6 research outputs found

    An optimized TOPS+ comparison method for enhanced TOPS models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background Although methods based on highly abstract descriptions of protein structures, such as VAST and TOPS, can perform very fast protein structure comparison, the results can lack a high degree of biological significance. Previously we have discussed the basic mechanisms of our novel method for structure comparison based on our TOPS+ model (Topological descriptions of Protein Structures Enhanced with Ligand Information). In this paper we show how these results can be significantly improved using parameter optimization, and we call the resulting optimised TOPS+ method as advanced TOPS+ comparison method i.e. advTOPS+. Results We have developed a TOPS+ string model as an improvement to the TOPS [1-3] graph model by considering loops as secondary structure elements (SSEs) in addition to helices and strands, representing ligands as first class objects, and describing interactions between SSEs, and SSEs and ligands, by incoming and outgoing arcs, annotating SSEs with the interaction direction and type. Benchmarking results of an all-against-all pairwise comparison using a large dataset of 2,620 non-redundant structures from the PDB40 dataset [4] demonstrate the biological significance, in terms of SCOP classification at the superfamily level, of our TOPS+ comparison method. Conclusions Our advanced TOPS+ comparison shows better performance on the PDB40 dataset [4] compared to our basic TOPS+ method, giving 90 percent accuracy for SCOP alpha+beta; a 6 percent increase in accuracy compared to the TOPS and basic TOPS+ methods. It also outperforms the TOPS, basic TOPS+ and SSAP comparison methods on the Chew-Kedem dataset [5], achieving 98 percent accuracy. Software Availability: The TOPS+ comparison server is available at http://balabio.dcs.gla.ac.uk/mallika/WebTOPS/.This article is available through the Brunel Open Access Publishing Fun

    Occurrence of protein structure elements in conserved sequence regions

    Get PDF
    BACKGROUND: Conserved protein sequence regions are extremely useful for identifying and studying functionally and structurally important regions. By means of an integrated analysis of large-scale protein structure and sequence data, structural features of conserved protein sequence regions were identified. RESULTS: Helices and turns were found to be underrepresented in conserved regions, while strands were found to be overrepresented. Similar numbers of loops were found in conserved and random regions. CONCLUSION: These results can be understood in light of the structural constraints on different secondary structure elements, and their role in protein structural stabilization and topology. Strands can tolerate fewer sequence changes and nonetheless keep their specific shape and function. They thus tend to be more conserved than helices, which can keep their shape and function with more changes. Loop behavior can be explained by the presence of both constrained and freely changing loops in proteins. Our detailed statistical analysis of diverse proteins links protein evolution to the biophysics of protein thermodynamic stability and folding. The basic structural features of conserved sequence regions are also important determinants of protein structure motifs and their function

    The Structural Dynamics of Soluble and Membrane Proteins Explored through Molecular Simulations

    Get PDF

    An automated approach to remote protein homology classification.

    Get PDF
    The classification of protein structures into evolutionary superfamilies, for example in the CATH or SCOP domain structure databases, although performed with varying degrees of automation, has remained a largely subjective activity guided by expert knowledge. The huge expansion of the Protein Structure Databank (PDB), partly due to the structural genomics initiatives, has posed significant challenges to maintaining the coverage of these structural classification resources. This is because the high degree of manual assessment currently involved has affected their ability to keep pace with high throughput structure determination. This thesis presents an evaluation of different methods used in remote homologue detection which was performed to identify the most powerful approaches currently available. The design and implementation of new protocols suitable for remote homologue detection was informed by an analysis of the extent to which different homologous superfamilies in CATH evolve in sequence, structure and function and characterisation of the mechanisms by which this occurs. This analysis revealed that relatives in some highly populated CATH superfamilies have diverged considerably in their structures. In diverse relatives, significant variations are observed in the secondary structure embellishments decorating the common structural core for the superfamily. There are also differences in the packing angles between secondary structures. Information on the variability observed in CATH superfamilies is collated in an established web resource the Dictionary of Homologous Superfamilies, which has been expanded and improved in a number of ways. A new structural comparison algorithm, CATHEDRAL, is described. This was developed to cope with the structural variation observed across CATH superfamilies and to improve the automatic recognition of domain boundaries in multidomain structures. CATHEDRAL combines both secondary structure matching and accurate residue alignment in an iterative protocol for determining the location of previously observed folds in novel multi-domain structures. A rigorous benchmarking protocol is also described that assesses the performance of CATHEDRAL against other leading structural comparison methods. The optimisation and benchmarking of several other methods for detecting homology are subsequently presented. These include methods which exploit Hidden Markov Models (HMMs) to detect sequence similarity and methods that attempt to assess functional similarity. Finally an automated, machine learning approach to detecting homologous relationships between proteins is presented which combines information on sequence, structure and functional similarity. This was able to identify over 85% of the homologous relationships in the CATH classification at a 5% error rate. This thesis was gratefully supported by the Biotechnology and Biological Sciences Research Council
    corecore