32,559 research outputs found

    Semantic HMC for Big Data Analysis

    Full text link
    Analyzing Big Data can help corporations to im-prove their efficiency. In this work we present a new vision to derive Value from Big Data using a Semantic Hierarchical Multi-label Classification called Semantic HMC based in a non-supervised Ontology learning process. We also proposea Semantic HMC process, using scalable Machine-Learning techniques and Rule-based reasoning

    Automatic document classification of biological literature

    Get PDF
    Background: Document classification is a wide-spread problem with many applications, from organizing search engine snippets to spam filtering. We previously described Textpresso, a text-mining system for biological literature, which marks up full text according to a shallow ontology that includes terms of biological interest. This project investigates document classification in the context of biological literature, making use of the Textpresso markup of a corpus of Caenorhabditis elegans literature. Results: We present a two-step text categorization algorithm to classify a corpus of C. elegans papers. Our classification method first uses a support vector machine-trained classifier, followed by a novel, phrase-based clustering algorithm. This clustering step autonomously creates cluster labels that are descriptive and understandable by humans. This clustering engine performed better on a standard test-set (Reuters 21578) compared to previously published results (F-value of 0.55 vs. 0.49), while producing cluster descriptions that appear more useful. A web interface allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept. Conclusions: We have demonstrated a simple method to classify biological documents that embodies an improvement over current methods. While the classification results are currently optimized for Caenorhabditis elegans papers by human-created rules, the classification engine can be adapted to different types of documents. We have demonstrated this by presenting a web interface that allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept

    On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data

    Full text link
    With the coming data deluge from synoptic surveys, there is a growing need for frameworks that can quickly and automatically produce calibrated classification probabilities for newly-observed variables based on a small number of time-series measurements. In this paper, we introduce a methodology for variable-star classification, drawing from modern machine-learning techniques. We describe how to homogenize the information gleaned from light curves by selection and computation of real-numbered metrics ("feature"), detail methods to robustly estimate periodic light-curve features, introduce tree-ensemble methods for accurate variable star classification, and show how to rigorously evaluate the classification results using cross validation. On a 25-class data set of 1542 well-studied variable stars, we achieve a 22.8% overall classification error using the random forest classifier; this represents a 24% improvement over the best previous classifier on these data. This methodology is effective for identifying samples of specific science classes: for pulsational variables used in Milky Way tomography we obtain a discovery efficiency of 98.2% and for eclipsing systems we find an efficiency of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is superior to other machine-learned methods in terms of accuracy, speed, and relative immunity to features with no useful class information; the RF classifier can also be used to estimate the importance of each feature in classification. Additionally, we present the first astronomical use of hierarchical classification methods to incorporate a known class taxonomy in the classifier, which further reduces the catastrophic error rate to 7.8%. Excluding low-amplitude sources, our overall error rate improves to 14%, with a catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure

    Literary machine translation under the magnifying glass : assessing the quality of an NMT-translated detective novel on document level

    Get PDF
    Several studies (covering many language pairs and translation tasks) have demonstrated that translation quality has improved enormously since the emergence of neural machine translation systems. This raises the question whether such systems are able to produce high-quality translations for more creative text types such as literature and whether they are able to generate coherent translations on document level. Our study aimed to investigate these two questions by carrying out a document-level evaluation of the raw NMT output of an entire novel. We translated Agatha Christie's novel The Mysterious Affair at Styles with Google's NMT system from English into Dutch and annotated it in two steps: first all fluency errors, then all accuracy errors. We report on the overall quality, determine the remaining issues, compare the most frequent error types to those in general-domain MT, and investigate whether any accuracy and fluency errors co-occur regularly. Additionally, we assess the inter-annotator agreement on the first chapter of the novel
    • …
    corecore