N, the evolution from a 1/f noise at beta=1 to a 1/f^2 noise at beta=0 is heterogeneous with a ~1/f^2 noise at the finest scales and a ~1/f noise at the coarsest ones. The range of scales in which a ~1/f^2 noise predominates grows progressively when beta decreases. Asymptotically, a 1/f^2 noise is found for beta=0 while a 1/f noise is the rule for beta positive.Comment: 35 pages, 10 figures, corresponding author: G. Le Cae
    • …
    corecore