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Abstract
The classification of protein structures into evolutionary superfamilies, for example in the 

CATH or SCOP domain structure databases, although performed with varying degrees of 

automation, has remained a largely subjective activity guided by expert knowledge. The 

huge expansion of the Protein Structure Databank (PDB), partly due to the structural 

genomics initiatives, has posed significant challenges to maintaining the coverage of 

these structural classification resources. This is because the high degree of manual 

assessment currently involved has affected their ability to keep pace with high throughput 

structure determination.

This thesis presents an evaluation of different methods used in remote homologue 

detection which was performed to identify the most powerful approaches currently 

available. The design and implementation of new protocols suitable for remote 

homologue detection was informed by an analysis of the extent to which different 

homologous superfamilies in CATH evolve in sequence, structure and function and 

characterisation of the mechanisms by which this occurs. This analysis revealed that 

relatives in some highly populated CATH superfamilies have diverged considerably in 

their structures. In diverse relatives, significant variations are observed in the secondary 

structure embellishments decorating the common structural core for the superfamily. 

There are also differences in the packing angles between secondary structures. 

Information on the variability observed in CATH superfamilies is collated in an 

established web resource the Dictionary of Homologous Superfamilies, which has been 

expanded and improved in a number of ways.

A new structural comparison algorithm, CATHEDRAL, is described. This was developed 

to cope with the structural variation observed across CATH superfamilies and to improve 

the automatic recognition of domain boundaries in multidomain structures. 

CATHEDRAL combines both secondary structure matching and accurate residue 

alignment in an iterative protocol for determining the location of previously observed 

folds in novel multi-domain structures. A rigorous benchmarking protocol is also



described that assesses the performance of CATHEDRAL against other leading structural 

comparison methods.

The optimisation and benchmarking of several other methods for detecting homology are 

subsequently presented. These include methods which exploit Hidden Markov Models 

(HMMs) to detect sequence similarity and methods that attempt to assess functional 

similarity.

Finally an automated, machine learning approach to detecting homologous relationships 

between proteins is presented which combines information on sequence, structure and 

functional similarity. This was able to identify over 85% of the homologous relationships 

in the CATH classification at a 5% error rate.

This thesis was gratefully supported by the Biotechnology and Biological Sciences 

Research Council.
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BLOCKS Blocks of Amino Acid Substitution 

Matrices

BLOSUM Blocks Substitution Matrices

CATH Class, Architecture, Topology and 

Homologous superfamily
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Abbreviation Details
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NMR Nuclear Magnetic Resonance

NN Neural Network
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PSSM Position Specific Score Matrices
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SSE Sum Squared Error

SSG Structurally Similar Sub-Group
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1 Introduction

1.1 Proteins

Proteins are a class of ubiquitous organic molecules that are vital for nearly every 

biological process in nature. They exhibit a diverse array of functions including enzyme 

catalysis, providing mechanical support within and between cells and also the control of 

gene expression and signalling pathways that dictate the vast amount of processes 

observed in organisms. The role or function of a particular protein is closely linked to the 

three dimensional structure, through the formation of clefts to provide the optimal 

environment to bind an enzyme substrate, surfaces to interact with other proteins or the 

particular orientation of secondary structures to bind DNA. Therefore, the elucidation of 

protein structures is vital in understanding the molecular basis of protein functions and 

holds great potential in revealing the molecular mechanisms of disease and providing 

opportunities for rational drug design.

The first three dimensional protein structure solved was that of myoglobin in 1958 by 

Max Perutz and Sir John Cowedery Kendrew (1958) characterised using X-ray 

diffraction. Since then a great deal of research has led to the determination of many 

protein structures using techniques such as X-ray diffraction and Nuclear Magnetic 

Resonance (NMR). As of June 2007 there are over 44,000 co-ordinates of protein 

structures deposited in the protein data bank structural database and new technologies 

developed by the international Structural Genomics Initiatives (SGIs) have permitted this 

number to increase exponentially (Berman et al. 2000). However, despite the recent 

advances in protein structure determination the process remains relatively expensive and 

time consuming compared to DNA sequencing. This is highlighted by the vast number 

of sequences in the UniProt protein sequence database (Wu et al. 2006), where there are 

over 4.5 million sequences. It is unlikely with the increase in genomic data that this 

chasm between sequence and structure data will be bridged and therefore it is of great
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importance for the SGI projects to be selective in their target selection procedures to 

attempt to characterise unelucidated regions of fold space.

1.1 A Primary Structure

The primary structure of a protein describes the sequence of amino acids along the 

polypeptide chain. In general, an amino acid is any molecule that contains both amine 

(NH2) and carboxyl (COOH) groups, however the type of amino acid found in biological 

systems is the alpha amino acid where the amine and carboxyl groups are attached to the 

same a-carbon. There are 20 ‘standard’ amino acids found in nature which differ by a 

variable side chain (R) also connected to the a-carbon (Figure 1.1).

Figure 1.1. The basic structure of a biological amino acid. With the central a-carbon connected  

to an amino group, a carboxyl group and a variable side chain (Branden, Tooze 1999).

All 20 naturally occurring amino acids can be broadly grouped according to their 

physical and chemical properties (Figure 1.2). Often amino acids are assigned to one of 

three classes (Branden, Tooze 1999); those with hydrophobic sidechains, those with 

charged sidechains and those amino acids with polar sidechains. Glycine is an exception 

to this as its sidechain consists of a single hydrogen atom. Polypeptide chains are

16



polymerised on the ribosome in a condensation reaction between the carboxyl group of 

one amino acid and the amino group of the next with the removal of a water molecule.

Figure 1.2. A Venn diagram describing the chemical and physical properties of amino acids 

(Taylor, 86). The residues are alanine (A), cysteine (C), aspartic acid (D), glutamic acid (E), 

phenylalanine (F), glycine(G), histidine (H), isoleucine (I), lysine (K), leucine (L), m ethionine  

(M),asparagine (N), proline (P), glutam ine (Q), arginine (R), serine (S), threonine(T), valine  

(V), tryptophan (W) and tyrosine (Y).

1,1.2 Secondary Structure

To satisfy energetic constraints, water soluble, globular proteins are driven to fold into 

their three dimensional structures by the packing of hydrophobic residues into the core of 

the structure leaving those amino acids with hydrophilic sidechains exposed to the 

aqueous environment. The burial of hydrophobic residues is also accompanied by the
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burying of the polar amine and carboxyl groups. These polar groups are stabilised by the 

formation of hydrogen bonds and this is the driving force between secondary structure 

formations. There are two main types of secondary structures the alpha helix and the beta 

sheet.

The backbone dihedral angles along the polypeptide chain describe the fold of the 

protein, and therefore the secondary structures. Dihedral angles are defined as the angle 

between two planes. The angle (p describes the angle involving the residues C'- N -  Ca 

- C and the \|/ angle involving the backbone residues Ca - C - N -  Ca.

An alpha helix can be described as a right handed coiled structure. Its formation is 

stabilised by the hydrogen bonding of every amine group to the backbone carboxyl group 

of the amino acid four residues earlier in the helix. Each amino acid contributes a 100° 

turn in the helix which corresponds to one full turn of the helix being equivalent to 3.6 

residues. Residues in alpha helices adopt on average backbone dihedral angles of -60° 

for the (p angle and -50° for the \|/ angle.

Beta sheets are formed by three or more beta strands. These strands form hydrogen 

bonds between C=0 and N-H groups on adjacent strands culminating in the formation of 

planar sheets. The direction of strands that make up a beta sheet can be parallel or anti

parallel. Parallel beta sheets have an average <p angle of -119° and an average \|/ angle of 

113°, while anti-parallel exhibit an average 9  angle of -139° and an average 9  angle of 

135°.

Although alpha helices and beta sheets represent the most common secondary structures 

there are other less stable secondary structures that are observed less frequently. One 

example is the 310 helix. These helices are always short, no longer than a couple of turns, 

and found almost exclusively at the end of regular alpha helices. The internal hydrogen 

bonding is between the amine group of residue 1 and the carboxyl group of i+5 (as 

apposed to i-̂ 4 for regular alpha helices) and results in the dipole being less well aligned 

and therefore a less stable, and hence rarer structure. An even rarer and more unstable

18



helix formation is the 7c-helix where the hydrogen bonding is formed between the amine 

group o f residue i and the carboxyl group o f i+5. Finally the beta-tum is a more common 

secondary structure element arising when the protein chain turns back upon itself. It is 

stabilised by an intramolecular hydrogen bond between a proline residue side and its 

main chain nitrogen atom. Such regions are also often glycine-rich, which confers little 

steric hindrance and promotes flexibility in the protein chains.

LL3 Super-secondary structure

Secondary structures adjacent to one another can assemble into regular motifs known as 

super secondary structures. These motifs often form the building blocks of larger 

structural assemblies or can be associated with a specific functional role as in the case of 

the helix-loop-helix super-secondary structure associated with DNA-binding proteins.

Beta-hairpins are one of the simplest motifs comprising two small anti-parallel strands 

joined by a loop region. This motif is often observed as part of a more complex beta 

sheet or occasionally in isolation from other secondary structure elements. The 

conformation of beta hairpins is dependent on the length and sequence of the composite 

strands and studies have shown that 70% of beta-hairpins are less than 7 residues in 

length with two-residue turns forming the most frequent conformation (Sibanda, 

Thornton 1985). Consecutive anti-parallel beta-hairpins form a super-secondary structure 

known as a beta-meander.

Super-secondary structure arrangements that are involved in a more specific functional 

role include the helix-tum-helix motif and the helix-loop-helix motif. The helix-tum- 

helix motif, also referred to as the EF hand, is often implicated in calcium binding with 

the carboxyl sidechains and main chain carbonyl groups mediating the interaction. This 

was first observed in parvalbumin. The helix-loop-helix motif is regularly reused in a 

variety of folds that bind DNA and was first observed in prokaryotic DNA binding 

proteins such as the cro repressor from phage lambda. The cro repressor forms a dimer
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with each subunit consisting of an anti parallel, three stranded beta-sheet with helical 

elements inserted between the first and second strands. On dimérisation, the second 

helices from each subunit are located on one side of the beta sheet and their orientation 

allows them to fit into adjacent major grooves of the DNA (Luscombe et al. 2000).

1.1.4 Tertiary Structure & Protein Domains

The tertiary structure of a protein describes the overall 3D conformation adopted by the 

protein chain. These complex formations are stabilised by a combination of electrostatic. 

Van de Waals forces and covalent disulfide bonds. The tertiary structure comprises one 

or more globular domains, which according to Richardson (1981) form semi-independent 

folding units, with a well packed hydrophobic core. Secondary structure elements are 

rarely shared between domains (Taylor 1999) and this leads to an increase in sequence 

variability in the loop regions between domains, since they do not impact on the overall 

fold of the protein. The domain is considered to be the primary evolutionary unit and 

domains are often observed with a variety of other domain partners in different proteins.

1.1.5 Quaternary Structure

Some proteins are composed of more than one polypeptide chain and the description of 

this complex can be termed the quaternary structure. Individual chains associate through 

electrostatic and covalent interactions to form larger oligomeric formations. These 

complexes may be transient associations that further increase the functional repertoire of 

proteins and facilitate regulatory networks. In addition, new active sites can also form at 

the interfaces of protein chains (Liu, Eisenberg 2002).
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1.2 Protein Evolution

Evolution through a process of random mutation and natural selection has given rise to 

the dramatic diversity of species observed in nature. On a molecular level, it is the 

recombination and mutation of DNA that generates this diversity and mutations in genes 

manifest themselves as changes in the amino acid sequences they encode. These changes 

accumulate over time and are the mechanism by which proteins can evolve new 

functions.

Proteins related by evolution, therefore descending from a common ancestral protein, are 

termed homologues. As homologues have evolved through divergent evolution from a 

common ancestor, close relatives will often have similar sequences. However, as 

relationships become more distant the primary sequence changes as the two homologues 

have mutated independently from the ancestral gene even if their function remains 

similar. With some homologous proteins the evolutionary relationship is distant enough 

that there is no significant sequence similarity and only structural similarity remains, 

these are often termed remote homologues. Homologous proteins that arise through 

spéciation events are termed orthologues and frequently share the same function.

An alternative mode of protein evolution is gene duplication and homologues that arise 

through such events are termed paralogues. The new copy of the gene is not subjected to 

the same evolutionary constraints as the parent gene and this can potentially enable it to 

exploit a different functional niche. New functions can arise through amino acid 

mutations of key active site residues or through modifications of functionally important 

regions of the protein structure. Once the constraints of function have been removed, 

paralogues can often diverge in sequence beyond the limits of current detection.

Two protein domains that share similar three dimensional structures cannot automatically 

be considered homologous. Due to a limited number of ways that a-helices and P-sheets 

can pack three dimensionally there may also be convergence of evolutionary unrelated
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proteins to adopt similar folds (Chothia 1992;Orengo et al. 1994). Two proteins with 

similar structures but no evidence of an evolutionary relationship can be described as 

analogues. An interesting example of structural convergence is between the analogous 

proteins thermolysin and mitochondrial processing peptidase (Makarova, Grishin 1999). 

These proteins have a very similar arrangement and packing of secondary structure 

elements and they also show striking similarity in their active site residues. The 

connectivity of the structure however is completely different making it very unlikely they 

have evolved from a common ancestor.

It is often difficult to make the distinction between remote homologues and analogues. 

Very remote homologues often have no significant sequence homology detectable by 

current comparison methods. Furthermore, in some families of homologous proteins 

significant structural divergence has been observed, even up to the extent that the fold has 

changed (Grishin 2001;Krishna, Grishin 2005). Therefore, with the difficulty in 

separating remote homologues and analogues, it is of little surprise that as methods to 

detect homologous relationships improve, structures previously classified as analogues 

are subsequently identified as very distant homologues. In fact it could be said that the 

definition of what constitutes a remote homologue is intrinsically linked to the ability of 

methods to identify them. Examples include the a/p TIM barrels, some of which have 

very limited sequence similarity but similar structures and therefore previously thought of 

as products of convergent evolution, but now increasingly shown to be descended from a 

common ancestor (Copley, Bork 2000).

1.3 Detection o f Homology

The characterisation of proteins, be it by their primary sequence or their three 

dimensional structure, has been accelerated by high throughput techniques. This has led 

to a massive expansion in both the protein sequence and structure repositories, although 

there are still an order of magnitude fewer structures than sequences. However, this 

plethora of new protein information is frequently poorly annotated in terms of function.
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Currently one of the most common and easily accessible methods for obtaining functional 

information for a new sequence or structure is to identify an experimentally characterised 

homologue and protein family resources (eg Pfam (Finn et al. 2007)) are being 

increasingly used to do this.

1.3.1 Sequence Comparison Methods

Sequence similarity is often the most useful indicator of homology. The traditional way 

to compare two sequences is to align them against one another and compute the residue 

similarity. For two sequences that differ by a couple of point mutations this is a fairly 

trivial task, but for more distant relatives that exhibit extensive residue insertions and 

deletions (indels), this becomes more problematic. Alignment methods tend to be 

optimised to produce either local or global alignments. Global alignments optimise 

equivalence across the entire length of the proteins being compared, whilst local 

alignment methods seek local patterns of sequence similarity.

Sequence alignment methods make use of substitution matrices, which calculate the 

probability of a specific residue mutating into another residue over evolution. As 

mentioned in Section 1.1.1, amino acids can be classified into three types based on their 

physicochemical properties; for example those with hydrophobic sidechains, those with 

charged sidechains and those amino acids with polar sidechains. It can be assumed that 

the substitution of one residue for another with similar properties is more likely to be 

tolerated. For example, a mutation from valine to leucine is likely to have minimal effect 

on the proteins stability and function as both residues have similar hydrophobic 

properties and molecular size. Such information can be encoded into a residue 

substitution matrix to guide the alignment.

An alternative approach is to assess the evolutionary probability of specific residue 

mutations and was pioneered by Dayhoff and co-workers (Dayhoff 1978). They used a 

database of protein families to generate alignments of close evolutionary relatives (>85%
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sequence identity). By examining a large number of alignments the probabilities of 

mutations between all 20 amino acids can be calculated and used to inform the scoring of 

an alignment. This method was further extended by Henikoff and co-workers (Henikoff, 

Henikoff 1991) who created the BLOSUM family matrices from regions of locally 

aligned sequences in the BLOCKS database at a variety of sequence thresholds. Proteins 

with a sequence identity greater than a given threshold are clustered together. 

Substitution values are calculated and used to populate a matrix, representing different 

evolutionary distances (e.g. BLOSUM50 clusters sequences at 50% identity). These 

matrices have been shown to be more effective in searching for homologous relationships 

than PAM matrices (Henikoff et al. 1993).

7.5.7.7 Global Alignment

Needleman and Wunsch employed a computational technique called dynamic 

programming to optimal align two pairs of protein sequences (Needleman, Wunsch 

1970). The algorithm finds the optimal alignment by considering every possible 

combination of residues, including potential indels. The method begins by constructing a 

two dimensional matrix that reflects the similarity of all residues in protein A with those 

in protein B. This matrix is traversed from the bottom right comer to populate the 

accumulation matrix using the scoring function as depicted in Figure 1.3. The value of 

the scoring function S(iJ) is determined by the values of previous cells below and to the 

right. If the diagonal value is not selected it means a gap is inserted in the

alignment and this incurs a gap penalty to penalise this indel. Once the accumulation 

matrix is completely populated the optimal alignment is found by tracing back through 

the matrix to determine the highest scoring path. Figure 1.3 summarises the dynamic 

programming as implemented by Needleman and Wunsch.
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Figure 1.3. The Needlem an and Wunsch dynamic programming algorithm. Each residue in  

sequence A and B is scored for similarity and these scores are used to populate a matrix. The 

accumulation step populates another matrix using the function S(i,j), where gaps are 

penalised. The final traceback step looks for the highest scoring path.
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Smith and Waterman (1981) modified the Needleman and Wunsch algorithm to focus on 

regions of local similarity. This was achieved by allowing the paths to start at any 

residue when tracing back through the matrix and terminating the paths when the score 

falls below zero.

1.3.1.2 Database Searching by Local Sequence Alignment

A common scenario in sequence comparison is to compare a query sequence against a 

library of sequences. Using the exhaustive, dynamic programming method is ideal for 

pairwise comparisons, but soon becomes computationally expensive when searching 

against a large database of sequences. Therefore, algorithms such as FASTA (Pearson 

1990) and BLAST (Basic Local Alignment Search Tool) (Altschul et al. 1990) were 

developed specifically for this scenario. These algorithms concentrate on discovering 

small local regions of similarity which can subsequently be extended to a full alignment.

The BLAST algorithm splits each protein sequence into tri-peptide fragments. Using the 

BLOSUM substitution matrix the tri-peptide fragments are expanded to include possible 

substitutions that could have occurred. For example the tri-peptide ACE is expanded so 

it can match the fragments ACE, GCE, GME and AME. Database query sequences are 

then searched against the possible tri-peptide fragments and when a match is identified 

the tri-peptide is extended in both directions as far as possible to create the largest 

possible segment pair. The pairs are scored, assigned E-values and ordered to determine 

the highest scoring segment pair (HSP) for each sequence in the database. The blast 

algorithm was extended to account for gaps in the alignment, whereby high scoring 

segments in close proximity are linked together using dynamic programming to obtain 

the final alignment (Altschul et al. 1997).
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1,3,1,3 Profile Based Sequence Comparison

Although sequence comparison methods such as BLAST and FASTA can detect most 

homologous relationships between close homologues (sequence identity greater than 

30%), when the relationship is more remote (sequence identity below 30%) only half of 

the homologues can currently be identified (Brenner et al. 1998).

To address this problem, methods have been developed that match residue features 

conserved during evolution. These features are identified by examining multiple 

sequence alignments of related protein sequences and the variation of observed amino 

acids at each position can be modelled in a sequence ‘profile’. A profile can be defined 

as a ‘consensus primary structure model consisting of position-specific information’ 

(Eddy 1996). Significance can be assigned to each alignment position based on its 

conservation in the protein family. This is useful as not all residues in a protein are of 

equal evolutionary importance, for example, those that are involved in the function of the 

protein or stabilise the three dimensional fold are subject to greater evolutionary 

conservation. Profile methods exploit the extra evolutionary information provided by a 

well-aligned set of homologues. Often there are positions in an alignment of homologues 

where the amino acids are highly conserved and putative homologues are likely to have 

the same amino acid conserved at this position. Other positions in the alignment may be 

more variable and thus the score for a putative homologue should not be greatly affected 

by variation at these positions. It has been found that methods using multiple sequences 

detect three times as many remote homologues as pairwise methods (Park et al. 1998).

1,3,1,3,1 PSI-BLAST

PSI-BLAST (Altschul et al. 1997) is a profile based method that is an extension of the 

BLAST algorithm described above. PSI-BLAST uses an iterative approach to refine a 

profile of the original query sequence. The profiles generated by PSI-BLAST are called 

Position Specific Score Matrix (PSSM) as they combine positional information with
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residue exchange probabilities to generate a sequence ‘fingerprint’. The first step of the 

algorithm is a BLAST database search to identify close relatives from which the PSSM 

can be generated. These sequences are aligned and a PSSM generated from the residue 

propensities at each position in the multiple alignment. Subsequently instead of 

searching with a single sequence, the database is now searched with the PSSM and this 

enables the identification of more distant homologues. After each iteration the multiple 

alignment is rebuilt by including the newly identified sequences and the PSSM 

regenerated. PSI-BLAST iterates through this process until no more relatives can be 

found below a given E-value cut-off or a specified number of iterations has been reached.

L3JJ.2 HMMs

Hidden Markov Models (HMMs) are an alternative type of profile which has been shown 

to outperform PSI-BLAST for recognising very remote homologous relationships (Park 

et al. 1998;Eddy 1996;Karplus et al. 2005;Park et al. 1998). HMMs can be considered a 

more formal approach to the profile methodology with the key incorporation of position- 

specific gap penalties. HMMs implement a statistical framework which is based on state- 

transition probabilities in a multiple sequence alignment. Each column in the multiple 

sequence alignment can be characterised by three states; match, delete and insert. The 

match state models the distribution of residues allowed at a particular position in the 

alignment, the delete state models having no residue at this position and the insert state 

models the insertion of one or more residues after this position (Figure 1.4). These states 

are connected by state-transition probabilities and a sequence of states is generated by 

moving from the start to end point according to these probabilities. A trained model can 

be used to emit sequences based on the parameters it has acquired from the domain 

family and also to assess the likelihood that some sequence has been emitted by the 

model.
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Figure 1.4. Overview of Hidden Markov Model (HMM), showing transition probabilities between 

match (M), delete (D) and insert (I) states.

The two most common HMM methods used for sequence comparison are HMMer (Eddy 

1996) and SAM-T (Karplus et al. 2005). SAM-T builds a HMM from either a single seed 

sequence or a seed alignment using a large sequence database. After the initial scan of 

the database, a model is generated from the alignment of related sequences, which can 

then be used for further database scans.

HMMs representing protein domains are often used to identify domains within sequences 

of unknown structure and function. In order to achieve this, a score is required which 

represents how well the sequence matches to each model. This can be achieved using 

either the Viterbi or Baum-Welch algorithms. Viterbi calculates the most probable path 

of a sequence through the model, whereas Baum-Welch calculates the sum of the 

probabilities of all possible paths through the model.

Null models are used in scoring sequences with HMMs in order to account for the fact 

that some sequences have a composition which is close to the background frequency. In 

such cases a sequence is scored highly by finding a path through an unrelated model due 

to the background frequencies assigned to the emitting states. Each sequence scored
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against a model is also scored against a null model, which represents a random match. 

Similar scores for both models suggest a random match to the real model. A significantly 

higher score for the real model is a significant match.

E-values are used in many sequence comparison methods and give the number of errors 

per query to be expected. An E-value of 1 for a match between a model and a sequence 

means that one random match should be expected among sequences with that score or 

better in a database of a certain size. The E-value is dependent on database size because 

in a large database we would expect more random matches than in a small one. E-values 

are based on the premise that errors produced by sequence comparison methods follow an 

Extreme Value Distribution (EVD).

1,3, L 3,3 Profile-Profile Methods

A further enhancement in sequence comparison has been the advent of profile-profile 

sequence comparison methods. Soding (2005) has shown that by constructing a profile 

of a query sequence as well as the database library of profiles, more homologous 

relationships can be identified. This is because both sides of the comparison contain 

information on the evolutionary variation of the sequences.

The profile-profile method COMPASS (Sadreyev, Grishin 2003) adapts PSI-BLASTs 

scoring system and E-value calculation for profile-profile comparisons. Alternatively 

prof_sim (Yona, Levitt 2002) uses a entropy based method to measure the similarity 

between profiles.

A more recent addition to profile-profile methods is HMM-HMM comparisons. 

HHSearch (Soding 2005) and PRC (Madera 2006) are the most widely used HMM-HMM 

methods. Such methods align and score two HMMs on the basis of their joint emission 

probability. That is do they score the same sequence highly? PRC approaches this by 

aligning the domain family HMMs in the form of a pair HMM, and allowing a score to be
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derived using the Viterbi algorithm. Each state of the pair HMM corresponds to pairs of 

domain family HMM states (matches M, inserts I and deletes D), and a transition in the 

pair HMM models simultaneous transitions in both domain family HMMs.

1.3.2 Structural Comparison Methods

As homologous proteins diverge their sequences can change beyond the detection limits 

of sequence comparison methods. However, Chothia and Lesk (1986) demonstrated that 

even when there is no discernable sequence similarity the three-dimensional structures 

remain similar. More recent analysis of several hundred well populated homologous 

superfamilies in the CATH database showed that even in very remote homologues (<20% 

sequence identity) at least 50% of the structure remains conserved (Chapter 2 and 

(Reeves et al. 2006). Therefore, the alignment of protein structures provides an important 

tool for identifying remote homologous relationships.

As with sequence comparison, the alignment of protein structures is determined in two 

stages. Firstly the pairwise similarity between residues, or secondary structure elements 

is calculated between the two proteins. This is followed by an optimisation strategy to 

find an alignment that maximises the score of the aligned positions. The majority of 

methods compare the geometric properties of €« or Cp atoms and/or secondary structure 

information using distances or intramolecular vectors.

1.3.2.1 Calculating Structural Similarity

Irrespective of the method used for aligning two protein structures, a way of quantifying 

the structural similarity of the proteins is required. The most widely used measure of 

structural similarity is the Root Mean Square Deviation (RMSD). Once equivalent 

residues in two protein structures have been defined by the alignment, a transformation 

matrix can be calculated to superimpose them in the same co-ordinate framework to
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minimise the RMSD. RMSD is the square root of the average squared distances between 

equivalent positions (e.g. equivalent €« atoms) (Equation 1.1) so that proteins with 

similar three dimensional structures tend to have low RMSDs (<4.0 A ).

RMSD = i
N

i = i

N

Equation 1.1 Root Mean Square Deviation (RMSD).

Using an RMSD value alone can be misleading for detecting homologues. It is known 

that RMSD values do not depend only on conformational differences but also for instance 

the sizes of the structures being compared. It is for this reason it is also important to 

consider the number of equivalent residues over which the RMSD has been calculated. 

Furthermore, higher RMSDs values are found when comparing two protein structures of 

high crystallographic resolution than observed when comparing two structures both at 

low resolution (Carugo 2003).

1,3.2,2 Secondary Structure Based Structure Comparison Methods

One approach to comparing protein structures is to assess the similarity in the 

composition and three dimensional orientations of their secondary structures. As the 

number of secondary structures is often an order of magnitude less than the number of 

amino acids, such an approach provides a fast and effective way of searching a database 

of structures to identify putative fold matches. Furthermore, as most amino acid 

mutations occur in the loop regions of proteins (Branden, Tooze 1999) secondary 

structure matching algorithms are effective for detecting fold similarities between remote 

homologues where significant indels have occurred.
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Grindley and co-workers (1993) pioneered the use of graph theory to compare the 

secondary structure arrangements between two protein structures. A mathematical graph 

is a two dimensional set of points, termed nodes, connected by edges that describe the 

relationship between them.

More recently Harrison and co-workers (2002) developed the algorithm GRATH as a 

way of rapidly detecting fold similarities to classify structures in the CATH database. In 

this, a three dimensional protein structure is represented as a two dimensional, 

undirected, hilly connected graph. Each node of the graph represents a secondary 

structure vector. The edges of the graph are labelled with the types of secondary 

structures they are connected to, the distance of closest approach between the vectors, the 

dot-product angle between the two secondary structures and the dihedral angle defined 

fi-om the two vectors and their midpoint vectors. Two protein graphs can be compared to 

detect common secondary structure ‘cliques’ by identifying equivalent edges that are 

labelled with similar distances and angles. The GRATH algorithm derives a statistical 

measure (E-value) that accounts for protein size when identifying significant fold 

matches.

SSM

SSM (Secondary structure matching) (Krissinel, Henrick 2004) uses a similar approach to 

GRATH. The algorithm labels edges between nodes with distances and angles to 

determine equivalent secondary structures with which to guide a rigid body 

transformation. SSM then iteratively finds corresponding €« atoms, one fi*om each 

structure and uses these to guide an optimal superimposition. The major difference 

between SSM and GRATH is that GRATH seeks fully connected cliques whereas SSM 

uses sub-graph matching. However, SSM also takes into account connectivity and the 

size of the secondary structures matched.

Because there are usually an order of magnitude fewer secondary structures in a protein 

than residues, secondary structure matching methods are extremely fast at searching
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databases of folds and often used to identify likely fold matches that can be more 

accurately aligned using residue based methods.

1,3.2.3 Residue Based Structure Comparison

The common goal of residue-based structure comparison methods is to identify residue 

pairs between two proteins that are structurally similar. There are two general strategies: 

(1) directly search for a good alignment, and (2 ) search for a transformation that 

optimally positions the two structures with respect to one another, and then use the 

transformation to find the best alignment. SSAP, DALI and CE belong to the first group 

whereas STRUCTAL and LSQMAN belong to the second.

SSAP

SSAP (Taylor, Orengo 1989) searches for an optimal alignment of two protein structures 

using dynamic programming. The dynamic programming algorithm, as described 

previously in Section 1.3.1.1, first scores the similarity between all residue pairs. This is 

achieved by comparing the residue ‘views’. Residue views are described by vectors 

between a specific Cp atom and all other Cp atoms within a structure and two residue 

views are scored for similarity. The number of residues compared is limited by selecting 

on secondary structure properties (e.g. accessibility, phi and psi angles). The SSAP 

algorithm utilises dynamic programming in two stages, termed Double Dynamic 

Programming (DDP). A ‘residue-level score matrix’ is constructed for each pair of 

putatively equivalent residues, containing scores that reflect the similarity of a given pair 

of vectors. The first level of dynamic programming is used to find the highest scoring 

path through these matrices. The second step is to amalgamate the information from the 

residue level matrices into a summary score matrix. Pairs of residues are determined to 

be potentially equivalent based on the score of the best path through their residue level 

matrix. All optimal paths returning scores above a given threshold are collated in the 

summary matrix (see Figure 1.5). The final level of dynamic programming is used to
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find the overall best path or alignment through the summary score matrix. The native 

score of SSAP is a normalised logarithm of a measure which combines the similarity of 

the aligned residue views and the number of residues in the larger protein.

vector view tor protein A
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Figure 1.5. Flowchart of the SSAP algorithm. Vector environments are compared between pairs of 

potentially equivalent residues in each protein. A residue level score matrix is constructed for each 

pair and optimal paths (putative alignments) are calculated by dynamic programming. High scoring 

paths are then added to the summary score matrix. Dynamic programming is then applied to the 

summary matrix to generate the final optimal alignment of the two structures.

CE

Another approach for comparing protein structures, is to split the structures into 

fragments of peptides, then find equivalent fragments and combine these through some 

optimisation protocol to give the final alignment.
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CE (Shindyalov, Bourne 1998) constructs alignments by successively joining well 

aligned fragment pairs (AFPs). AFPs are defined as pairs of eight-residue fragments, 

which are identified as similar if their corresponding local geometry (defined by €« 

positions) is within a similarity threshold. Gaps are permitted between neighbouring 

AFPs, but their length limited (<30 residues) to increase the algorithmic speed. A 

heuristic approach is used to construct the alignment by extending the AFPs to define a 

set of optimal paths between them. CE then uses dynamic programming to find the pairs 

with the lowest RMSD to achieve the best, extended alignment. The output of CE is a Z- 

score that evaluates the statistical likelihood of finding an alignment of the same length, 

with the same gaps and geometrical distance.

DALI

DALI (Holm, Sander 1993) also uses a fragment based approach to construct its 

alignments. Hexapeptide fragments are compared using contact maps and potentially 

equivalent pairs identified by searching for similar patterns of distances between residues 

(see Figure 1.6). DALI then uses the Monte Carlo method to search for the best 

consistent set of similar fragment pairs to form a global alignment. Many initial 

alignments are searched in parallel, to identify the optimum. DALI outputs a raw score 

and a normalised Z-score.
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Figure 1.6. The DALI method of Holm and Sander (1993). Proteins are fragmented into 

hexapeptides and their contact maps compared to fînd equivalent fragments. Fragments are 

concatenated and their RMSD checked to find valid extensions. Monte Carlo optimisation is used to 

guide the extension process to a full alignment.

STRUCTAL

STRUCT AL (Subbiah et al. 1993) assumes a series of initial alignments based on a 

correspondence of residues in the two structures, and uses a rigid-body transformation to 

superimpose the corresponding residues. It then finds the optimal alignment for the 

superposition. This is the beginning of an iterative process whereby the new alignment is 

used to superimpose the structures again to generate a new alignment to guide the next 

superposition until it converges on a local optimum. The local optimum, however, is 

dependent on the initial alignment so a variety of initial residue correspondences are used 

to increase the likelihood of finding the global optimum. Three of the initial 

correspondences include aligning the beginnings, the end and the mid-point of the 

structures without allowing gaps. Other correspondences include maximising the 

sequence identity or the Cq torsion angle similarity. For a given correspondence, the
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optimal transformation is the one with the minimum RMSD and for a given 

transformation, the optimal alignment is the one with the maximal STRUCTAL score 

obtained through dynamic programming. STRUCTAL provides a statistical measure of 

significance of the final alignment in the form of a p-value.

LSQMAN

LSQMAN (Kleywegt 1996), like STRUCTAL, searches iteratively for a rigid body 

transformation that optimally superimposes the two structures. The initial transformation 

is found by superimposing the first residue of each secondary structure element of the 

two structures. Once superimposed, LSQMAN starts by searching for a long aligned 

fragment pair, where matching residues are geometrically close (< 6 Â) and the minimum 

fragment pair is not less than 4 residues. Given the alignment, an optimal transformation 

is calculated and a new iteration is started. The distance cut-off is increased during each 

iteration to extend the alignment further. Optimisation of the alignment is further guided 

by a similarity index. LSQMAN outputs a Z-Score to give a statistical interpretation of 

the alignments significance.

1.4 Protein Structure Family Resources

Since many remote evolutionary relationships can only be recognised by structure 

comparison, structure based protein family classifications are particularly valuable for 

understanding evolution.

Two of the most comprehensive structural classification, CATH (Orengo et al. 

1997;Greene et al. 2006) and SCOP (Murzin et al. 1995;Hubbard et al. 1997) are 

hierarchical and organise proteins on the basis of both structural similarity and 

evolutionary relationships. With the exception of SCOP, all the databases here use an 

automated method for protein structure comparison at some point in the classification 

procedure.
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1.4.1 CATH database

The CATH database has four main levels of classification (see Figure 1.7). The Class 

(C) level describes whether the protein domain is constituted of mainly alpha helices, 

beta strands or a combination of the two. Architecture (A) describes the orientation of 

these secondary structure elements in 3D space. The Topology (T) or fold level describes 

the connectivity of these secondary structures, whereas the homologous superfamily (H) 

level clusters proteins that have a clear evolutionary relationship. For example domain 

one of lactate dehydrogenase has the Class ‘Alpha-Beta’, the Architecture ‘3-Layer 

Alpha-Beta-Alpha Sandwich’, the Topology ‘Rossmann’ and is a member of the 

‘NAD(P)-binding Rossmann-like domain’ Superfamily.

The CATH resource uses a combination of manual and automated approaches. Robust 

structure comparison methods (SSAP, GRATH) are used to recognise structural relatives, 

and then evolutionary relationships are assigned if two of the following criteria are 

satisfied; (1) high sequence similarity (>35% sequence identity, or a significant E-value 

based on profile methods), (2 ) high structural similarity score (>80 measured by global 

structural comparison methods such as SSAP), (3) evidence of functional similarity (e.g. 

sharing of first 3 B.C. numbers).

The latest version of CATH, Version 3.1.0 released on January 2007 contains 93,885 

domains clustered into 7794 homologous superfamilies, 2091 fold groups, 1084 

architectures and 40 classes. Homologous superfamilies are further clustered based on 

sequence identity (e.g. >35%). Domains fi*om the same sequence family (S35) generally 

share very high structural and functional similarity. Representative datasets of CATH 

usually comprise one representative from each S3 5 family, these are termed S35Reps.
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Figure 1.7. Diagram of the CATH hierarchy.
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1.4.2 SCOP

The Structural Classification of Proteins (SCOP) database was established in 1995 and 

uses almost entirely manual validation to quantify structural similarity and define 

homologous relationships and assign domain boundaries. SCOP has three major 

hierarchical levels, class, fold and superfamily lacking the architecture level present in 

the CATH classification. The class level corresponds to the proportion of residues 

adopting a-helical or P-strand conformations. This gives rise to three major classes, 

mainly-a, mainly-P and a-P, although SCOP divides the alpha-beta class into alternating 

a/p and a+p depending on the segregation of a-helices and P-strands along the 

polypeptide chain whereas CATH does not. Domains are further clustered at the family 

level if they share greater than 30% sequence identity, or have a close structural or 

functional relative.

1.4.3 FSSP

FSSP (Holm, Sander 1998) is further structural classification resource that differs in its 

approach compared to CATH and SCOP. Rather than generate strict hierarchical 

boundaries, FSSP provides lists of domains with similar structures defined automatically 

by the structural comparison algorithm DALI. These lists, also known as nearest 

neighbour lists, describe a model of protein folding space that resembles a continuum 

rather than a series of discrete structural clusters.

1.5 Machine Learning Approaches to Bioinformatics

Machine learning can be described as the ability of a device to improve its performance 

based on past performance. Machine learning systems generally use non-linear 

classification to combine information about existing data presented in training examples 

to facilitate a prediction on an unseen dataset. The machine learning field can be split
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into two classes: supervised and unsupervised learning and both have been employed in 

biological applications.

In supervised learning, entities are classified using a set of well defined features with the 

end result being a classification solely based on the information described by these 

features. The entities used in the learning process are labelled with a specific class and 

the machine learning system leams how to combine the features associated with those 

entities to recreate the classification. The goal of supervised learning is to produce a 

machine learning system that can accurately predict class membership of new entities 

based on the available features. For example, in the context of homology recognition the 

concept is that by exposing the system to examples of protein homologues and non- 

homologues the ‘machine’ can learn the rules of homology and therefore predict 

homology for unknown examples. Examples of machine learning methods that utilise 

supervised learning are decision trees, artificial neural networks and support vector 

machines.

By contrast, in unsupervised learning no predefined class labels are associated with the 

entities. Here, the goal is to explore the data and discover similarities between the 

entities and then these similarities can then be used to define clusters of similar entities. 

Unsupervised learning is often utilised in clustering analysis and has found a niche in 

microarray gene expression analysis (Tarca et al. 2007).

Biological research and the development of the machine learning field have been 

intricately linked. Many early machine learning techniques were modelled on biological 

phenomena, particularly the activity of a neuron. In 1957, Rosenblatt (1957) developed 

the perceptron, which was a simple model of neuronal activity and this itself spawned the 

field of artificial neural networks. The use of machine learning systems to attempt to 

answer biological questions was first pioneered with the use of the perceptron to 

recognise features associated with translation initiation sequences in E. coli (Stormo et al. 

1982).
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In the past 10 years there has been a significant boom in the use of machine learning 

approaches to a wide range of bioinformatics applications. These include the use of 

artificial neural networks as well as support vector machines. Of particular interest to 

this thesis is the use of neural networks to classify homology based on the SCOP protein 

database (Dietmann, Holm 2001). This approach used neural networks to validate 

groupings within fold space and the clustering within these fold groups. A forward- 

feeding neural network was trained on data based on the connectivity of these clusters 

consisting of 11,907 unrelated pairs (same SCOP fold but different superfamily) and 

3,635 related pairs (same SCOP superfamily) from a representative set of single domain 

PDB structures. The trained classifier was then used to predict 77% of the homologues in 

the SCOP database with 85% accuracy. A wide variety of other problems have also been 

tackled through machine learning approaches, including the detection of homology based 

on local structure information by support vector machines (Hou Y et al. 2003) and the 

prediction of beta-tums in proteins (Shepherd et al. 1999). Neural networks have also 

been used to combine the different outputs firom threading algorithms to increase 

performance in fold recognition (McGuffin LJ, Jones DT 2002) and furthermore used to 

evaluate such predictions (Juan D et al. 2003). One of the most common application in 

bioinformatics has been the prediction of secondary structure using neural networks 

(Meiler J, Baker D 2003 ;Cai YD et al. 2002) and support vector machines (Kim H, Park 

H 2003;Ward et al. 2003).

Although there are many types of machine learning algorithms the next section describes 

in detail the two systems used in this thesis: artificial neural networks and support vector 

machines.

L5.1 Artificial Neural Networks

Artificial neural networks were originally developed with the goal of modelling 

information processing and learning in the brain (Rumelhart et al. 1986). The networks 

used in machine learning approaches today are quite distinct from the biological networks
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of the brain but have proved to be useful applications in a number of fields. In a 

mathematical sense, neural networks can be viewed as a broad class of parameterised 

graphical models consisting of networks with interconnected units evolving in time 

(Baldi, Brunak 2001), each interconnected unit representing the neurones of the brain and 

connectivity is described by updating weights. Networks can be of varied architecture 

such as recurrent, feed-forward, and layered. Recurrent networks suggesting the 

presence of directed loops, feed-forward without loops. Layered architectures are those 

where units are separated into classes and the connectivity defined between the classes. 

Most current applications, especially those in the bioinformatics field, use Feed-forward 

layered neural networks in which the units are often partitioned into visible and hidden 

units. Visible units being those in contact with the external world, for example input 

units and output units, such units are often clustered into layers. Hidden layers contain 

units that do not access the external environment and therefore reside between the input 

and output units (Figure 1.8.).

HIDDEN LAYER 
INPUT OUTPUT
LAYER LAYER

Figure 1.8. Schematic diagram show ing an example of the architecture of a feed-forwards 
layered neural network. X and Y represent the input features fed into the network. V  
represents the output classification or prediction. Note the connectivity flow s in a 
unidirectional manner from input layer to hidden layer to output layer.

The behaviour of each unit is described by a function, which can be discrete or 

differentiable. In general a unit / receives a total input X/ from the units connected to it 

which in a feed-forward layer come from the connected units proceeding it in the
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network. It then produces an output / /  = fi(Xi) where fi is the defined transfer function 

of the unit. Units in the same layer will have the same transfer function and therefore the 

total input is a weighted sum of all incoming outputs firom the previous layer and can be 

described as;

X/= + W/
jsN-O )

where the output is;

y  I = fi(xj = fi( I, Wij Yj +
JeN ^I)

W/ represents the bias or threshold of a unit so it can be viewed as a connection with 

w e i^ t Wj to an additional unit. The weights are the adjustable parameters of a neural 

network which evolve during the learning process. Other adjustable parameters are 

available depending on the update function chosen, for example time constants, 

momentums and delays. The transfer function /> can be linear so it passes forward the 

summed weighted inputs manipulated in some linear way, for example an identity 

function (Baldi, Brunak 2001). Often the transfer function is non-linear and may involve 

a threshold gate where the weighted inputs must satisfy the threshold set, such functions 

are often used to produce binary outputs. Non-linear sigmoidal and normalised transfer 

functions can also be used.

Neural networks leam firom example. Perhaps the simplest method to organise data for 

training the classifier is the “split-sample” method. Using the split-sample method, the 

data the neural network leams from is split into three equally sized, non-biased partitions 

in the format of a training set, a test set and a validation set. This data gives the neural 

network the input values and the associated, appropriate output values. The neural 

network then processes this data in an iterative fashion, adjusting the weights of the units 

to minimise the summed distance of the networks output from the output values given in 

the data sets. A training set and test set are used so that the network leams only from the 

training set but checks its performance against the test set. This aims to prevent the
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network ‘over-fitting’ to the training set, which is important as the network should leam 

the global rules of the data and not just ‘memorise’ the input values and their 

corresponding output. Once learning is completed, the validation set is used to estimate 

the generalisation error of the classifier on a completely unseen data-set. The 

generalisation error (the average distance of prediction by the classifier compared to the 

correct answer) provides a measure of the performance of the predictor when evaluating 

the predictive power of the classifier.

When the data sets are small it is not appropriate to train on just one third of the data set 

as in the split-sample method as this may led to sub-optimal learning and overfitting. In 

these cases ‘resampling’ methods are often used (Weiss 1991). The two most popular 

resampling methods used to estimate the generalisation error of a classifier is cross- 

validation and bootstrapping. Cross-validation, often termed k-fold cross-validation, 

divides the data into k subsets of equal size. The classifier is trained k times, each time 

leaving out one of the subsets fi*om training and using that subset to compute the error. 

‘Leave-one-out’ cross validation is often superior to the ‘split-sample’ method when the 

data-sets are small because it trains and validates on the whole data-set (Goutte C. 1997).

An alternative resampling method to leave-one-out cross validation is bootstrapping. In 

its simplest form instead of repeatedly analysing subsets of the data, random sub-samples 

are used. Each sub-sample is a random sample with replacement fi-om the full dataset. 

At least 200 iterations for bootstrap estimates are usually necessary to obtain a good 

estimate of generalisation. Bootstrap has the advantage of being more robust on small 

data sizes then leave-one-out cross validation but is considerably more computationally 

expensive (Bfi-on 1982).

Various algorithms and functions exist that are used to update the weights for each 

iteration through the training data. Such functions are often called ‘learning functions’. 

Possibly, the most well-used learning algorithm is called backpropagation. With this 

algorithm an input pattern is presented to the network and is propagated through to the 

output layer. The output is then compared to the desired output (or teaching output). The
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difference (or delta) is then used together with the output of the source unit to compute 

the changes to the weight. To compute the delta values of inner hidden units for which 

no teaching output is available, the deltas of the following layer, which have already been 

computed, are used in the formula below. In this way the errors (deltas) are propagated 

backwards hence ‘backpropagation’.

The backpropagation weight rule is given below:

— Tj Sj Oi

f  -  oj )  i

\  fjinetj) Ék i
if  unit j  is a  output-unit 
if  unit j  is a hidden-unit

where:

T} learning factor eta  (a constant)
Sj error (difference between the real output and the teaching input) o f unit j  
t j  teaching input o f unit j  
Oi output o f the preceding unit i
i index o f a  predecessor to the current unit j  w ith link from i  to j
j  index o f the current unit
k  index o f a  successor to the cinrent unit j  w ith link from j  to k

There are different approaches to learning. With online learning the weight changes are 

applied to the network after each learning pattern, alternatively with batch learning the 

weight changes are accumulated for all the patterns in the training set and applied after 

one full cycle of the training set. Simple backpropagation is just one example of a 

learning function. There are further, more sophisticated, versions of backpropagation that 

have extended parameters including momentum, time delays, weight decays for example 

that change the emphasis of how the network leams.

An important aspect of machine learning approaches is feature selection. Features can be 

described as the individual measurable heuristic variables that provide the inputs to the 

machine learning algorithm. The selection of optimal features is important for a variety 

of reasons (Guyon 2003). Most importantly having discriminatory features that aid in the 

separation of classes in a classification is essential if a successful machine learning
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system is going to be created. Furthermore the presence of non-discriminatory features 

may lead to a poorer learning capacity (Milne 1995). Also by removing features that are 

non-discriminatory for the classifier the computational cost of learning is reduced. 

Finally meaningful discriminating features allow a better understanding of the underlying 

processes that determine the classification.

Many methods can be used to aid feature selection. Ideally an exhaustive search of 

feature space is applied whereby all combinations of features are used to train the 

predictor and the best combination identified. However, if your potential feature size is 

very large, for example the genes of interest in a microarray experiment, this is often not 

computationally feasible. Feature selection methods often use a ranking approach 

whereby ‘good’ informative features will be ranked highly. Ranking methods often 

presume the data to be normally distributed which is often not the case for bioinformatic 

data (Al-Shahib et al. 2005).

1,5,2 Support Vector Machines

As with artificial neural networks. Support Vector Machines (SYMs) are a class of 

classifier that attempt to distinguish between two classes of entity based on the values of 

common features. SYMs are underpinned by a statistical learning theory which 

facilitates the separation of two classes of entities by placing a division (or hyperplane) 

between them (Vladimir N.Vapnik 1995).

If you consider Figure 1.9 it is apparent that there are a number of different decisions 

boundaries that can separate the two classes of data. SYMs attempt to define the decision 

boundary or hyperplane that achieves maximum separation, or “margin” between the two 

classes. The margin is defined as the distance between the planar decision surface that 

separates two classes and the closest training samples to the decision surface. To account 

for the fact that many data-sets can not be completely resolved a user-defined parameter
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‘C’ determines how many data points are allowed to be misclassified without effecting 

the position of the hyperplane thus accounting for outliers in the data-sets.

m argin

Figure 1.9. Support Vector Machines Class Boundaries. Two-dim ensional data points 

belonging to two different classes (circlesand squares) are shown in the left panel. The right 

panel shows the maximum-margin decision boundary im plemented by the SYMs.

Figure 1.9 shows a linear SVM but non-linear SYMs can also be applied should the 

problem require it. This is achieved by performing a kernel transformation that may 

allow better classification of the entities in a non-linear higher dimensional feature space. 

Figure 1.10(b) shows two classes described by two features, one of which does not vary. 

However, by squaring the variable feature (effectively placing the solution in higher 

dimensions), it is possible to separate the classes using a linear hyperplane. This approach 

is referred to as the ‘kernel trick’. Figure 1.1 Od shows a more realistic example where the 

data points have been transformed into 4 dimensions by the kernel function, producing a 

non-linear solution in 2 dimensions. Non-linear kernels transform the data into higher 

dimensions to allow a linear hyperplane to separate the data classes. Two commonly 

used non-linear kernels include the polynomial kernel and the radial basis function.
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b)

Figure 1.10 a) Separating two classes of data using a linear hyperplane. The soft margin (C 
parameter) is shown by the dotted lines, b) Two classes of data that cannot be separated in two 
dimensions using a line, c) By squaring the x feature in b) using the ‘kernel trick’, a linear solution 
can be found, d) A line separating two classes of data, which is linear in 4 dimensions, but not in 2.
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1.6 Aims

The aim of this thesis is to explore the performance of different approaches to homologue 

recognition, with the ultimate goal of developing a machine learning system that can 

combine information from the most successful of these methods to predict homology in 

an automated and accurate fashion.

Machine learning gains its power from the ability to learn from known examples. Within 

the CATH classification there is vast knowledge base available for a machine learning 

system to leam the rules of homology. A machine learning approach can, once validated 

and optimised, provide an automatic classification system. This would be hugely 

advantageous for the CATH protein database, where regular updating of the resource 

currently includes a large degree of manual classification which is becoming increasingly 

difficult due to the high numbers of novel structures being produced by the structural 

genomic initiatives. Furthermore because of the observed variability of sequence, 

structure and function conservation within and between superfamilies, a dynamic 

machine learning system will be able to characterise these patterns more successfully 

than using empirical thresholds. The development and utilisation of superfamily specific 

measures of variation and the use of a machine learning approach should hopefully 

improve the recognition of remote homologues.

Chapter 2 presents an analysis to inform the design and implementation of the homology 

recognition pipeline, showing how different homologous superfamilies evolve in 

sequence, structure and function and characterising the mechanisms by which this 

happens. Furthermore, new information on the variability observed is presented in an 

established web resource, the Dictionary of Homologous Superfamilies, which has been 

expanded and improved in a number of ways.

Chapter 3 presents a new structural comparison algorithm, CATHEDRAL, which 

combines both secondary structure matching and accurate residue alignment in an
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iterative protocol for determining the location of previously observed folds in novel 

multi-domain structures. A rigorous benchmarking protocol is also described that 

assesses the performance of CATHEDRAL against other leading structural comparison 

methods.

In Chapter 4 several methods for detecting homology are optimised and benchmarked. 

These included methods that compare the sequence similarity of proteins, the structural 

similarity and methods that attempt to assess functional similarity.

Finally Chapter 5 details the implementation, optimisation and benchmarking of a neural 

network classifier to provide an automated method of homologue recognition.
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2 Analysis of Sequence, Structure and Functional 

Variability between Evolutionary Relatives in 

CATH Superfamilies

2.1 Background

In the “post genomic” era a major bioinformatics challenge is the assignment of structural 

and functional information to the millions of protein sequences determined by the 

international genomics initiatives. As it is not feasible to determine the structures of all 

proteins by experimental methods, in silico structure and function prediction methods 

must be improved and this requires a greater understanding of protein evolution.

Proteins evolve through changes in the DNA of the genes encoding them, giving rise to 

families of homologous relatives. These changes may take the form of single point 

mutations, residue insertions/deletions or gross, large scale duplications or 

rearrangements (Heringa, Taylor 1997;Vogel et al. 2004;Vogel et al. 2005). Homologues 

can be orthologues or paralogues, orthologues having diverged after a spéciation event 

and paralogues arising from a gene duplication event. Mutations in the genes manifest 

themselves as changes in the amino acid sequence they encode. These changes in protein 

sequence are accumulated over time and in paralogous proteins these changes may be 

tolerated if they give rise to new functions beneficial to the organism.

Similarity in sequence, structure and function can give clues for detecting evolutionary 

relationships between proteins. It has been shown that if the sequence identity is greater 

than 35% two proteins adopt a similar structure (Chothia, Lesk 1986;Flores et al. 1993). 

Distant relatives may have diverged from the ancestral sequence to such an extent that 

there is no longer any detectable sequence similarity. Homologues that have low 

sequence identity can still have very similar structures, particularly orthologues sharing
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similar functions, since structure is frequently more highly conserved than sequence in 

protein evolution (Chothia, Lesk 1986) (see Figure 2.1).

Function is conserved to various degrees between protein homologues. Studies have 

shown that proteins that share 60% sequence identity are highly likely to share similar 

functions whereas for more distantly related proteins sharing less than 30% sequence 

identity, functional variation is significant (Todd et al. 2001). More recent studies 

revealed that if the bias in the PDB is taken into account only 50% sequence identity is 

required (Tian, Skolnick 2003;Rost 2002). Several studies in enzyme families have 

shown that although functions may change between paralogous relatives, this is usually 

associated with a change in the substrate on which the enzyme acts and the chemistry 

performed by the enzyme is often quite well conserved (Todd et al. 2001). Furthermore 

paralogous proteins are often recruited by different metabolic pathways for their reaction 

chemistry (Rison, Thornton 2002)
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Variations in structure between homologous proteins may provide a useful insight into 

their differing functional roles or into the protein-protein interactions they participate in. 

Whilst homologous domains share a structurally invariant core arrangement and similar 

connections of secondary structures, in some superfamilies there can be considerable 

insertions or deletions of peripheral secondary structure elements.

Structural evolution through secondary structure insertions and deletions can sometimes 

give rise to profound changes in the fold or architecture of the protein. For example the 

addition of a-helices can change a 2 -layer ap sandwich into a 3-layer aPa sandwich. 

Grishin and co-workers (Krishna, Grishin 2005;Grishin 2001) analysed how fold change 

can occur between homologous structures in several superfamilies. Their studies have 

identified several cases of homologues detected by sensitive sequence profiles that fold 

into different structures contradicting the hierarchical protein classification schemes of 

SCOP and CATH.

Proteins evolve at different rates and through different mechanisms and the relationship 

between sequence and structure has been studied in several ways and a number of 

different evolutionary models proposed. These models attempt to explain how changes 

in the primary amino acid sequence translate into changes in the 3D tertiary protein 

structure. Chothia (1986) postulated that a few key residues are responsible for fold 

specificity (10-20% of the sequence), and this has been termed the ‘local model’. An 

alternative ‘global model’, first proposed by Lattman and Rose (1993), suggests that 

changes occurring over the entire sequence contribute to changes in the 3D structure of 

the protein. This was later supported by Wood & Pearson (1999) who concluded that, on 

average, sequence change correlates with structural change in protein families.

Extensive evidence supports the local model postulating a logarithmic relationship 

between sequence similarity and structural similarity (Flores et al. 1993). Several studies 

by Ptitsyn and co-workers (1998;Ptitsyn, Ting 1999) identified highly conserved residues 

that were observed to be important in protein folding. Specifically in the cytochrome
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subfamilies (Ptitsyn 1998) four completely conserved residues were shown to be 

important in forming a network of conserved contacts connecting the N and C terminal 

helices. The importance of these contacts in folding had been confirmed by their 

presence in molten globule-like folding intermediates. Furthermore these residues had no 

apparent fimctional importance, therefore suggesting their role to be purely in protein 

folding. Subsequent studies on the globin family (Ptitsyn, Ting 1999) found a similar 

cluster of non-functional conserved residues. These were shown to exist in the interface 

between helices which are known to fold in the early stages of the formation of the native 

state and remain relatively stable in the equilibrium molten globule state.

Structural changes occurring between relatives in a protein family can be analysed in a 

number of ways, for example, structural diversity can be viewed in terms of the number, 

length and structural location of residue insertions and deletions (indels) across a 

homologous superfamily. Pascarella & Argos (1992) analysed the occurrence of indels 

across 32 structural families and revealed that indels are usually one to five residues in 

length, with very few occurrences of indels greater than 10 residues (1-2%). This was 

subsequently supported by an analysis by Flores and co-workers (1993) on homologues 

protein pairs with between 0  and 1 0 0 % sequence identity, who found that indels tend to 

be no more than 6  residues in length.

As well as residue indels, structural diversity can also be measured by secondary 

structure composition. Flores et al also studied the conservation of secondary structures 

and showed on a dataset comprising 90 homologous proteins with a range of sequence 

identities, that the proportion of residues in the same secondary environment decreased 

linearly with sequence identity. Similar studies by Russell & Barton (1994) showed that 

in remote homologues, secondary structure similarity can fall as low as 41% which is 

equivalent to what you might expect to find through chance. Mizuguchi and Blundell 

(2 0 0 0 ) constructed a secondary structure substitution table where secondary structure 

elements (SSEs) were classified according to their length and solvent exposure. Ajialysis 

of substitutions from SSEs to coil, or complete deletions of SSEs showed that length was 

the biggest factor for SSE deletion, i.e. short secondary structures were more likely to be
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inserted or deleted during evolution. Also short and medium buried strands were much 

less likely to be substituted by coiled regions than strands on the surface of proteins.

These studies highlighted the fact that although some folds remain highly conserved 

during evolution others are tolerant to structural variation and secondary structure 

embellishments. Understanding the tolerance to and impact of evolutionary changes in 

particular superfamilies is important in informing the classification of new domains as 

well as aiding comparative modelling and prediction of functional modifications.

The degree of variability in sequence, structure and function between homologues can be 

highlighted by looking at specific examples of homologous superfamilies in the CATH 

database (Orengo et al. 2001). It is clear that different superfamilies show different 

relationships in the conservation of each of the specific features. In some cases the 

functional properties of relatives impacts on the tolerance to structural change. For 

example in the globin superfamily the requirement for haem binding results in high 

structural conservation even at low sequence identity. Conversely in the mainly-p 

immunoglobulin superfamily, function is determined by the loop regions and this may 

account for the structural variability observed (Lesk, Chothia 1982;Lesk, Chothia 1980). 

However, in the functionally diverse glycosidase family structure is highly conserved 

down to low sequence identity even for functionally unconserved proteins (Orengo et al. 

2001).

This chapter explores how different homologous superfamilies of proteins evolve in 

sequence, structure and function and characterises the mechanisms by which this occurs. 

Differing evolutionary constraints give varying tolerance to change in sequence, structure 

and function in protein superfamilies and this chapter presents several ways to measure 

this variability and tries to draw some conclusions about protein evolution from these 

observations.

Various methods for measuring and analysing the different types of variability 

(sequence/structure/function) observed in homologous superfamilies are presented. This
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involved the development of a new algorithm EquivSEC that measures the variability in 

secondary structure packing across a family of proteins. New information on the 

variability observed is presented in an established web resource the Dictionary of 

Homologous Superfamilies, which has been expanded and improved in a number of 

ways. Specific examples of superfamilies that illustrate how changes in structure can 

manifest changes in fimction are also presented.

Knowledge of variability across homologous superfamilies is important for classifying 

new relatives and the information captured in the DHS and presented here is later 

exploited in novel machine learning methods for homologue recognition presented in 

chapter 5.
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2.2 Methods

Protein family resources such as the CATH database can be used to assign structural and 

functional properties to uncharacterised sequences through homology. To improve the 

performance of these resources, more sensitive methods are needed for recognising very 

remote homologues. In this chapter methods will be presented to capture information on 

similarity between relatives in a homologous superfamily to aid the recognition of remote 

homologues.

The information captured is presented as a significant update to the Dictionary of 

Homologous Superfamilies (DHS) web-resource (Bray et al. 2000) 

(www.biochem.ulc.ac.uk/bsm/dhsT The DHS provides both structural and functional 

annotations of domains within each H-level (superfamily) in CATH v2.5.1, extending 

from 362 families in the original release to 1459 families in CATH v2.5.1.

The methods section first describes how information on the sequence, structure and 

functional relationships is compiled for all relatives in each CATH superfamily. 

Subsequently, a similar dataset of highly populated superfamilies is described which was 

used to explore structural variability in CATH superfamilies in more detail.

2.2.1 Data Sets for Measuring Sequence, Structural and Functional 
Variability in CATH Superfamilies

The domain structure dataset used for analysing structural variability was based on 

version 2.5.1 of the CATH database. The dataset contained only well-resolved structures 

determined by X-ray crystallography (<= 3.0 A). To compile information on the level of 

sequence similarity and structural between all homologous relatives, 1459 CATH 

families from version 2.5.1 were used. To examine trends in structural variation on the 

basis of variability in secondary structure composition and orientation only well 

populated superfamilies were used to ensure any trends identified were based on
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superfamilies that had been well sampled. Well populated superfamilies contained at 

least three non-redundant representatives (at 35% sequence identity (S35 Reps)). This 

gave a total of 294 well-populated superfamilies. To explore in more detail the 

mechanism by which structural change can modulate the functions of relatives within a 

superfamily, a set of 74 very highly populated (>9 S35Reps) superfamilies was selected. 

See Table 1 for a summary of all the datasets.
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Dataset Used For Number of Superfamilies

All CATH Superfamilies

Compiling pairwise 

similarity on sequence 

similarity, structural 

similarity for the DHS 

Extracting functional 

information for the DHS 

Identifying sequence 

relatives in UNIPROT for 

the DHS

Correlating sequence 

similarity, structural 

similarity and functional 

similarity.

1459

Well Populated Superfamilies 

(^S35R eps)

Identifying N-fold variation 

in domain size 

Analysing variation in 

secondary structure 

composition 

Analysing variation in 

secondary structure 

orientation

294

Highly Populated Superfamilies 

(^S35R eps)

Identifying trends in the 

manner by which structural 

changes modify functions

74

Table 2.1. Table summarising the 3 datasets used for measuring sequence, structural and functional 

similarity in this chapter.
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2.2.2 Methods for Measuring Structural Similarity between Relatives

For each superfamily, pairwise structural similarity scores between all non-identical 

relatives were measured. These were calculated by performing structural alignments 

using SSAP (see Section 1.3.2.3 in the Introduction). This uses vector views from all Cp 

atoms to determine equivalent residues in the two structures and to populate a score 

matrix from which an optimal alignment can be found using double dynamic 

programming. The average and associated standard deviation of SSAP scores were also 

calculated for each superfamily.

Multiple structural alignments of all S35Reps from a superfamily were also performed 

using the residue-based CORA algorithm (Orengo 1999). CORA first uses the SSAP 

global structural alignment algorithm (Taylor, Orengo 1989) to perform pairwise 

structural comparisons between all the structures being compared. CORA then creates a 

multiple structural alignment by successively aligning proteins to an evolving consensus 

3D template, which encodes the average structural properties of the aligned domains. 

Proteins are aligned in order of decreasing structural similarity (as measured by the 

pairwise SSAP score). After each protein is aligned the consensus template is 

recalculated to take account of any additional structural features of the newly aligned 

proteins and to recalculate conservation and variability at different positions in the 

alignment.

Multiple alignments are presented in the DHS both as CORAPLOTS (Bray et al. 2000) 

(see Figure 2.2) and in the form of a 2DSEC (Reeves et al. 2006) diagram (see Figure 

2.3) alongside co-ordinate data of the superposed structures in PDB format. Sequence 

representations of the alignments are available to download in FASTA format. In the 

CORAPLOT images of the multiple alignments, residues in each domain are coloured 

according to residue type and ligand binding where possible.
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Figure 2.2. Screenshot from DHS w ebsite show ing a CORAPLOT m ultiple alignm ent o f the 

S35Reps of the D NA helicase RuvA, C-terminal domain superfamily (1.10.8.10). A lso show n  

are the pairwise structural comparison SSAP outputs.

2DSEC uses a multiple structural alignment to create a summary of the secondary 

structures present in each structure. Equivalent (consensus) secondary structures are 

identified together with those secondary structures present in only one or a few relatives 

in the alignment. These are described as secondary structure embellishments to the 

structural core (consensus) for the superfamily. 2DSEC can be used to identify those 

superfamilies with large secondary structure embellishments. In order to capture this 

information a simple measure of structural variability is used that calculates the 

difference in the number of secondary structures in the smallest and largest relatives 

normalised by the number of secondary structures in the larger protein (Equation 2.1).
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% Variability = SSEmax-  SSEmin 

SSEmax

xlOO

Equation 2.1 The 2DSEC percentage variability score. SSE standing for Secondary Structure 

Elements.

Ldih02

LdpgA2

LqkiA2

lh6dA2

- c ^

o
O

Consensus

- O - A

Figure 2.3. A 2DSEC plot of the ATF-grasp large domain. Pink circles represent consensus 

helices (S?5% of the aligned domains) and purple circles represent em bellished helices. 

Yellow triangles represent consensus strands and brown triangles represent strand 

em bellishm ents. The size of the symbol is in proportion to the length (number of residues) in 

the secondary structure.

In some highly structurally variable superfamilies, automatic multiple structural 

alignments of all relatives across the whole superfamily can be problematic, resulting in 

misalignments of some equivalent secondary structures. Therefore the DHS also 

provides alignments for structurally similar subgroups (SSGs) within a superfamily. To
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identify these subgroups all S35Reps are structurally compared pairwise using SSAP and 

then clustered into structurally coherent subgroups using multi-linkage clustering with a 

threshold on the SSAP similarity score of 80 (out of 100) and an overlap of 60% of the 

residues. These thresholds have been selected as previous empirical studies showed that 

they corresponded to a high degree of structural similarity between relatives, ensuring 

that reliable multiple structural alignments could be constructed (Orengo 1999). 

Domains in each SSG cluster are then multiply aligned using CORA.

2.2.3 Methods for Measuring Sequence Similarity between Relatives

2,2,3,1 Pairwise Relationships between Domains

Sequence identities between all non-identical members in a superfamily were calculated 

using SSAP. Since SSAP exploits structural data it produces more reliable structural 

alignments from which the sequence identity can be calculated.

This information was supplemented by data from sequence profile analysis. Hidden 

Markov Models (HMMs) were built from each S35Rep in CATH using SAM-T2K 

(Karplus et al. 1998) (4023 for CATH v2.51) on the GenBank nr database (Benson et al. 

2006). All non-identical sequences in the CATH database were then scanned against 

these models and the E-values measured. This gives a measure of the pairwise 

probabilities of a significant relationship between a pair of protein domains.

2.2.4 Predicting CATH relatives in UniProt

In order to detect sequence relatives for CATH structural superfamilies sequences from 

UniProt (Wu et al. 2006) were scanned against the CATH HMM library described in 

section 2.2.3.1 and homologous sequences were identified as those hitting CATH HMM 

models with an E-value < 0.001 and a 60% residue overlap. The residue overlap is the 

percentage ratio of the number of residues aligned divided by the length of the CATH
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HMM. These thresholds were taken from previous studies on strategies to identify 

superfamily relatives in the genomes (Sillitoe et al. 2005).

The harvested sequences were then compared with all their domain relatives by BLAST 

(Altschul et al. 1997), to determine the pairwise sequence identity between relatives 

within each CATH superfamily. Directed multi-linkage clustering was then used to 

group sequences into appropriate sequence bins i.e. 30, 40, 50, 60, 70, 80, 90, 95 and 

100%.

2.2.5 Extracting Functional Information from Public Resources for 
Sequences in the CATH-DHS.

To increase the functional information associated with each superfamily CATH domains 

and their associated sequence relatives were annotated with information from a variety of 

functional databases (ENZYME (Bairoch 2000), GO (Gene Ontology Consortium, 

(Ashbumer et al. 2000), KEGG (Kanehisa, Goto 2000), COG (Tatusov et al. 2003), 

SWISSPROT (Boeckmann et al. 2003)) (see Figure 2.4). This is achieved by 

BLASTING sequences from the CATH-DHS against these resources. Only 95% 

sequence identity hits, with an 80% residue overlap, were taken as genuine matches 

inline with the PFscape protocol (Lee et al. 2005).
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Figure 2.4. Screenshot of the DHS website show ing the functional annotations available. 

Functional annotations assigned to CATH domains and harvested sequence relatives include  

GO (gene ontology) annotations, SWISSPROT, EC (enzyme classification), KEGG (Kyoto 

Encylopedia of G enes and Genomes) and COG (cluster of orthologous groups o f proteins).

2.2.6 Measuring the Variability in Secondary Structure Orientations 
-  The EquivSEC Program

EquivSEC is a new algorithm written to provide a measure of structural variability in a 

homologous superfamily. The algorithm is used to observe the variability in angles of 

secondary structure packing within a superfamily.

For a given superfamily, domains were structurally aligned using the CORA algorithm 

(Orengo, 99) and the 2DSEC algorithm (Reeves et al. 2006) used to determine 

equivalent, consensus secondary structures shared by at least 7 5 % of the domains
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aligned. This information is then input into the EquivSEC program. The algorithm 

determines the structural variability across a homologous superfamily by calculating the 

variability of angles and distances between the equivalent, consensus secondary structure 

pairs.

Axial vectors through the secondary structures are derived using the Richards and 

Kundrot algorithm (1988) implemented by the ProSEC suite of programs (Slidel 1996). 

Various geometric relationships between pairs of vectors including the dot-product angle 

and dihedral angle, the distance and chirality are calculated. EquivSEC assigns 

equivalent secondary structure vector pairs across a superfamily of structures in CATH 

and calculates the variability in angles and distances between them. For each vector pair 

the mean, minimum, maximum and standard deviation of both angles and distances are 

recorded.

EquivSEC looks at the variability in secondary structure packing, across a homologous 

superfamily, from a number of different perspectives. Firstly deviations in packing of 

secondary structures for all possible pairs of equivalent secondary structures are 

examined, termed ‘global packing’. Subsequently only those secondary structures that 

are defined as being in contact (closest approach vector distance <= 1 2 Â) are considered, 

termed ‘local packing’.
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2.3 Results

2,3.1 The Extent of Structural Change in Domain Superfamilies and 
the Correlation between Sequence, Structural and Functional 
Similarity

The information held in the DHS allows various analyses of the correlations between 

sequence, structural and functional similarity for homologous proteins. The Appendix 

presents a summary table of information for each CATH superfamily which has more 

than one diverse sequence family (S35 family). This information is also available on-line 

in a searchable format (http://www.cathdb.info/cgi-bin/cath/DhsSummaryTable.pl). For 

each superfamily, information on structural variability in the form of the minimum 

observed SSAP score, the 2DSEC percentage variation score, the EquivSEC average 

deviation in contacting secondary structures and the number of distinct structural sub

groups is presented. This is supplemented with data on the number of distinct sequence 

groups in the superfamily as well as the prevalence of the superfamily in the genomes. 

Finally the number of distinct COG annotations associated with the domains of the 

superfamily is also listed.

The DHS provides a rich source of information on structural variability for CATH 

superfamilies and is publicly available through the web for biologists wishing to study 

particular superfamilies. Aspects of this data were analysed to study the correlation 

between sequence, structure and function variability and are presented below.

Figure 2.5 plots the sequence identity versus the structural similarity (defined by SSAP) 

for all non-identical relatives in each CATH superfamily. There is a gradual, linear 

decrease in structural similarity with decreasing sequence identity down to -30% which 

agrees with previous observations of Pearson & Wood (1999). Below 30% significant 

structural changes are observed in all superfamilies as observed by Chothia & Lesk 

(1986).
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Figure 2.5. Scatter plot showing the relationship between sequence, structure and function of 

all hom ologues in enzym e superfamilies. Relatives having the same EC classification number 

are shown in blue. Those with different EC numbers are shown in pink.

At low sequence identity a significant number of homologues are expected to be 

paralogues that is relatives that have arisen through a gene duplication event within a 

genome and which are therefore able to acquire new functions. This is supported by the 

fact that very remote homologues (<2 0 % identity) are more likely to have diverse 

structures and differing functions as shown in Figure 2.5. This is further supported by 

Figure 2.6 which shows some correlation between structural diversity as measured by the 

number of structural subgroups and the number of functions exhibited by sequence 

relatives as annotated by the COG database.
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Figure 2.6. The relationship between the number o f functional groups, defined by COG  

annotation and the number of structural subgroups in a superfamily. The colouring  

represents the coverage of annotation across the particular superfamily i.e. 0-25 represents 

between 0% and 25% members have a COG annotation.

In order to investigate further the correlation between structural and functional similarity, 

the proportion of relatives sharing similar functions was analysed at different structural 

similarity scores. Figure 2.7 plots the correlation between structural similarity and EC 

conservation for all non-identical homologous pairs. When the SSAP score is above 90 

greater then 95% of relatives have similar functions (sharing 3 or more EC numbers). 

However, when the structural similarity drops below a SSAP score of 70 the function is 

conserved in only -40% of relatives. This highlights the fact that remote homologues 

which have diverged in structure may also have diverged in function.
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Figure 2.7. Structural similarity measured by SSAP versus EC conservation for all hom ologous 

pairs in CATH with EC classifications. EC4 indicates that all 4 levels in the EC classification  

are the same, EC3 indicates the first 3 levels are the same, less than 3 EC indicates that one or 

two EC levels are the same.

Different homologous superfamilies appear to have different tolerances to structural 

change (see Appendix). Some well populated families exhibit a high degree of tolerance 

to structural change with remote relatives showing considerable structural variation. 

Whereas, relatives in other families remain highly conserved structurally even as their 

sequence similarity falls.

Figure 2.8 shows the variation in the domain size (in terms of the number of secondary 

structure elements) of relatives in each of the 294 well populated homologous 

superfamilies (3 or more S35Reps) (see Table 2.1). Approximately 60% of superfamilies 

show N-fold variation in domain size less then 1.6 and this includes some superfamilies 

that are very sequence diverse (15 or more diverse relatives). However, in 67 

superfamilies a 2  fold or more variation in size of relatives is observed and relatives in
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two highly structurally diverse superfamilies vary up to 9-fold. Those families that 

exhibit the greatest N-fold variation in domain size also appear to be most sequence 

diverse, with >50% of superfamilies that have an N-fold variation greater than 2 having 9 

or more sequence diverse relatives.

0 3  to 5 0 6  to 8  0 9  to 11 0 12  to 14 015+

80

70
$
I  60 

I 50 

I 40

1  30 
0)
I  20
3

10 -H

0

N-fold Variation in Domain Size

Figure 2.8. Percentage variability in domain size of relatives in  relatives of the same 

superfamily. Colours indicate the number of diverse relatives (blue 3-5, red 6-8, yellow  9-11, 

turquoise 12-14 and purple 15+).

In superfamilies that are not well populated at present, the apparent existence of structural 

conservation (i.e. high structural similarity between relatives) may be a consequence of 

the fact that sufficient relatives have not yet been structurally determined for any 

significant variations in structure to be detected. Therefore to identify significant trends, 

the 74 most highly populated superfamilies having nine or more diverse relatives (i.e. 

sharing ^5%  sequence identity) were considered.
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There are only 25 large superfamilies (>9  sequence diverse representatives, S35Reps), 

which are structurally well conserved, with a high mean SSAP score (>85) and low 

standard deviation (<4). One example of this is the Globin family (1.10.490.10) that 

exhibits an average SSAP score of greater than 85 between its 16 diverse sequence 

relatives. These domains all have an obligate requirement to bind haem and this poses 

physical constraints on the domain preventing structural drift even at low sequence 

identity. By contrast 43 large superfamilies (>9 S35Reps) are very structurally variable 

containing 10 or more structural sub groups (SSGs).

2.3.2 Mechanisms of Structural Change

2.3.2.1 Variations in Secondary Structure Composition

The 2DSEC algorithm was used to investigate changes in secondary structure 

composition in the 294 superfamilies studied. 2DSEC can identify those superfamilies 

with a large amount of secondary structure embellishments and also those superfamilies 

whose secondary structure composition is highly conserved. In order to capture this 

information 2DSEC returns a percentage variability score that reflects the difference in 

the number of secondary structures in the smallest and largest relatives in the superfamily 

(see Equation 2.1 in Section 2.2.2).

Previous analysis of CATH enzyme superfamilies has suggested secondary structural 

embellishments may have an impact on function by modifying the geometry of the active 

site or by disrupting the surface topology impacting on substrate specificity and protein- 

protein interactions (Todd et al. 1999). With this in mind the dataset of 74 highly 

populated superfamilies ( >9 sequence diverse relatives) were analysed and investigated 

to determine what impact structural embellishments have on the function.

Some families are very structurally conserved in terms of secondary structure 

embellishments. Many of these families appear to have roles in cell signalling (e.g.
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kinases, PH and PTB domains) where they would be expected to take part in highly 

specific protein-protein interactions, this may restrict these domains tolerance to 

embellishments. Families such as the 2Fe-2S ferreodoxin related family are on average 

only composed of 6  secondary structures and embellishments may not be tolerated 

because they would impact on the multiple complexes formed to mediate electron 

transport and other redox catalysis reactions.

In the cytochrome P450 family the need to conserve co-factor binding geometry may 

limit structural variation. The orthogonal bundle of four ^-sheets and up to 13 a-helices 

is highly conserved even in very sequence diverse relatives. This domain is responsible 

for the binding of the haem co-factor and the conserved beta-sheets form a highly 

conserved hydrophobic channel for the binding of substrates for redox catalysis. It is 

feasible that both the binding of the co-factor and the formation of the specific channel 

reduce the possibility of structural embellishments as they would disrupt either one of 

these fimctions.

Analysis showed that for greater than 50% of the highly populated CATH superfamilies 

(>9 S35Reps), considerable structural change can occur, with some relatives varying in 

the number of secondary structures twofold or more (see Figure 2.8). By analysing the 

structural variability score for superfamilies in different architectures (see Appendix) it 

can be seen that four architectures more fi*equently comprise families with structurally 

embellished relatives, a-orthogonal (1 .1 0 ), the two-layer p-sandwich (2.60), two layer 

(ap) sandwiches (3.30) and the three-layer (aP) sandwiches (3.40) (Figure 2.10). These 

architectures are very highly populated in CATH and the Protein Data Band (PDB), 

comprising nearly 60% of all structural families. Structural annotation of completed 

genomes suggest that the high populations of these architectures in the PDB is not simply 

due to over-sampling but genuinely reflects high occurrence in the genomes (Orengo, 

Thornton 2005). These architectures also contain some of the most structurally variable 

superfamilies in terms of number of structural sub-groups (SSGs). For example the a- 

orthogonal EF-hand superfamily has 39 SSGs, the two-layer P-sandwich 

Immunoglobulins has 56 SSGs, the two layer (aP) sandwich ATP-grasp fold B domain
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superfamily has 16 SSGs and the three-layer (aP) sandwich NAD(P) binding Rossmann 

like domain has 50 SSGs.

Figure 2.9 shows that the majority of insertions (>85%) comprise only one or two 

secondary structures at most.

801

60

y 40 Indel frequency < 1 %

s- 20
0.85% 0.38% 0.23% 0.11% 0.06% 0 .02%

U.

6 8 9 10 11 121 2 3 4 5 7
Size of Indel (number of secondary

Figure 2.9. Percentage frequency of insertions comprising one or more secondary structures.

P-Strand embellishments in these structures frequently occur as additions or extensions to 

existing P-sheets or form external p-hairpins. Helices are usually inserted as single 

elements on the periphery of domains. Detailed observations on selected superfamilies 

by Gabrielle Reeves, with whom I collaborated on this work, showed that although 

secondary structure insertions often occur in different places along the peptide chain, they 

tend to be co-located three dimensionally (Reeves et al. 2006).
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Figure 2.10. MOLSCRIFT representations of sm allest and largest (in terms of secondary 

structures) for selected superfamilies from the most frequently em bellished architectures, the 

orthogonal (1.10) architecture, the two-layer 6  sandwiches (2.60), the two-layer al5 sandwiches 

(3.30) and the three-layer afi sandwiches (3.40).
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An example of a particularly variable superfamily is the galectin binding superfamily. 

Domains in this superfamily have a conserved pair of antiparallel p-sheets each with five 

P-strands. The binding of a variety of carbohydrates is mediated by the loops on both 

ends of the p-sheets (Leonidas et al. 1998). Figure 2.11 highlights how the extensive 

embellishments on the edge of both sheets aggregate in three dimensions to modulate the 

environment of the carbohydrate binding site. Galectin-7 is the smallest member of the 

superfamily just containing the conserved pair of antiparallel p-sheets. By contrast the 

Tetanus toxin shows insertions of P-strands to both sheets, modulating the active site. K- 

carrageenanas has a tunnel shaped active site created by extensive structural 

embellishments and this allows it to bind large polysaccharides for degradation (Michel 

et al. 2 0 0 1 ).

Galectin-7
(IbkzAO)Binding S

Binding Site

K-carrageenans 
(IdypAO)

Tetanus toxin 
(laSdOl)

Binding Site

Figure 2.11. Three domains from the galectin-type carbohydrate recognition domain  

superfamily. Secondary structures that are conserved in 75% of members in the superfam ily  

are coloured red, regions of the structure that are coloured blue are secondary structure 

em bellishm ents or coil.
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One of the most structurally embellished superfamilies is the Large Domain of the ATP 

dependent amine/thiol ligase superfamily also known as the ATP-Grasp superfamily. 

Nearly all relatives in the superfamily share three common domains (see Figure 2.12). 

ATP is bound in the cleft between two of the domains, which are referred to as the small 

and the large ATP binding domains. Members of this protein superfamily typically 

catalyse ATP-dependent ligation of a carboxylate substrate to an amine or thiol group of 

a second substrate (Todd et al. 1999). The size of the P-sheet in the Large domain varies 

between 5 and 11 strands and the total number of secondary structures can vary 2.5 fold. 

The less embellished members of the superfamily (such as D-alanine-D-alanine ligase 

and glutathione synthase) form an L-shaped configuration and have a very accessible 

active site. This allows them to bind large substrates such as peptidoglycans in D- 

alanine-D-alanine ligase and glutathione in gluthatione synthase. In the relatives that 

exhibit a high degree of embellishment to the large domain, the active site becomes 

condensed into a so called box-like active site. This leads to the substrates being of 

smaller size. Furthermore in biotin carboxylase the C-terminal embellishment of the 

large domain facilitates the formation of homo-dimers which are not observed in the non

embellished relatives.
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Biotin carboxylase

D-alanine-d-alanine ligase

Dimer o f biotin carboxylase

Figure 2.12. Three domains of the ATP-Grasp Superfamily. In red the large domain, in blue the 

small domain and in light blue the B domain. Residues shown in the yellow are involved in ATP 

binding and residues in green are involved in substrate binding.

23.2,2 Variation in Secondary Structure Orientations

EquivSEC (see Section 2.2.6) was used to analyse the degree of variation in secondary 

structure packing between homologues in 294 well populated superfamilies CATH 

superfamilies. The dataset described in Section 2.2.1 (also see Table 2.1) was used and 

further pruned to include only those domains which have at least 3 equivalent secondary 

structures to other S3 5 domains in the superfamily. The aim of the analysis was to try 

and identify those families that were particularly tolerant to changes in secondary 

structure packing and those where the orientations were highly conserved and also to 

identify global trends in secondary structure packing.
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Distributions o f  Angles

For each superfamily the average variation in secondary structure orientation was 

calculated for both the global and local models, local refers to contacting secondary 

structures (<1 2Â between secondary structure vectors), global refers to all secondary 

structure pairs regardless of proximity. Global and local analysis was performed firstly 

considering only consensus secondary structures (i.e. secondary structure elements 

present in >75% of relatives) and secondly considering all secondary structures including 

those embellishments present in only a few relatives.

Table 2.2 shows that for the local analysis, when you consider contacting consensus 

secondary structures that are present in 75% of relatives in a superfamily, the majority of 

the pairwise angles show little tolerance to variability. Approximately 50% of angles 

between equivalent, contacting secondary structures vary less than 8 ° and -80% vary less 

than 15°. A minority of pairs, ~5%, show variations in angle of greater than 25°. When 

you include those structural embellishments that are not common to a majority of 

relatives the variation in angles between contacting secondary structure pairs increases, 

with -60% of angles varying between 8 and 25°.

% Superfamiles
Variation in 
Packing (degrees)

Local / 
Consensus

Local / All Global / 
Consensus

Global / All

>25 5.08 5.19 9.67 5.86
16-25 15.63 19.26 19.70 30.77
8-15 33.20 37.41 40.89 38.46
<8 46.09 38.15 29.74 24.91

Table 2.2. Table showing the % of superfamilies which have an average variation in secondary 

structure orientation , greater than 25°, between 16 and 25°, 8 and 15° and less than 8°. Local refers 

to contacting secondary structures (<12Â between secondary structure vectors). Global refers to all 

secondary structure pairs regardless of proximity. Conserved refers to secondary structure pairs 

present in at least 75% relatives. All refers to all secondary structure pairs regardless of how many 

relatives possess them.
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These observations suggest that on average consensus secondary pairs are more 

conserved in their secondary structure orientations than those secondary structure pairs 

that are only present in a minority of relatives in a superfamily. It is likely that consensus 

secondary structure elements are more buried and in the core and therefore less likely to 

change in orientation because they need to maintain the robust structural framework 

which can support changes in the peripheral elements. Varying orientations in peripheral 

secondary structures may be more tolerated because they bring about structural changes 

on the surface of the protein (e.g. in the region of the active site / protein-protein 

interfaces) which promote changes in substrate specificity i.e. modifying the functions of 

a paralogous domain in a manner that is beneficial to the organism.

There is also clearly a difference in observed tolerance to change in secondary structure 

orientations when you compare global with local pairs. Secondary structure pairs in close 

proximity appear on average more conserved in orientation than those pairs that are 

distant in the proteins structure. When you consider global consensus pairs the variability 

in orientation increases with 30% of pairs showing variability greater than 16° compared 

to 20% for contacting consensus pairs. In many of the structures analysed a large 

proportion of contacting pairs are adjacent beta strands hydrogen bonded to each other 

within a beta sheet and therefore these bonds would act as constraints on significant shifts 

in orientation. In other cases salt bridges also act to mediate contacts between secondary 

structures, again constraining secondary structure shifts.

Lesk & Chothia (1980; 1982) reported shifts of up to 30° in secondary structure 

orientations in two large superfamilies, the mainly alpha globlins and the mainly beta 

immunoglobulins. Here on a much larger dataset of 294 well populated superfamilies it 

is shown that the majority (85%) of consensus, secondary structure pairs exhibit variation 

in orientation below 20° though rare shifts of up to 70° are observed (see Figure 2.13).
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Figure 2.13. The observed frequency of changes in angle for each type of consensus, 

contacting secondary structure pairs. HH representing helix-helix pairs, SH representing  

strand-helix pairs and SS representing strand-strand pairs.

It can be seen that helix-helix pairs contribute most to the variability, followed by helix- 

strand pairs and finally strand-stand pairs exhibit the least variability. Beta strands are 

likely to be more constrained in their orientation due to the presence of hydrogen bonds 

between adjacent stands, whereas helix-helix, and helix-strand pairs have no such 

constraints and therefore have more freedom in their orientations.

2,3.2,2.1 Correlation between Global Structural Similarity and Conservation o f  

Secondary Structure Orientations

The relationship between a superfamily’s tolerance to changes in secondary structure 

orientation and the average pairwise SSAP score (a measure of global structural 

similarity) between domains in a super family was also investigated. Only the 74 highly
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populated (>9 S35Reps) superfamilies (see Table 2.1) were chosen for this analysis to 

overcome the possibility that structural conservation may be the consequence of 

insufficient sampling of protein structures in a particular family.

The average deviation in orientation between contacting, consensus secondary structure 

pairs was plotted against the average pairwise SSAP score (Figure 2.14). One can see 

that there is some correlation between global structural variability and the variability of 

angles between consensus contacting secondary structures, with the deviation in angles 

increasing as the global similarity falls.

2 5 5 0
I I  40

CO

100 20 30 40 50

Average Deviation in Angie Between Secondary Structures

Figure 2.14. Average SSAP score plotted against the average deviation in contacting, 

consensus secondary structure orientation for each superfamily w ith  ^  S35Reps.

Superfamilies that have high average SSAP scores also have highly conserved 

orientations of contacting secondary structures in the core. The Glutathione S-transferase 

superfamily (1.20.1050.10) has an average SSAP score of 84.7 and exhibits a deviation in 

conserved secondary structure packing of only 5.9°. The Transferase 

(phosophotransferase) domain 1 superfamily of kinases (1.10.510.10) are also highly 

conserved structurally with an average SSAP score of 82.0 and an average deviation in
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conserved secondary structure packing of 6.1°. Proteins in both of these superfamilies 

are small and have functions related to cell-signalling and form multiple and varied 

protein-protein interactions. Despite this conservation in structure and low variation in 

secondary structure packing, considerable divergence in sequence is observed between 

relatives in this family. This may cause changes in the surface features of the proteins 

promoting diverse partnerships without causing significant changes to the conserved 

structural cores of the relatives.

The NAD(P) Rossman like superfamily (3.40.50.720) has the lowest average SSAP score 

(55.6) and is highly structurally variable with 50 structural sub-groups. The consensus 

contacting secondary structures exhibit an average deviation of 43.3°. Domains in this 

family are also highly embellished with 9 secondary structures shared by all domains but 

some domains having up to twice this amount. These structural changes are accompanied 

by significant shifts in function with 89 different COG functional groups currently 

observed within this superfamily.

Interestingly 70% of the highly populated superfamilies that exhibit the highest degree of 

structural variability (in terms of both deviations in secondary structure packing and 

global similarity) adopt regular, layered architectures (the p sandwiches, the ap barrels, 

the two layer aP sandwiches and the three layer apa sandwiches). This suggests that 

such architectures may comprise a stable framework that perhaps accommodates 

significant sequence change by adjusting the orientation of the secondary structure layers. 

Furthermore, the robust structural fi-amework in the core of these proteins also appears to 

support the diverse secondary structure embellishments observed in some relatives 

(average 2DSEC Percentage Variability score ~ 67%). As a consequence relatives are 

highly varied in function.
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EquivSEC as a Diagnostic Tool

EquivSEC can produce plots showing the variability in angle between contacting 

secondary structures for a particular superfamily (see Figure 2.15). These are presented 

in the DHS resource for each superfamily as well as for structural subgroups and 

sequence sub-families (S3 5 & S95). These plots provide a useful tool for identifying 

contacting secondary structures that are constrained in their packing and those that are 

more flexible.

EquivSEC plots may also be useful for homology modelling as the information on the 

angles adopted by pairs of contacting secondary structures in a particular superfamily can 

be used to constrain the modelling of relatives. EquivSEC plots have also proved useful 

in the classification of new protein domain structures in CATH.
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Figure 2.15. An example of the EquivSEC output for a particular domain superfam ily  

(1.10.10.10, "winged helix" DNA binding domain). The mean angle betw een equivalent 

secondary structure pairs is plotted as well as the range of observed angles.
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2.4 Discussion

Analysis of structural variation in domain families can reveal constraints on protein 

evolution, which can aid structure prediction and classification. Despite the exponential 

increase in the PDB the data in this chapter reveals similar trends in the relationship 

between structural variability and sequence divergence as those detected 20 years ago 

with smaller datasets. It is apparent that some superfamilies remain structurally well 

conserved even when sequences diverge considerably, whilst others can exhibit extensive 

structural changes.

Analyses presented in this chapter explored the correlation between sequence, structural 

and fimctional variability. Results showed that greater than half of the highly populated 

superfamilies (comprising >9 sequence diverse sub-families) also show a high degree of 

structural variation and frequently diverge in function. Clustering structures in each 

superfamily into coherent structural sub groups (SSGs), within which relatives have high 

structural similarity, revealed a correlation between the number of SSGs and the number 

of functional clusters (COGs) identified. This may suggest that tolerance to structural 

change in certain superfamilies increases the opportunity for paralogous relatives to 

recruit new functions and by assigning relatives to particular structural sub-groups within 

a superfamily it may be possible to improve the reliability of function assignment.

Analysis of structural variability in terms of secondary structure embellishments revealed 

that only a handful of highly populated superfamilies ( ^  sequence diverse sub-families) 

are highly conserved and in these superfamilies there were often functional constraints. 

These included superfamilies involved in cell signalling where a large proportion of the 

exposed structure is likely to be involved in ligand binding and protein-protein 

interactions. In other highly conserved superfamilies (e.g. the globins) structural 

constraints are observed that are likely to promote the conservation of the geometry of 

co-factor binding sites.

88



The analysis of highly variable superfamilies allowed insights to be gleaned on the 

impact of structural embellishments on function. Large structural embellishments often 

arise through the accretion of several individual secondary structure insertions which are 

distributed throughout the polypeptide chain but aggregate in 3D. In some cases these 

embellishments are located around the active site and modulate the geometry and 

substrate accessibility e.g. in the galectin binding domains. In other relatives 

embellishments promote the formation of alternative oligomeric states (e.g. the ATP 

Grasp superfamily) or create additional interfaces for interactions with other proteins.

The greater tolerance of regular layered architectures such as the two-layer p sandwiches 

and the two and three layer ap sandwiches to both secondary structural embellishments 

and shifts in secondary structure orientations suggest that these layered arrangements 

may promote greater stability and tolerance to structural change. For example layers may 

be able to accommodate residue indels more easily as they can be extended easily, 

particularly P-sheets thereby accommodating the addition of secondary structures without 

significantly disrupting the packing of the layers.

Information on structural and function variability in all well populated CATH domain 

superfamilies is presented in the Dictionary of Homologous Superfamilies (DHS) and can 

be used in gauging whether structurally similar domains are likely to be homologous.

In summary sequence, structure and function can sometimes vary extensively between 

homologous domains in superfamilies and ways of measuring this variability in 

superfamilies will significantly aid the classification process. Furthermore the general 

correlations seen between sequence, structure and function variation suggest that methods 

for detecting remote homologues in these more variable superfamilies will need to 

include multiple measures of similarity between relatives i.e. based on sequence, 

structure and function similarity. Also these studies confirm that global thresholds are 

inappropriate at defining homologous relationships in terms of sequence, structure and 

functional similarity because superfamilies behave so differently. This is discussed in 

more detail in chapters 5 where machine learning approaches are applied to combine
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different types of information and improve the recognition of remote homologues and 

functionally related protein domains.
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3 Optimisation of the CATHEDRAL 

Algorithm to Classify Domains in 

CATH

3.1 Background and Aims

Protein structures are composed of individual folding units called domains and genome 

analysis suggests that up to 80% of proteins in eukaryotic organisms (60% in 

prokaryotes) are multi-domain (Apic et al. 2001). Each domain adopts a specific fold in 

3D space and it has been estimated that there are several thousand possible folds in nature 

(Chothia 1992;Orengo et al. 1994;Coulson, Moult 2002;Grant et al. 2004). The protein 

domain can be considered an evolutionary unit and as such, many groups have sought to 

construct classifications of domains at the structural level. The two most comprehensive 

of these are SCOP (Murzin et al. 1995) and CATH (Orengo et al. 1997).

In 2005, over 7000 new protein structures were deposited in the PDB and according to 

version 2.6 of the CATH database nearly 50% of these were multi-domain. The first step 

in the classification of a new protein structure is to identify its composite domains. 

Traditionally this has been a two stage process whereby the domain boundaries are 

resolved, followed by the recognition of the individual domain folds. Although many 

new structures comprise domains with high sequence similarity to previously classified 

structures, a significant proportion are the result of Structural Genomic Initiatives (SGIs), 

which specifically target novel genes and families. Despite this aim, automatic 

classification remains a reasonable goal as recent analysis (Todd et al. 2005) has shown 

that 90% of non-redundant SGI structures (i.e. <30% sequence identity to a previously 

classified structure) have an analogous or homologous structure in CATH. In this
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situation, structurai comparison algorithms are essential to facilitate the automatic 

classification of domains.

There are many methods in the community for comparing protein structures. These range 

from secondary structure based methods such as GRATH (Harrison et al. 2003) and SSM 

(Krissinel, Henrick 2004), through to residue distance and contact based methods such as 

DALI (Holm, Sander 1993), CE (Shindyalov, Bourne 1998), SSAP (Taylor, Orengo 

1989) and LSQMAN (Kleywegt 1996).

It is worthwhile to note that domain boundary recognition, in itself, is difficult, but 

discontigous domains make it even more complicated. Domains are not always arranged 

linearly along the polypeptide chain and can be formed from disconnected regions of the 

sequence. Jones and co workers (Jones et al. 1998) observed that approximately 20% of 

domains fi"om multi-domain proteins in the PDB are discontiguous.

Several methods have been developed to automatically detect domain boundaries in 

protein structures through ab initio knowledge of domain structure and interactions. 

Approaches such as DOMAK (Siddiqui, Barton 1995) rely on the hypothesis that a 

domain makes more internal contacts (intra-domain) than external contacts (residue 

contacts to the remainder of the structure). PUU (Holm, Sander 1994) uses a harmonic 

model to describe inter-domain dynamics, and is used to define domain units in the FSSP 

database (Holm, Sander 1998). By contrast, the DETECTIVE method (Swindells 1995) 

attempts to determine the hydrophobic core at the heart of each compact domain 

structure. These three methods were integrated to provide a consensus approach to 

domain boundary assignment in the original CATH classification protocol by combining 

the results from these independent methods (Jones et al. 1998).

Most automatic domain boundary recognition methods described above, all report 

between 70%-80% accuracy in domain boundary assignment based on their own 

benchmarking tests. However in practice it has been observed that the methods often 

contradict each other in their results (Frances Pearl, personal communication).
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Furthermore Holland and co workers (Holland et al. 2006) report that all the approaches 

struggle to correctly assign boundaries for domain architectures that do not form compact 

structures, for example the alpha horseshoe domains.

Although these algorithms effectively delineate domains for a large percentage of protein 

chains in the PDB (even those which contain novel folds), they provide no indication as 

to whether each individual domain is structurally similar to folds already classified within 

the CATH database. Therefore, it is still necessary to compare the excised domain against 

a library of CATH domains in order to classify the fold. Since structure-based database 

scans and manual validation of domain boundaries are both slow, this has remained one 

of the major bottlenecks in the CATH classification process.

As discussed above it is likely that there are only a limited number of protein folds, and a 

newly determined multi-domain structure could well contain folds which have already 

been classified in CATH. Exploiting the concept of domain recurrence to detect known 

folds in multi-domain structures is a sensible strategy that should allow the classification 

procedure to be much more efficient by enabling both the identification of domain 

boundaries and the subsequent assignment of the delineated domain into the correct fold 

group. The concept of recurrence is not new and has been successfully exploited by other 

structural classifications. For example, the DALI algorithm is employed to detect 

recurrent folds for classification in the DALI Domain Database (Holm, Sander 1998), 

whilst the SCOP database employs manual inspection to locate known recurring folds.

There are several powerful algorithms for structure comparison that could be used to 

compare a given protein chain against a library of known domain units. Most rely on a 

two stage process of initially measuring the similarity of residues and/or secondary 

structures, followed by a subsequent alignment stage that maximises the score of aligned 

positions and optimises the superposition. The similarity of residues and/or secondary 

structures is generally measured by comparing the geometric properties of Ca atoms, Cp 

atoms or secondary structures such as distances and vector properties (angles or chirality 

for example).

93



The different protein comparison methods produce an array of different scoring functions 

to help asses the similarity of the two proteins aligned; these may take the form of 

statistical and geometric measures.

Most structure comparison methods produce a raw score which can be modelled 

statistically against a benchmarked dataset or a random sample to produce a measure of 

significance e.g. Z-Scores (DALI) or p-values (STRUCTAL). The most common

geometrical, quantative measure of similarity used is the Root Mean Square Deviation 

(RMSD). This is simply the square root of the average squared distance between 

equivalent atoms in the alignment (see Section 1.3.2.1 in the Introduction). The RMSD is 

a useful gauge of structural similarity but it is directly linked to the number of equivalent 

positions. Many methods ‘prune’ their alignments to reduce the number of equivalent 

residues to those that are the most geometrically similar, artificially reducing the overall 

RMSD, where as other methods attempt to ensure the best global alignment by including 

all equivalent residues leading to an artificially increased RMSD. Despite its limitation 

RMSD is the most widely used geometrical measure.

Most amino acid mutations occur in the loop regions of proteins so a fast and effective 

way of comparing protein structures is to only consider similarities between the 

secondary structures. Secondary structure matching methods are extremely fast at 

searching databases of folds and often used to identify likely fold matches that can be 

more accurately aligned using residue based methods.

A common way of representing the secondary structures of a protein is to use Graph 

theory (Harrison et al. 2002;Grindley et al. 1993). A graph is a two dimensional set of 

objects, termed nodes, connected by edges that describe the relationship between them. 

The use of graph theory to represent protein structures was first developed by Grindley 

and co-workers (1993). For a detailed description of two established secondary structure 

based algorithms GRATH and SSM see Section (1.3.2.2) in the Introduction.
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Further granularity can be achieved by methods that align individual residues. The 

common goal of these residue based alignment methods is to identify a set of residue 

pairs from each protein that are structurally similar. There are two general strategies for 

finding such alignments: (1) search for transformations that optimally position the two 

structures with respect to one another, and then use the transformation to find the best 

alignment, and (2) directly search for a good alignment using optimisation strategies such 

as dynamic programming or simulated annealing. STRUCTAL and LSQMAN belong to 

the first group whereas SSAP, DALI and CE belong to the second. For a detailed 

description of these residue based alignment methods see Section (1.3.2.3) in the 

Introduction.

The performance of an automatic structural alignment method should be assessed both on 

its ability to generate biologically-meaningful alignments and its capacity to accurately 

detect similar folds and homologous protein structures. As Kolodny and co-workers 

highlight (Kolodny et al. 2005), not all structural comparison methods are as good at 

scoring their alignments as they are at producing them. An RMSD value, or in fact any 

linear transformation of this, remains dependent on the number of aligned residues. Some 

algorithms are optimised to find highly conserved regions between two protein structures. 

This can be useful in detecting similarities within extremely diverse superfamilies and 

fold groups. However, these methods do not necessarily give a globally optimal 

alignment and can assign high significance to the chance similarity of matching small 

structural motifs that may not be in equivalent positions in the two structures being 

compared. Hence, for the purpose of domain boundary recognition it is also vital to 

consider the number of aligned residues as a proportion of those residues in the larger of 

the two structures, as well as the RMSD of the superposed residues.

The aim of this chapter was to optimise a novel algorithm, CATHEDRAL, for assigning 

domain boundaries and folds to multi-domain protein structures. CATHEDRAL 

combines secondary structure matching (GRATH) and residue alignment (SSAP) 

algorithms and was designed and implemented in collaboration with Oliver Redfem. The

95



extensive benchmarking described in this chapter was performed solely by the author of 

this thesis.

The fidelity of domain boundaries assigned using this approach is highly dependent on 

the quality of the structural alignment produced by SSAP. A comprehensive analysis of 

the ability of SSAP to generate accurate alignments and score structural similarity was 

undertaken and placed in context with other publicly available methods.
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3.2 Methods

3.2.1 The CATHEDRAL Protocol

Secondary structure based alignment methods (e.g. GRATH) are an order of magnitude 

faster than residue based methods (e.g. SSAP), but limited by the fact they match core 

secondary structure motifs, rather than generating globally optimal residue alignments. 

As distant relatives in many folds and homologous superfamilies exhibit a large degree of 

structural embellishments around a common core (see Chapter 2), determining overall 

structural similarity with only secondary structure matching remains problematic. 

However, the CATHEDRAL protocol was designed to utilise the secondary structure 

matching GRATH algorithm as a fast pre-filter to select putative fold matches from the 

CATH library to be further aligned at the residue level by SSAP.

CATHEDRAL was designed to aid the classification of new proteins structures into the 

CATH database by identifying component domain folds and using structural alignments 

to classified relatives to predict domain boundaries.

3.2.1.1 CATHEDRAL -  Recognising Domains in Multi-Domain Chains

CATHEDRAL operates in an iterative fashion, whereby once a domain is assigned, the 

remainder of the query chain is then rescanned against the fold library for each 

assignment.

The performance of the GRATH algorithm developed by Harrison et al. (2003) was 

shown to perform well for identifying similar folds to a given query structure. However, 

significant E-values can sometimes represent small common motifs occurring in different 

folds. For example, a small domain consisting mainly of a PaP motif may match a region 

of a larger domain, however this similarity might not represent a genuine fold similarity.
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In the CATHEDRAL algorithm this limitation is overcome by searching for large domain 

matches first (Figure 3.1). The fold library is split into a Targe library’ (containing folds 

with 5 or more secondary structures) and a ‘small library’ (containing folds with less than 

five secondary structures). To limit the effects of matching small motifs incorrectly, all 

domains are assigned using the large library before the small library is queried.

Each query chain is first scanned against the fold library and the hits ranked by the 

GRATH E-value. To increase the chance of finding the closest structural match and 

hence the best domain boundary assignment, representatives fi*om the top 10 fold groups 

are recompared using SSAP. Preliminary optimisation studies showed that the correct 

fold was ranked in the top 10 for ~95% of domains.
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Scan chain against library of 
large domain folds using GRATH

Compare 835 representatives 
from 10 highest scoring fold 

groups using SSAP

Use SVM to re-rank hits based on 
SSAP/GRATH

Excise the highest scoring 
domain from chain

If more than 5 
secondary structu res 

remaining in chain

Scan against library of small 
domain folds using GRATH/SSAP

Finalise fold and domain 
boundary assignm ents

Figure 3.1. Flow chart of CATHEDRAL algorithm for assigning folds and domain boundaries 

to protein chains.
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The SSAP alignment is guided by the equivalent secondary structures identified by 

GRATH (see Figure 3.2). This is achieved in two ways. Firstly by ensuring that residues 

in equivalent secondary structures pair with one another, allowing residues in the 

adjacent loop regions to be paired. Secondly, although the regions outside the secondary 

structure regions matched by GRATH are unknown, identifying the equivalent secondary 

structures enables SSAP to orientate the direction of the alignment and reduce the 

number of residue pair comparisons required. SSAP produces a raw score for each 

domain alignment normalised by the number of residues matched in the chain.

Once representatives from the top 10 fold groups have been aligned against the query 

structure using SSAP, the closest relative can be identified and the corresponding domain 

excised from the chain. To select this relative, a machine learning approach is used. 

Both GRATH and SSAP give a good measure of structural similarity but other factors 

(e.g. alignment overlap, domain size, protein class) can influence the scores. A Support 

Vector Machine (SVM) (see Section 1.5.2 for a detailed description of SVM technology) 

is used to combine these features to generate a score that combines these similarity 

measures.

Once the domain with the best SVM scores has been selected, the SSAP alignment 

determines the assigned region of the query and removes the appropriate residues from 

the chain. If the chain still has 5 or more secondary structures it is re-scanned against the 

Targe library’ using GRATH. As before, putative fold matches are selected on the basis 

of their GRATH E-value and re-aligned using SSAP. SSAP is restricted to ignore any 

previously aligned residues, preventing realignment of residues already assigned to a 

domain. Furthermore, excluding these residues increases the speed of the alignment by 

again limiting the number of residue pairs to be compared.
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residues in multidomain

residues 
in fold A

residues 
in fold B

I I motif from SS match 

I  I  SSAP residue alignment

Figure 3.2. Diagram show ing how the CATHEDRAL algorithm uses the information from the 

secondary structure matching step to guide the dynamic programming to find  the optim al 

alignment.

SSAP can occasionally fail to identify discontiguous domains. CATHEDRAL 

overcomes this limitation by excising and assigning contiguous domains first. SSAP is 

then far more likely to correctly identify the discontiguous domain correctly once the 

inserted domain(s) are removed.

CATHEDRAL continues to iteratively assign and excise domains from the chain using 

the ‘large’ library with GRATH and SSAP for up to 10 iterations or until there are less 

than 5 secondary structures left to be assigned. At this point, the remainder of the chain 

is scanned against the ‘small’ library using GRATH and then as before the top 10 folds 

are passed to SSAP to generate residue alignments.
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Once all the putative domains in the chain have been assigned, CATHEDRAL then seeks 

to optimise the domain boundaries. The accuracy of the domain boundaries is dependent 

on the structural similarity of the fold matched in the library and can be improved by re

assessing all domain alignments at the end of the protocol. Such modifications resolve 

overlapping domains so that the ‘correct’ assignment is chosen to be the one with the 

highest structural similarity to the chain. There are also often small regions of the chain 

that remain unassigned, generally less than 20 residues and so they are unlikely to 

represent whole domains. These regions are assigned to the nearest domain at the C or N 

termini, or shared equally between neighbouring domains.

3.2.1.2 CATHEDRAL -  Recognising Single Domain Similarities

CATHEDRAL can also be used purely for classification of single domains. The query 

domain can be scanned against a fold library as above. Putative fold matches are selected 

by GRATH and representatives aligned by SSAP to find the closest possible structural 

match. In benchmarking CATHEDRAL to assess its performance in fold recognition this 

mode was used. In this mode CATHEDRAL is run with just one iteration and the native 

SSAP scoring scheme is used instead of the SVM score.

3.2.2 Data Sets Used for Optimising and Benchmarking 

CATHEDRAL

A benchmarking protocol was developed to optimise CATHEDRAL and assess its 

performance in aligning single domain structures against other publicly available 

structure comparison algorithms. The dataset for the benchmarking of the different 

structural algorithms encompassed 6003 domains from different sequence families 

(S35Reps) in CATH v2.6.0, with all domains sharing less than 35% sequence identity 

from any other so that structural alignment was not trivial. These domains included
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representatives from 907 folds from all the four classes of the CATH classification, 

resulting in over 18 million individual comparisons.

To minimise any bias in the CATH dataset a second dataset that was a subset of CATH 

v2.6.0 and SCOP vl.65 was also constructed. Each of the 6003 CATH (S35Rep) 

domains was checked to see if it had an equivalent SCOP domain with at least 80% 

residue overlap and was in the same SCOP superfamily sharing 80% of the members. 

This restricted the CATH-SCOP dataset to 1779 sequence diverse domains encompassing 

406 folds.

3.2,3 Comparing the Performance o f CATHEDRAL in Aligning 

Single Domain Structures against Other Publicly Available 

Methods

CATHEDRAL was benchmarked against a number of other structural comparison 

methods, SSAP, GRATH, STRUCTAL, DALI, LSQMAN and CE in a number of 

different ways (see Introduction Section 1.3.2.3 for a description of these methods).

An ‘all against all’ structural comparison was performed of the 6003 unique, sequence 

diverse CATH domains from v2.6, culminating in over 18 million individual 

comparisons. The analysis was repeated on the CATH-SCOP dataset thereby removing 

any bias or circularity in using the CATH database as a golden standard when 

benchmarking the ‘in-house’ methods, SSAP and GRATH.

All programs took the PDB coordinates of the CATH domains as input and were run in 

their ‘default’ mode. Each produced a native score, a geometrical measure (e.g. RMSD) 

and an alignment for the given pair of structures. If a method generated more than one 

score, the one which produced the optimal performance was chosen for use in the
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analysis. Where a method produced more than one alignment for a given pair of protein 

domains, the alignment with the greatest number of equivalent residues was taken.

3.2.4 Assessing the Performance o f Fold Recognition Methods

3.2.4,1.1 Comparison of methods using ROC curves

Structure comparison and fold recognition methods can be analysed using Receiver 

Operating Characteristic (ROC) curves, which depict the discriminatory power of a 

scoring scheme with respect to a gold standard classification. A ROC curve is a plot of 

the true positive rate (sensitivity) against the false positive rate (1-specificity), over a 

range of possible score cut-offs. To assess the performance of the structure comparison 

methods, a true match is defined as two domains which share the same CATH topology 

(fold) assignment. The alignments for each method are ordered by their respective 

scoring scheme and at varying thresholds the number of true positives and false positives 

are calculated for the ROC curve.

Kolodny et al. (2005) previously showed that a new geometric score (SAS see Section 

3.2.4.1.3) was more effective at distinguishing between all true and false positives than 

most of the native scores calculated by each algorithm. Therefore, ROC curves were also 

plotted using the geometric scores (e.g. SAS) to assess whether this was also true for this 

data set.

ROC curves were calculated for all methods using the whole CATH dataset and the 

CATH-SCOP subset to assess the performance of each method for detecting all true fold 

relationships.
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3,2,4,1,2 Assessing the Performance of the Structure Comparison Methods in 
Ranking the Correct Fold Matches

For the purpose of domain boundary recognition it is more important to recognise the 

closest structural match rather than identifying all true relationships as with the ROC 

curve analysis. Therefore this approach best represents how structure comparison 

methods would be used in a classification protocol. For example a query domain is 

scanned against a library of classified domains and the best matches provide the curator 

with evidence of the domain fold.

Indeed, another way of measuring the performance of the structure comparison methods 

is to calculate how well they identify the correct fold match as the best hit. For each 

query domain, the matches are sorted based on the appropriate score and the rank of the 

correct fold is calculated. A graph was plotted showing the cumulative percentage of 

correctly assigned folds at each descending rank. These graphs were generated for both 

the CATH and CATH-SCOP dataset.

3,2,4,1,3 Assessing the Performance of the Structure Comparison Methods by 
Measuring the Geometric Quality of the Alignments Using Common 
Geometric Scoring Schemes

In addition to assessing the ability of each structure comparison method to recognise 

correct fold similarities, it is also informative to consider the geometric quality of the 

alignment itself.

All the methods produce a geometric measure (RMSD) of how well two given structures 

can be superposed following alignment and related domains should have a low RMSD. 

As stated in the Section 3.1, RMSD does not take into account the size of the proteins 

aligned, or the number of residues matched in the alignment. Therefore, alignments that 

only include highly structurally equivalent residues will produce a small RMSD on 

superposition even if they only align a small domain to a motif within a much larger

105



domain. In this study the quality of the alignments are explored in terms of properties 

that are associated with a good global alignment. Such properties include a low RMSD, 

the number of aligned residues and the fraction of the smallest or largest protein included 

in the alignment.

For each correct fold match, three common geometric scoring schemes were evaluated to 

compare the quality of the alignment produced by each method. The methods used 

included SAS (Equation 3.1), SImax (Equation 3.2) and SImin (Equation 3.3). The 

different measures attempt to capture a ‘good’ global alignment by normalising the 

RMSD by the length of the alignment as a fraction of the size of the proteins aligned. All 

the measurements are in Â and the percentage of alignments within a particular threshold 

was plotted for each measure.

SAS = RMSD X 1 0 0 / N 

Equation 3.1. SAS (Structural Alignment Score). N represents the number of aligned residues.

S I m ax  = RMSD X m a x (L i,L 2 )  / N 
Equation 3.2. S I m a x ,  N represents the number of aligned residues, and Li, L z  the number of residues 

in the respective domains.

S I min = RMSD x min(Li,L2) / N 
Equation 3.3. SImin, N represents the number of aligned residues, and Li, Lz the number of residues 

in the respective domains.

5.2.4, L 4 Assessing Alignm ent Quality

A set of manually curated alignments (BAliBASE) was also used to validate the quality 

of the structural alignments produced by each of the structure comparison methods. 

BAliBASE (Thompson et al. 1999) is a database of manually-refined multiple alignments 

specifically designed for the evaluation and comparison of multiple sequence alignment 

programs. The sequences included in the database are selected from alignments in either 

the FSSP (Holm et al. 1992) or HOMSTRAD (Mizuguchi et al. 1998) structural
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databases, or from manually constructed structural alignments taken from the literature. 

When sufficient structures are not available, additional sequences are included from the 

HSSP database (Schneider et al. 1997). The VAST Web server (Madej et al. 1995) is 

used to confirm that the sequences in each alignment are structural neighbours and can be 

structurally superimposed. Functional sites are identified using the PDBsum database 

(Laskowski et al. 1997) and the alignments are manually verified to ensure that conserved 

residues and secondary structures are correctly aligned.

Fourteen BaliBase multiple alignments were chosen, comprising 108 individual pairwise 

alignments. The alignments were restricted to protein chains sharing less than 25% 

sequence identity making alignment non-trivial and the dataset covered all three major 

structural classes (mainly a, mainly p and ap). The alignments produced by the structural 

comparison algorithms can be compared against the manually curated BaliBase 

alignments and the quality of the alignments generated by the different methods 

measured by the score, fm (Sauder et al. 2000). fm is defined as the number of amino 

acids correctly aligned in the structural alignment divided by the total number of aligned 

residues in the BaliBase alignment.

3.2,4.2 Assessing the performance of CATHEDRAL for assigning 
domains to Multi-Domain protein chains

The previous sections dealt with the benchmarking of the CATHEDRAL protocol as 

regards its ability to recognise the correct fold of a query domain in a library of domain 

folds. Here, the ability of CATHEDRAL algorithm to recognise individual domains in a 

multi-domain structure is assessed and the protocol for optimising this algorithm is 

described.

This protocol required the optimisation of (1) the alignment using an SVM, (2) a score 

threshold for accurately identifying domains and (3) the accuracy of domain boundary 

assignment.
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The dataset used to benchmark CATHEDRAL for recognising domain boundaries was 

created from a set of 1071 non-redundant (at 35% sequence identity) representatives 

(S35Reps) from multi-domain sequence families. From this set, those chains containing 

domains from folds with less than 2 S35Reps were removed leaving a final dataset of 680 

multi-domain chains, containing 1593 domains, 245 unique folds and 462 unique 

superfamilies from all 4 classes of the CATH hierarchy.

No other publicly available structure comparison algorithm has been developed for 

explicitly recognising domains within multi-domain proteins by fold recurrence. 

However, there are several sequence based approaches that perform this task. Therefore, 

to place the performance of CATHEDRAL’S domain boundary recognition in context the 

680 chains were also scanned against Hidden Markov Models built from each structure in 

the CATH dataset. The HMMer suite (Eddy 1996) was used to build the models from 

each sequence in the CATH dataset. These models were subsequently scanned against 

the protein chains and domain boundaries assigned based on the top ranking HMM match 

defined by the HMMer E-value.
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3.3 Results

3.3.1 Structure Comparison Methods -  Assessing the Performance 

o f CA THEDRAL in Recognising the Correct Fold

There are a range of different criteria to take into account when assessing the 

performance of a structural comparison method. It is important that the method can 

accurately score an alignment so that similar (e.g. related at the fold level) structures have 

higher scores than dissimilar proteins. Another important criterion to assess is the ability 

of the algorithm to produce biologically meaningful alignments.

3.3.1.1 Benchmarking the Structure Comparison Methods for Fold 
Recognition

The performance of CATHEDRAL was benchmarked against other widely used 

structural comparisons methods namely, SSAP, DALI, STRUCT AL, LSQMAN, CE and 

GRATH. The results were analysed in several ways to gauge the ability of the methods 

to identify fold similarities and produce high quality structural alignments.

Firstly, the ability of the methods to recognise fold similarities was assessed based on 

their scoring schemes. Some methods produce both a raw score of similarity and also a 

statistical score. In these cases the score that produced the best ROC curves was used. 

For SSAP this was the native score, for GRATH the E-value, for CE the Z-score, for 

DALI the Z-score, for LSQMAN its native score and STRUCT AL its native score.

Figure 3.3 shows the ROC curve derived for each method against both the CATH (Figure 

3.3(a)) and CATH-SCOP (Figure 3.3(b)) datasets. The uppermost ROC curve represents 

the method whose scoring scheme best reproduces the true fold matches presented in 

CATH and therefore best discriminates between false and true positives. It is imperative
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to minimise the number of errors introduced into a classification therefore for the purpose 

of this benchmark we are especially interested in the methods performance at low error 

rates. Therefore each method shall be assessed on the basis of its coverage achieved at a 

5% error rate rather than the area under the whole ROC curve. For all methods except 

STRUCT AL, a similar performance is observed on both the CATH and CATH-SCOP 

datasets, though in some cases better performances are observed on the CATH-SCOP 

dataset. As the CATH-SCOP dataset represents the agreement between the two 

classifications, it is reasonable to expect that the dataset will contain fewer errors than the 

larger CATH dataset and will also contain more easily classified structures, this may 

account for the increase in performance for all the methods.

The method that shows the greatest increase in performance when using the CATH- 

SCOP dataset is SSAP. This is surprising as it is the main structural comparison 

algorithm used in the classification protocol of the CATH database. However, this does 

suggest that there is no bias towards SSAP or CATHEDRAL when using CATH as the 

gold standard for benchmarking. The CATHEDRAL algorithm appears to accumulate 

false positives ‘earlier’ with the CATH-SCOP dataset. This may be due to the increase in 

small proteins in this dataset which the filtering step of CATHEDRAL removes.

The top performing methods on both datasets, for a 5% error rate, are CATHEDRAL and 

DALI, both achieving coverage of nearly 80%. STRUCTAL achieves the second highest 

coverage of 72% for a 5% error. SSAP and LSQMAN are the next best performing 

methods, with LSQMAN outperforming SSAP on the CATH dataset. CE is the worst 

performing method on both datasets.
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Figure 3.3(a-b). ROC curves show ing the performance of the 6 structural comparisons m ethods 

in their ability to identify correct fold matches, (a) is the performance on the CATH dataset, 

(b) is the performance on the CATH-SCOP dataset (see methods).
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Interestingly the best two performing methods (CATHEDRAL and DALI) both use a 

filter step in their algorithms. DALI will produce no score when it decides that two 

proteins are too dissimilar to align. This is very effective at reducing the false positive 

rate as it successfully deems ~70% of non-fold matches in CATH as too dissimilar to 

align. All other methods will attempt to optimally align the two structures irrespective of 

their structural dissimilarity and produce a score for the alignment. CATHEDRAL takes 

this filtering a step further by first finding putative fold hits by secondary structure clique 

matching and then finds good alignments for these hits by double dynamic programming. 

Again, structures possessing different folds are not aligned. CATHEDRAL and SSAP 

use almost identical scoring schemes but their coverage differs by nearly 20% at 5% error 

which highlights the power of using a filtering step to exclude dissimilar structures.

3.3.1.2 Benchmarking the Structure Comparison Methods using the 
Geometric Scoring Schemes

One can assume that the scoring systems employed by each method attempt to take into 

account various attributes that describe a good alignment. A good alignment will have a 

significant proportion of both structures aligned i.e a large percentage of residues 

overlapping. Also those residues aligned would be expected to have a low RMSD. In 

order to apply a common scoring scheme to all the methods the geometric scoring 

schemes SAS, SImin, SImax (see Section 3.2.4.1.3) were analysed in the same way using 

ROC curves.

Figure 3.4(a-c) shows the ROC curves produced for the three different geometrical 

measures, SAS, S I m a x  and S Imin on the CATH dataset. All the methods normalise the 

RMSD of the equivalent residues by some measure of alignment length. S I m a x  favours a 

global alignment between two structures whilst S I min will also give good scores for 

matches that represent a more local alignment.
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The overall picture gleaned from Figure 3.4 is that the performance of each method 

depends on the geometric measure used and most methods show an increase in 

performance compared to using their best performing native score. The geometric score 

that best separates between true and false fold matches for all methods is the SAS score 

(Figure 3.4(a)). SAS normalises the RMSD by the number of aligned residues in the 

alignment. If more than 100 residues are aligned the score is up-weighted, if less it is 

down-weighted. The SAS score is a better discriminator of fold similarity than the native 

score for 5 out of the 6 methods, with STRUCTAL the only method showing no 

significant change. SSAP and CE’s coverage increases by 20% and 17% respectively (at 

5% error) showing that their native score is less suited to discriminating between true and 

false fold matches than the SAS score. Despite the change in scoring scheme, 

CATHEDRAL and DALI are still the best performing methods when using the SAS 

score, achieving a coverage of around 80% for a 5% error.

Figure 3.4(b) shows the ROC curve analysis for each of the methods based on the S I min  

score. It appears the performance of all methods is reduced compared to the use of the 

S A S  score. This is presumably due to the fact the S Imin  score of an alignment represents 

a local motif or core match and these can be common across different folds.

Figure 3.4(c) shows the ROC curve for each of the methods based on the SImax score. 

The performance of all methods is worse with this scoring method when compared to the 

SAS score, the SImin score or the native score. The fact that the performance of each 

method decreases using the SImax score may reflect the fact that this measure is 

reflecting ‘global’ similarity between two protein structures. As was discussed in 

Chapter 2, in some of the most highly populated superfamilies and fold groups in CATH 

relatives differ considerably in size (up to 5 fold) and therefore the SImax scores for these 

pairs of relatives will be substantially reduced. CATHEDRAL outperforms the next best 

performing method DALI by 25% coverage at a 5% error. Its superior performance with 

the SImax score is presumably due to its highly effective filter step that ensures only 

closely related structures are compared; it is also more effective at matching large 

alignments, and the SImax score is designed to favour this characteristic.
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Figure 3.4(d,e,f) shows the performance of each of the methods using the geometric 

scores on the CATH-SCOP dataset. The ranking of the methods is the same for the 

CATH dataset, with CATHEDRAL and DALI again appearing as the best performing 

methods when using the SAS, S I mdm or S I m a x  scores. All the methods show a significant 

increase in coverage when using the S Im in  or S I m ax  scores on the CATH-SCOP dataset 

compared to the CATH dataset. A possible explanation for this is the fact that the union 

of the two databases encourages consistent classifications. Since SCOP is devised using 

largely manual validation some very diverse relatives (i.e. differing greatly in size) may 

have been missed and hence there may be less deviation in sizes of relatives in the 

CATH-SCOP dataset.

For nearly all methods the SAS score best discriminates between true and false fold 

matches giving 85% coverage for CATHEDRAL at a 5% error rate on the CATH dataset.

3.3.1.3 Performance of CATHEDRAL in Ranking Correct Fold Matches.

Another way to evaluate the ability of the methods is to identify the correct fold as the 

top match when comparing a structure against a library of all possible folds. That is, how 

effective are the scores at recognising the most closely related structure? In general ROC 

curves show how closely a particular scoring scheme can replicate an existing 

classification, whereas considering the rank shows how effective a method or scoring 

scheme is at correctly classifying a domain using a nearest neighbour approach.

Each domain in the data-set was compared against the fold library, the results were sorted 

by each score and the frequency of producing a correct match at a particular rank is 

calculated over all the query domains. The cumulative percentage of correctly assigned 

folds can then be plotted at each descending rank.
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Figure 3.5(a,b). Plot of the percentage of correct folds matched against the ranked native score 

for the (a) CATH and (b) CATH-SCOP dataset.
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Figure 3.5 shows the position of the correct folds when ranking the results for each 

method by the native score in the CATH and CATH-SCOP data sets. A somewhat 

different picture of each method’s performance emerges compared to the analysis based 

on ROC curves. SSAP is the best performing method for both datasets, although the 

native score was shown to be poor at completely delineating folds in the ROC curve 

analysis. It is perhaps unsurprising that the scoring scheme seems more suited to finding 

the closest relative as SSAP was optimised to find the closest structural match for the 

purpose of classifying new protein structures in CATH.

From Figure 3.5(a) it can be seen that for CATHEDRAL, DALI and STRUCTAL the 

fold of the top match is correctly identified ~93% of the time. For DALI and 

STRUCTAL coverage increases to ~97% within the top 25 hits whereas CATHEDRAL’s 

coverage saturates at 94%. This is presumably due to the fact that the filter in the 

CATHEDRAL algorithm is excluding ~6% of the correct fold matches due to their small 

size. Only a minor improvement is seen past the top rank, which implies that if the 

correct fold passes the initial filter it will be placed at the top rank. CATHEDRAL 

performs slightly better on the CATH-SCOP dataset (see Figure 3.5(b)). It recognises the 

correct fold at the top rank more often than DALI and STRUCTAL, but on this dataset it 

also shows an increase in coverage at lower ranks. The reason for this improvement is 

most probably due to the smaller size of the CATH-SCOP dataset, so a larger proportion 

of available fold space is searched following the initial filter step increasing the chance of 

finding a correct match. The performance of the methods was also assessed using the 

geometric score SAS.

Figure 3.6 shows the performance in identifying the correct fold match using the ranked 

SAS score on both the CATH and CATH-SCOP datasets. In this case all the methods 

perform worse when using the SAS score than when they use their native score. The 

ordering of the methods is consistent with that obtained for the native scores but the 

coverage drops significantly. This suggests that most native scoring schemes are 

optimised to recognise the closest relative rather than to optimally distinguish members 

of different folds.
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CATH and (b) CATH-SCOP dataset.
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3.3.1.4 Assessing the Quality of the Structural Alignments Produced by 
Each Method

In addition to assessing the ability of structural comparison algorithms to discriminate 

between true and false fold matches, it is also important to consider the quality of the 

alignments produced and examine the extent to which this correlates with their 

classification performance. The quality of alignment depends on a number of properties 

such as alignment length, the fi-action of aligned residues in each domain pair, the number 

of gaps and the RMSD of the equivalent residues aligned. These properties can be 

combined in various ways to score the quality of an alignment. The SAS, S Im in  and 

S I m a x  (see Section 3.2.4.1.3) scores were calculated for all alignments of true fold 

matches. The different scoring schemes attempt to balance the properties that describe a 

‘good’ alignment by normalising the RMSD by the number of residues aligned as a 

fraction of the length of the proteins being compared. All these calculations produce a 

geometrical value in angstroms and this can be plotted against the percentage of folds 

with alignments at a particular threshold. Higher quality alignments should have lower 

scores. For this analysis, SSAP is equivalent to CATHEDRAL as the alignments are 

produced by the same implementation of the double dynamic programming.

Figure 3.7(a,b,c) shows the percentage of fold alignments generated by each of the 

structural comparison methods below a specific threshold for each of three geometric 

measures. When considering the quality of the alignments as quantified by the SAS 

measure (Figure 3.7(a)) it can be seen that LSQMAN performs the best with 90% of its 

alignments below 5Â. This is surprising as it performs poorly when using ROC curves 

created on the SAS measure (Figure 3.4(a)). This suggests that it is producing alignments 

of correct and incorrect fold matches with comparably low SAS scores. STRUCTAL is 

the next best performing methods with 80% of the alignments less than 5Â followed by 

DALI at 70%, SSAP at 55% and CE at 45%. When using the SAS score to generate 

ROC curves (Figure 3.4(a)) based on fold classification, DALI is the best method 

followed closely by SSAP and STRUCTAL. This implies that even though the 

alignments produced by SSAP and DALI give higher SAS scores than LSQMAN and 

STRUCTAL they are still better able to discriminate between true and false fold matches.
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Figure 3.7(b) assesses the alignments by the S I m in  score. Again LSQMAN produces just 

under 70% of alignments with a S I min less than 5Â, followed by STRUCTAL and CE at 

40% and SSAP and DALI at -35%. Figure 3.4(b) shows DALI, STRUCTAL and SSAP 

performing significantly better than LSQMAN and CE using ROC curve analysis. 

Again, as LSQMAN only calculates an RMSD over a smaller number of well aligned 

residues, a better score will be obtained than for the other methods (e.g. SSAP, DALI) 

that attempt to return a more global alignment and permit the inclusion of some residue 

pairs in the alignment with lower structural similarity.

Figure 3.7(c) shows a similar pattern when assessing the alignments with S Im a x - The 

best method LSQMAN only produces just over 30% of it’s alignments with a S I m ax  

score less than 5Â. Again the geometric performance of the methods alignments bears no 

relation to the ability to distinguish between true and false fold matches (Figure 3.4(c)). 

S I m a x  rewards algorithms that align the majority of the bigger protein, and the fact that 

none of the methods produce many low scoring alignments implies that true fold matches 

can deviate greatly in size. In fact analysis discussed in Chapter 2 shows that >30% of 

structural relatives have <50% residue overlap in CATH.

The best performing method is LSQMAN by all geometric scores, although it is known 

to align fewer residues than the other methods analysed in this chapter. Given that 

LSQMAN is one of the worst performers in the ROC curve analysis this suggests that 

using an RMSD based score alone as an assessment of alignment quality does not 

necessarily correlate with its biological relevance. Structural variation within fold groups 

and superfamilies can result in high RMSD values for those algorithms that seek to 

maximise the number of equivalent residues. Algorithms such as LSQMAN look for 

alignments with low RMSDs, and achieve this by restricting the number of aligned 

residues. Although this can be useful for detecting domains sharing large common motifs, 

it will not necessarily identify all the equivalent positions between two related domains, 

information that is essential for domain boundary recognition.
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In some domain architectures (e.g. 3 layer aP sandwiches) it is clear that large structural 

motifs (e.g.papa) can overlap between domains but that these do not always coincide 

with equivalent secondary structures. Furthermore, any similarity score based on RMSD 

will be dependent on the number of superposed residues and hence aligning more 

residues over more variable parts of two structures, can give a disproportionately high 

RMSD value, even if the alignment is actually more biologically valid. For the purposes 

of domain boundary recognition, it is clearly important to identify an alignment between 

two domains that maximises the number of equivalent residues. Consequently, for a 

given pair of fold relatives the average number of residues aligned by each method was 

also considered. Table 3.1 shows this calculation relative to SSAP, as SSAP aligns more 

residues than all other methods. There appears to be some correlation between this 

average value and the SAS ROC curves shown in Figures 3.4 and 3.5. More specifically, 

DALI, STRUCTAL and SSAP align the most residues and also perform best by the ROC 

curve analysis.

La # Awf m J . rs ' SSAP LSQMAN DALI STRUCTAL CE

Percentage of aligned 

residues with respect 

to SSAP

N/A 50 75 76 57

Best Performing 

Method at 5% Error 

Using SAS Score 

(Figure 3.4(a))

2 4 1 3 5

Table 3.1 The percentage o f residues aligned by each m ethod relative to SSAP for all genuine  

fold matches. D efined  by the formula below:

Number of residues aligned by method 

Number of Residues Aligned by SSAP
X 100%
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Figure 3.8. Average number of aligned residues for a given SAS score.

The size of the domain fragments aligned for a given SAS score was also determined. 

Figure 3.8 shows that although LSQMAN and STRUCTAL are returning a higher 

proportion of scores below a given geometric threshold, they are recognising and aligning 

fewer residues. This may be valuable for finding the most superposable motifs between 

two domains; however, it is less useful for assigning domain boundaries. Taken together 

the ROC curve analysis (Figure 3.4), ranking analysis and the studies on the geometrical 

quality of the alignments (Figure 3.7 and Figure 3.8) suggests that SSAP/CATHEDRAL 

is a very appropriate method to use for domain boundary recognition, as it searches for 

largest fi*agments whilst ensuring these can be superimposed with reasonable scores.
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3.3.1.5 Assessing Alignment Quality Using BaliBase

Manually curated alignments provide an ideal dataset for assessing the biological 

relevance of automated structural alignment methods. The quality of the alignments 

generated by the different methods are measured by the score, fm, which is the number of 

amino acids correctly aligned in the structural alignment divided by the total number of 

aligned residues in the BaliBase alignment (see Section 3.2.4.1.4). Figure 3.9 shows that 

DALI and SSAP produce alignments closer to the BaliBase alignments with nearly 60% 

of DALI and SSAP alignments posessing at least 50% residues correctly aligned, 

compared to 45% for LSQMAN and 40% for STRUCTAL. This supports the conclusions 

derived from the previous analyses suggesting that LSQMAN and STRUCT AL may be 

optimising their alignments to reduce the RMSD at the expense of finding the maximum 

number of biologically equivalent residues.

■SSAP -*-D A L I -^ L S Q M A N  -w-STRUCTAL
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Figure 3.9. Graph show ing how the alignments of each method compared to manually 
validated BaliBase alignm ents. The curve w ith the greatest area underneath represents the 
method that m ost agrees w ith the manually curated BaliBase alignm ents.
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3,3.2 Optimising CATHEDRAL to identify domains within Multi

domain Protein Structures

A vital part of protein structure classification protocols is the recognition of domains 

within protein chains. The benchmarking analysis presented in this chapter has shown 

that CATHEDRAL is a fast and reliable algorithm for comparing protein domains and 

identifying the correct fold. This section describes the optimisation and performance of 

CATHEDRAL for domain boundary recognition.

As described in the Section 3.2, CATHEDRAL uses a graph theoretical approach 

(GRATH) as a pre-filter to find putative folds within the protein chain. Representatives 

from each superfamily in the putative folds are then aligned against the query chain using 

the slow, but more accurate, double dynamic programming algorithm (DDP) (as used by 

the SSAP algorithm). For domain boundary recognition the significance of the 

subsequent matches is then assessed using a support vector machine (SVM) which 

utilises information such as the proportion of residues in the larger domain aligned, 

geometric similarity (e.g. SAS score) and the number of residues aligned. Once a domain 

has been assigned it is excised from the chain and the remaining regions are iteratively 

rescanned using the same protocol until all known domains have been found.

As well as further optimising the SVM producing the scoring scheme for CATHEDRAL, 

a number of steps in the algorithm had parameters that required optimisation to improve 

the performance in domain boundary recognition. These were the number of folds 

selected from the GRATH pre-filter for realignment by SSAP as well as the number of 

representatives from each fold group that should be aligned by SSAP in order to find the 

closest structural relative.
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3.3.2.1 Optimising the CATHEDRAL Scoring Scheme Using an SVM

As described above many factors are important for recognising global similarity between 

two domains. It is important to consider both geometric properties of the alignment such 

as the RMSD as well as to the percentage of aligned residues in the largest protein. This 

problem becomes more complex when detecting individual domains in a multi-domain 

chain, as the “real” length of the largest protein domain may be unknown. This could 

lead to the problem of misclassification caused by high scores being returned by small 

domains simply matching with secondary structure motifs in a larger domain.

The highest scoring match identified by CATHEDRAL is used to determine the 

boundaries of the domain. Residues associated with that domain are then removed from 

the protein chain which is then rescanned against the fold library. It is therefore 

imperative that the top match represents the best global match. An SVM provides a 

convenient method to combine useful independent indicators of alignment quality to 

more accurately rank potential fold matches to a query chain. The features that were used 

as inputs to the SVM were the GRATH score, the GRATH clique size, the SSAP score, 

the proportion of residues in the larger domain that has been aligned, the RMSD, the 

number of aligned residues and the SAS score. The SAS score was used rather than the 

S I m a x  because the length of the larger domain in the multidomain structure is unknown.

Five fold cross validation was used to ensure un-biased training of the SVM leading to a 

generalised classifier. This process involves splitting the dataset into 5 sets, and each set 

is successively taken as the test set while the remaining 4 sets represent the training set. 

The performance is then calculated on the average over the 5 test sets.

Figure 3.10 shows the performance of the SVM score for assigning domains within multi 

domain structures, compared to the other scoring schemes. The ROC curve benchmark 

shows an average value for the SVM performance using 5-fold cross validation. It can be 

seen that the SVM score significantly outperforms all other scoring schemes achieving 

75% coverage for a 5% error.
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Figure 3.10. Comparison of the performance of the GRATH (GT), SAS, RM SD and SVM scores 

for assigning dom ains w ith in  multi-domain chains.

Furthermore Figure 3.11 shows that by using the SVM score to rank the hits, 

CATHEDRAL was able to assign 90% of domains in the query data set to the correct 

fold group, with 76% of domain boundaries within 10 residues of the actual boundary. 

When the threshold is increased to within 15 residues of the actual boundary the coverage 

increases to 85%. Also worth noting is that once the SVM score-cut-off is increased 

above 1.5, the coverage drops dramatically, but the accuracy of the domain bounders 

does not increase significantly suggesting this is an appropriate threshold to use in 

CATHEDRAL.
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3 3 ,2 ,2  O ptim ising the Fidelity o f  the GRA TH-Filter

In benchmarking CATHEDRAL for fold recognition the top 10 folds identified by 

GRATH were realigned using SSAP. This value was adjusted to see if CATHEDRAL’S 

performance in domain boundary recognition could be improved. Figure 3.12 shows the 

percentage of correct fold matches obtained in the v2.6 CATH dataset by varying the 

number of putative folds selected for realignment by SSAP. It can be seen that no 

significant increase is observed if the number of folds selected is increased fi'om 10 to 15 

and therefore to preserve the speed of the algorithm 10 was selected as an optimum value.
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Figure 3.12. Percentage of correct folds identified at a particular rank for varying numbers of 

putative folds (NF) selected by the GRATH.

3,3.2.3 Optimising the number of representatives from each fold group to 
compare by SSAP

Once the GRATH-Filter has identified the fold groups closest to the putative domain, 

representatives from each fold are aligned to the query chain by the SSAP algorithm. By 

default CATHEDRAL takes all sequence diverse relatives (having <35% sequence 

identity to each other) from each fold group, however this can result in many thousands 

of comparisons especially if the fold group is highly populated, such as the Rossmann 

fold. However it is important to find the closest structural relative for each assignment to 

ensure the accuracy of the domain boundaries.

To further increase the speed of the algorithm it was hypothesised that a limited number 

of relatives from each fold group could be taken without compromising the fidelity of the 

domain boundaries.
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To test this hypothesis CATHEDRAL was set to select the top 10 folds, and the number 

of representatives from each superfamily to be aligned by SSAP was varied. Figure 3.13 

shows a plot of the number of correctly assigned domain boundaries (within 15 residues 

of the manually validated boundary) obtained by taking a varying number of superfamily 

representatives. It can be seen from the graph that there is no additional increase in 

coverage when more than 5 representatives from each superfamily are selected for 

alignment by SSAP.

I
I  84

I  82

g 80 
o

I

0 2 3 4 5 8 9 10 11 12 13 141 6 7
Number of S35Reps Selected from Each Superfamily

Figure 3.13. The percentage o f correctly assigned dom ain boundaries (w ithin 15 residues o f the 

m anually validated boundary) against varying num ber of superfam ily representatives.
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3.3.3 Comparison o f CATHEDRAL performance in domain 

boundary assignment using Sequence Based HMMs

The ability of CATHEDRAL to accurately delineate protein chains into their composite 

domains was compared to the performance achieved using HMMs. The test dataset was 

scanned against a library of HMMs built from each S35 sequence in CATH.

Domain boundaries were assigned to the query chains in the same way as CATHEDRAL, 

but using the HMM E-value instead of the CATHEDRAL SVM score to rank hits. The 

HMM method was only able to discover 65% of domain folds within the dataset chains. 

One of the main reasons for this low coverage was that 11% of the chains did not match 

any CATH domains HMMs, using an E-value threshold of 0.001. This E-value threshold 

has been benchmarked to give a 5% error rate in previous analyses (Sillitoe et al. 2005). 

Of the domain boundaries assigned, only 33% were within 10 residues compared with 

76% for CATHEDRAL. The number of assigned domains would have been increased by 

using a less conservative E-value threshold. However, this would be accompanied by a 

decrease in the quality of the domain boundaries. The domain recognition performance is 

on a par with the method of Nagarajan and Yona (Nagarajan, Yona 2004). This method 

predicted the correct domain architecture for 35% of a data set of multi-domain PDB 

chains. However by incorporating structural information they were able to increase the 

percentage of boundaries, within 10 residues, to 63%.
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3.4 Discussion

The first step in the classification of proteins domains into structural families is the 

delineation of multi-domain chains into their composite domains. This work presented 

the optimisation and benchmarking of a protocol for domain boundary assignment in 

multi-domain proteins (CATHEDRAL), which exploits the recurrence of folds in 

different multi-domain contexts.

CATHEDRAL combines two established structural comparison algorithms in order to 

develop a fast and accurate protocol for domain assignment and ultimately homologue 

recognition. For 76% of the test set, all domain boundaries within the multi-domain 

chains were correctly assigned within 10 residues compared to 33% with HMMer. This 

shows considerable improvement over a previous consensus protocol of automatic 

domain boundary assignment. For this only 10-20% of domains on average could be 

identified as having reliable boundary assignments from agreement between 3 

independent methods (Jones et al. 1998).

CATHEDRAL misses 10% of the domains in its target dataset of multi-domain chains. 

30% of these are missed because they are two small (<3 secondary structures) and are not 

recognised by the CATHEDRAL protocol due to an inability to describe a domain as a 

graph when there are less than three edges (Harrison et al. 2003). 20% are distorted or 

irregular structures that give poorly defined graphs. The remaining 50% are missed 

because they do not pass the GRATH score similarity cut-offs, as the relatives are too 

distant and related structural motifs in neighbouring fold groups are better matched.

The domains that CATHEDRAL misses highlight the fact that although CATH 

classification of protein folds gives a discrete description of fold space some highly 

populated regions of fold space would perhaps be better represented as a continuum 

(Orengo et al. 1993). Koppensteiner et al (2000) noted that it is possible to “walk” from 

one a / B sandwich fold to another, through the extension of a / B motifs. Furthermore
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Harrison (2002) showed that extensive overlap between fold groups are observed due to 

large common structural motifs.

An important insight gleaned in this chapter is the importance of the measure used to 

score structural similarity. Kolodny and co-workers (2005) showed how geometric 

scores based on the RMSD are often better discriminators of fold space than the native 

scores employed by many algorithms which often perform better at detecting the closest 

structural neighbour. Also shown was the importance of achieving a global alignment in 

terms of domain boundary assignment. The development of an optimal SVM approach in 

the CATHEDRAL protocol which combined different types of scores helped 

significantly in identifying domain boundaries with multidomain structures.
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4 Benchmarking Methods for 

Detecting Homologous Relationships 

between Proteins

4.1 Background and Aims

Homologues can be described as proteins that share a common, evolutionary ancestor. 

The motivation for the development of reliable systems to recognise protein homology is 

to further the understanding of how proteins evolve, particularly the evolution of new 

functions. This will assist in improving the accuracy of functional annotation, through 

homology. In the absence of other biological information the detection of homology is a 

prerequisite step towards understanding the function of a new protein. Evidence for an 

evolutionary relationship between two proteins can be extracted from their sequences, 

their structures and also the function they perform. In this chapter, several methods for 

detecting homology are optimised and benchmarked.

4.1.1 Using Sequence Similarity to Assess Homology

Sequence provides the most direct and unambiguous form of evidence for homology, as 

homologous proteins will have descended from a common ancestor with a common 

sequence. Over evolutionary time the sequences diverge and become more dissimilar 

through random mutations, insertions and deletions of amino acids.

Brenner (1998) showed that pairwise methods of sequence comparison such as BLAST 

(Altschul et al. 1990) can detect homologous relationships when the sequence identity is
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above 30%. However for more distant homologues (sequence identity below 30%) only 

half of the relationships can be detected by pairwise sequence comparisons. More 

sophisticated methods scan query sequences against a library of sequence profiles 

representing different evolutionary families. Sequence profiles are essentially patterns 

derived from a multiple sequence alignment where each position in the sequence has 

been assigned a probability value for each amino acid residue type based on its observed 

frequency. Such methods include HMMer (Eddy 1996), SAM (Karplus et al. 1998) and 

PSI-BLAST (Altschul et al. 1997).

Benchmarking of sequence methods to detect remote homology requires a dataset of 

known evolutionary relationships between protein domains. As 3D structure comparison 

has previously been shown to detect more distant evolutionary relationships than 

sequence comparison methods, classifications of domain structure have been exploited in 

benchmarking sequence based remote homology detection methods (Sadreyev, Grishin 

2003;Park et al. 1998;Sillitoe et al. 2005). Park et al (1998) used a dataset of SCOP 

structural homologues to show that profile-sequence methods can identify three times as 

many homologues as sequence-sequence methods at sequence identities below 30%. A 

more recent development is the advent of profile-profile methods, which scan a sequence 

profile against a library of profiles. Profile-profile methods include COMPASS 

(Sadreyev, Grishin 2003), prof sim (Yona, Levitt 2002), LAMA (Pietrokovski 1996), 

PRC (Madera 2006) and HHSearch (Soding 2005).

Section 1.3.1 in Chapter 1 describes the most common types of sequence comparison 

methods and how their algorithms attempt to recognise and define sequence similarity. 

The sequence methods analysed in this chapter include BLAST, PSI-BLAST, the HMM 

based methods SAM and HMMer and the HMM-HMM profile method PRC. These 

methods were compared with the goal of determining the method that best recognises 

homologous relationships particularly remote relationships that are expensive in terms of 

curation time when classifying new proteins into protein family resources.
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4.1.2 Using Structural Similarity to Assess Homology

Chothia and Lesk (1986) demonstrated that structure is more highly conserved than 

sequence during evolution. Therefore structural comparison methods provide a useful 

tool for gleaning evidence of homologous relationships even when there is no longer any 

detectable sequence similarity. However structural similarity should not be used alone to 

gauge homology since it has been hypothesised that evolutionary unrelated proteins may 

have similar folds because there are limited number of ways of packing a-helices and P- 

sheets in three dimensions (Chothia 1992).

A number of structure comparison algorithms were assessed to determine their 

performance in homologue recognition. These included in-house methods such as 

CATHEDRAL and SSAP and a number of other publicly available methods 

STRUCTAL, DALI, LSQMAN and CE. See Section (1.3.2.3) in the Introduction for 

detailed descriptions of SSAP, STRUCTAL, DALI, LSQMAN and CE and Section 3.2 

for a detailed description of CATHEDRAL.

In Chapter 2 various data was presented that highlights the high degree of structural 

variability observed between homologous protein domains in some domain families. 

Methods that capture this intra-superfamily variability and use this information to guide 

the classification of new domains into the family may therefore be useful. As mentioned 

in Section 2.2.2 the CORA algorithm can multiply align structural relatives from a 

domain superfamily to identify the consensus positions and capture their most conserved 

structural characteristics (Orengo 1999). Furthermore information is encoded in a 

consensus 3D template that new relatives can be scanned against using the CORALIGN 

program. Orengo showed on four large CATH superfamilies that the CORALIGN 

contact score was better at separating analogous from homologues than the pairwise 

SSAP score (Orengo 1999). In this chapter structural profiles were benchmarked to see if 

they gave a more sensitive signal in the detection of remote homologues than using pair

wise comparisons.
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4.1.3 Using Functional Similarity to Assess Homology

Functional conservation between two protein domains is also an indicator of homology. 

Studies of enzyme families have shown that even remote paralogues can perform similar 

reaction chemistry as evidenced by the detection of common intermediates along the 

reaction pathway even when they are acting on different substrates (Teichmann et al. 

2001;Todd et al. 2001). Many bioinformatic resources now hold data in the form of 

annotations describing the functional properties and biological roles of proteins. For 

example ENZYME (Webb 1965) provides a four digit classification of all known 

enzymes where the first three describe the catalytic action of the enzyme and fourth digit 

denotes the substrate specificity. The KEGG resource (Kanehisa, Goto 2000) is a 

collection of manually drawn pathway maps presenting knowledge on molecular 

interaction and pathway networks. The database COG (Tatusov et al. 2003) presents 

Clusters of Orthologous Proteins phylogenetically classified from the completed 

genomes. These ‘COGs’ are often associated with a specific functional annotation.

The majority of annotation data is written as scientific natural language, which is suitable 

for human digestion but poses problems for machine processing. Ontologies provide a 

way of organising data in a manner that is still accessible to humans but at the same time 

can be exploited computationally. They provide a set of vocabulary terms that have well 

defined relationships between them, namely the ‘is-a’ relationship between parent and 

child term and ‘part o f  between a part and the whole.

The Gene Ontology (Ashbumer et al. 2000) or GO is an important bioinformatic 

ontology aiming to provide consistent descriptors of proteins in every species. The 

resource is comprised of three orthogonal taxonomies which describe a proteins 

molecular function, its role in biological processes and its association with other cellular 

components. GO contains about 23,000 ‘phrases’ (as of May 2007) held in a Directed 

Acyclic Graph (DAG), where each term may have multiple parents. For example, an 

ATP-dependent DNA helicase is a child of ‘DNA binding’, ‘DNA helicase’ and ‘ATP- 

binding’.
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Using functional data to infer evolutionary relationships poses two major challenges. 

Firstly how do we annotate the protein domains with functional descriptors and secondly 

how do we compare these descriptors in a meaningful way?

The most reliable and specific method of functionally annotating proteins is by manual 

analysis. Manual annotation involves skilled biologists exploiting a plethora of 

information from many resources to make an informed description of the protein’s 

function. Such processes are obviously slow and so cannot be applied to provide 

functional descriptors for all proteins. Electronic annotation methods aim to provide a 

fast and efficient way of associating functional descriptors to a large number of proteins. 

The Gene Ontology Annotation (GOA) database (Camon et al. 2004) provides high 

quality electronic and manual annotations to the UniProt Knowledgebase. GOA takes 

advantage of existing references, resources and publications to assign GO terms to 

UniProt entries. For example a UniProt entry may have an existing EC annotation in its 

descriptor field and therefore using an existing mapping of EC numbers to GO terms the 

entry can be assigned a GO term.

As mentioned in Section 2.1 of Chapter 2 studies have shown that at a conservative 50% 

sequence identity homologous domains are very likely to have related functions (Todd et 

al. 2001;Rost 2002;Tian, Skolnick 2003). Furthermore distant paralogues that have been 

recruited into a new pathway to perform a new function often still have a conserved 

reaction chemistry even if the substrate has changed (Todd et al. 2001). Therefore safe 

thresholds of global sequence similarity can be used to infer ftinctional annotation from 

one protein to a close homologue.

As annotations can be assigned through different approaches that have implications on 

the confidence of the annotations, it is important to capture information on the method 

used to assign the annotation. GO annotations have an associated field attributed to the 

source of the annotation. A controlled vocabulary allows the traceability of an annotation 

to be accountable. The annotation must indicate what kind of evidence was used to 

support the association between protein and GO term. The gene ontology provides 12
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possible categories that can be used to assign a source to a particular annotation. Such 

sources can be from the literature as is the case with Traceable Author Statements (TAS), 

direct from experimental evidence as in IDA (Inferred from direct assay), lEP (Inferred 

from Expression Pattern). They can be inferred from sequence or structural similarity 

(ISS) or from electronic annotation (lEA) also.

In order to determine the functional similarity between two protein, Lord et al (2003) 

developed a method that measured the semantic similarity between entities in the Gene 

Ontology, this is described here as the GOSIM method. Semantic similarity relies on 

extracting the knowledge content of the associated annotations, with more specific terms 

(for example ‘transmembrane receptor’) being semantically more similar than less 

specific terms (for example ‘receptor’). There are various approaches to measure 

semantic similarity using the structure of the ontology but the vagaries of the GO 

hierarchy limit the suitability of many of them. For example measuring path distances 

between terms is inappropriate because the assumption that all links between terms are of 

equal weight is not strictly true for GO. Another hypothesis often applied is that the 

greater the distance from the root of the graph, the more specific the term. However GO 

varies widely in the distance of the nodes from the root so this approach is also 

problematic.

Instead of relying on the structure of GO, Lord and co-workers used a corpus of 

annotations to examine the usage of the terms as proposed by Resnik (1999). This relies 

on the premise that terms that are found frequently in the corpus have less information 

content than terms that are rare. In the calculation of the information content for each 

term in the corpus it is important to acknowledge that the observation of a term implicitly 

leads to the observation of all terms in the pathway from that term back to the root of the 

ontology. For example if the term ‘receptor’ occurs then the terms ‘signal transducer’ 

and ‘molecular function’ must also have occurred i.e. a term occurs if that term, or any of 

its children terms occur. Lord calculates the probability for each term as the terms 

occurrence in the corpus divided by the number of times any term occurs. To measure 

the semantic similarity between two terms the probability of the ‘minimum subsumer’ is
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calculated. This score is the negative natural log of the information content (or 

probability) of the shared parent of the two terms. Using a corpus of human proteins in 

SWISS-PROT, Lord and co-workers showed that there was correlation between sequence 

similarity and semantic similarity for these proteins and concluded this served as a good 

validation of the semantic similarity measure. In this chapter, the Lord method for 

comparing the functional similarity of two proteins was used to improve the recognition 

of homologous relationships and its performance in this context was assessed.

Other approaches to comparing the functional properties of proteins include methods that 

seek similarity in the functional keywords with which the proteins are annotated. The 

SAWTED (Structure Assignment with Text Description) method of MacCallum et al 

(2000) was developed to compare SWISSPROT annotations with the goal of providing 

an automated function filter for PSI-BLAST scans. The authors showed that by 

comparing SWISSPROT terms they could increase the number of remote homologous 

identified by PSI-BLAST for a given error rate. The method implements the vector- 

cosine model of text retrieval described by Wilbur and Yang (1996). As with the 

GOSIM method SAWTED relies on calculating the information content of a word based 

upon its frequency of use in the corpus. The methodology of the SAWTED algorithm 

can be applied to any corpus of biological data to assess the similarity of the associated 

annotations. In this chapter the method is applied to text information in the PDB file of 

each protein domain and optimised to detect homologous relationships.

This chapter describes the optimisation and benchmarking of various algorithms that 

detect the similarity of proteins sequences, structures and functions and assesses their 

performance in identifying homologous relationships. The suitability of methods to 

provide evolutionary evidence of homology in each category was assessed independently 

and therefore the analysis is presented in 3 sections; sequence similarity methods, 

structural similarity methods and functional similarity methods. In the next chapter a 

machine learning method is described which attempts to combine all three types of 

measures to increase performance in homologue detection.
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4.2 Methods

4.2.1 Benchmarking Sequence Comparison Methods

Pairwise (BLAST), profile and HMM based methods (PSI-BLAST, SAM and HMMer) 

and the HMM-HMM profile method PRC were benchmarked using a number of 

sequence data sets from version 3 of CATH. To gauge the ability of the different 

methods to detect homologous relationships, three separate sets that varied in difficulty 

were constructed. The ‘S35’ set contains domains with 35% or less sequence identity to 

any relative in the set, the ‘S20’ set contains domains with 20% or less sequence identity 

to any relative and finally the ‘SIO’ set contained domains that had only very remote 

homologous relationships no greater than 10% sequence identity. The S35 set contained 

6570 domains from 937 superfamilies. The S20 set contained 3144 domains from 482 

superfamilies and the SIO set 1434 domains from 288 superfamilies.

4.2.1.1 Benchmarking Procedure

HMMer, SAM and PRC require HMM models of sequence families as part of their 

protocol. Models were built using the SAM-T2K protocol, with each sequence in the S3 5 

dataset as a seed (7841 for CATH v3.0) on the GenBank nr database (Benson et al. 

2006). The alignments generated in the iterative HMM procedure were used to generate 

the PSSM used for the benchmarking of PSI-BLAST. HMMer and PRC models were 

generated by converting SAM models using Martin Madera’s convert.pl script 

(http://www.mrc-lmb.cam.ac.uk/genomes/iulian/convert/convert.html) and calibrated 

with 1000 random sequences.

Each dataset (S35, S20 and SIO) was scanned all-against-all using each method. For 

BLAST, this is sequences against sequences, for SAM/HMMer sequences against HMMs 

and for PRC this is HMMs against HMMs. For PSI-BLAST, profiles were scanned
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against CATH sequences (as well as GenBank to provide a sufficient background), 

allowing up to 20 iterations. Each method was executed using default parameters.

For each method and dataset all the hits from the all against all scan are ranked by E- 

value and at 10 fold E-value cut-offs the coverage is plotted against the error rate. The 

error rate or Error Per Query (EPQ) can be defined as the number of false positives 

observed at a particular E-value threshold divided by the number of true positives and 

false positives observed up to this point. The coverage is simply the percentage of true 

positives observed. These are similar to the ROC curves described in Section 3.2.4.1.1 

where the proportion of true positives and false positives is plotted.

EPQ provides a more intuitive reading of the results enabling the coverage at a given 

number of false positives to be attained. This is particularly useful when the 

benchmarking dataset has a large disparity in the number of true and false positives as is 

the case here, or when the method does not give you a true all against all comparison.

4.2.1,2 Exceptions and Rules

When benchmarking methods it is important to use clear definitions of true and false 

positives. Here a true positive is defined as a non-trivial true superfamily match and a 

false positive as a non-ambiguous false superfamily match.

There is no value in allowing a true positive to be counted when a sequence hits itself as 

this is a trivial detection. Similarly in the case of the HMM methods a trivial match also 

includes a match between a model and sequence that is contained in that model and this is 

therefore ignored.

At the topology level of the CATH hierarchy all domains share the same core fold, and 

within each fold domains are clustered into superfamilies where a clear evolutionary 

relationship exists. Two domains which share the same fold but are in different
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superfamilies may be homologues but there may not currently be enough evidence of an 

evolutionary link (through sequence, structure and function). The relationship may have 

been missed by existing homologue detection methods. The relationship can therefore be 

defined as ambiguous and several groups have therefore opted to discount matches 

involving proteins from the same fold group, but different superfamilies (Soding 2005). 

These ambiguous matches are therefore simply ignored in the benchmarking calculations. 

For the purpose of benchmarking any hit between two sequences/models that belong to 

different superfamilies but the same fold are neither counted as true positives or false 

positives.

Previous benchmarks based on structural classifications have yielded unexpectedly poor 

performance for profile-profile methods (Soding 2005). This was shown to be caused by 

the fact that very remote homologues had been classified as unrelated in the gold standard 

structural classification (SCOP in the case of Sodings study). Such exceptions occur due 

to the top down hierarchal nature of such databases and due to the duplication of 

repeating structural motifs (for example the beta propellers) that are evolutionary related 

but have different 3D structures (in the case of the beta propellers differing numbers of 

beta sheets or “blades”) (Jawad, Paoli 2002).

Matches between different structural families in CATH by sensitive profile-profile based 

methods have been manually analysed by the CATH curation team and where validated 

as homologues used to provide information on acceptable ‘crosshits’ between families. 

These ‘crosshits’ form a list of exceptions which when observed in the benchmarking 

protocol are also counted as neither a true positive nor a false positive. Recent studies by 

Reid (2007, In Press) showed that an automated procedure of selecting potential crosshits 

performed with comparable accuracy when compared to manual curation. This method 

assigned allowed crosshits to domain pairs from different CATH fold groups where the 

E-value for any sequence method was less than 0.01 and the local structural similarity as 

defined by SSAP yielded a SAS score less than 8Â. This approach reduces the number 

of false positives for those matches which have a high degree of local structural similarity 

and which therefore might reasonably be assumed to be homologues. The automated
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crosshit detection method found -87% of those crosshits defined manually by experts 

(Table 4.1). In the work presented in this chapter the automated crosshit exception 

procedure was also used.

Curated Exceptions (2100) SAS8 Exceptions(2051)
FAD/NAD-binding domain
(3.50.50) vs. Rossmann fold
(3.40.50)

75.1% (1674) 66.9% (1371)

Neuraminidase (2.120.10) vs. 
Methylamine Dehydrogenase 
(2.130.10)

12.5% (279) 13.6% (279)

Methanol Dehydrogenase 
(2.140.10) vs. Methylamine 
Dehyrdrogenase (2.130.10)

4.3% (96) 4.7% (96)

PCNA (3.70.10) vs. Leucine- 
rich repeat (3.80.10)

1.3% (30) 1.5% (30)

Neuraminidase (2.120.10) vs. 
Methanol Dehydrogenase 
(2.140.10)

0.8% (17) 0.8% (17)

Tachylectin-2 (2.115.10) vs. 
Neuraminidase (2.12.10)

0.2% (4) 0.2% (4)

100% (2100) 87.6% (1797)

Table 4.1. Curated exceptions for PRC on the ‘S35’ dataset at an E-valne cnt-off of 0.01, compared 

with those produced in the same conditions using the SAS-8 heuristic. The numbers in the column 

headers show the total number of exceptions for each class. The CATH codes of each type of 

exception are shown in brackets.

4.2.2 Benchmarking Structural Comparison Methods

The dataset for the benchmarking of the different structural algorithms was the same set 

as described in Section 3.2.2 encompassing 6003 sequence diverse domains from 

different sequence families (S35Reps) in CATH v2.6.0. These domains included 

representatives from 907 folds and 1572 superfamilies from all the four classes of the 

CATH classification (mainly alpha, mainly beta, mixed alpha/beta, and those domains of 

few secondary structures).
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Again as described in Section 3.2.2 a second dataset that represented a subset of CATH 

v2.6.0 and SCOP vl.65 was also used in this analysis. The CATH-SCOP dataset 

contained 1779 sequence diverse domains encompassing 406 folds and 709 

superfamilies.

4.2,2,1 Pairwise Domain Structure Comparison

The combinatorial method CATHEDRAL and the residue based SSAP were 

benchmarked against other publicly available structural comparison methods, 

STRUCTAL, DALI, LSQMAN and CE to assess their abilities to identify homologous 

relationships.

The benchmarking protocol was identical to that described in Section 3.2.3. An all 

against all structural comparison of the 6003 sequence diverse CATH domains from v2.6 

was performed and the analysis was repeated on the CATH-SCOP dataset.

ROC curves (see Section 3.2.4.1.1) were calculated for all methods on their ability to 

detect homologous relationships for both the CATH dataset and the CATH-SCOP subset. 

All hits from the all against all comparison on each dataset were ranked based upon the 

methods native score and the error rate plotted against the coverage.

As shown in previously in Section 3.3.1.2 the ability of the structural comparison 

methods to detect correct fold relationships varied with the scoring schemes used. The 

geometric SAS score (see Section 3.2.4.1.3) was shown to be a better discriminator of 

fold space than the native score for nearly all methods. Therefore ROC curves were also 

plotted using the SAS score to determine how well all the methods can recognise 

homologous relationships using this scoring scheme.

For all these scenarios true positives were defined as matches between homologous 

domains and false positives defined as non-ambiguous non homologous matches. Non-
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ambiguous is defined as described above (see Section 4.2.1.2) i.e. where hits between 

protein domains do not show significant structural similarity to place them in the same 

fold group.

As shown previously in Section 3.3.1.3 of Chapter 3 the ability of a method to completely 

delineate fold space in a ROC curve analysis does not necessarily correlate with its ability 

to recognise the closest fold match for a particular domain. Therefore the ranking of the 

correct superfamily in the list of matches was also investigated.

For each domain scaimed against both the CATH and CATH-SCOP dataset, the matches 

are sorted based on the appropriate score. The frequency of producing a correct match at 

a particular rank was calculated and a graph plotted showing the cumulative percentage 

of correctly assigned homologous superfamilies at each descending rank. Plots were 

made based both on the structure comparison methods native score and the geometric 

score SAS.

4.2,2.2 CORALIGN -  Profile Based Structural Alignment

As mentioned in Section 4.1.2 CORALIGN is a structural alignment method that scores 

the comparison of a query structure against a 3D template on the basis of shared contacts. 

Because some of the superfamilies in CATH are very structurally diverse (e.g. the P-loop 

Hydrolases) Structural Sub-Groups (SSGs) were first identified within each superfamily 

in v2.6 of CATH in order to improve the quality of the multiple structural alignments 

used to generate the 3D templates for each superfamily. An SSG can be defined as a 

cluster of non-identical homologous domains that have a structural similarity defined by a 

SSAP score greater than or equal to 85 and a residue overlap of greater than 60%. The 

clusters are created by directed multi-linkage clustering and a total of 1885 clusters with 

greater than one member were created from the 1572 superfamilies in CATH v2.6. The 

domains in each SSG were then aligned using the CORA algorithm.
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CORA generates consensus 3D information in the form of contact plot. A contact plot 

being defined as a 2D matrix, labelled horizontally and vertically with the protein’s 

residues, with the cells of the matrix labelled depending on whether pairs of residues are 

in contact in the structure. Contacts are identified if the Cp atoms from each residue pair 

are within 8Â separation. To create the consensus plot CORA generates conformant 

contact plots using the conserved positions in the multiple alignment to account for 

insertions and deletions. Finally these conformant plots are overlayed for each protein 

in the alignment to detect highly conserved residue contacts.

The program CORALIGN can then be used to compare a new protein structure against 

the 3D consensus template for a particular domain superfamily. CORALIGN exploits the 

same double dynamic programming algorithm of SSAP (Taylor, Orengo 1989) to 

compare consensus structural environments (i.e. average vectors) between the template 

and target. A contact based score is produced which is the percentage of completely 

conserved contacts in the template structure that are also present in the target structure.

The same 6003 sequence diverse dataset detailed above was scanned against a library of 

CORA templates built from all the 3D SSGs and ROC curves produced to determine the 

performance of CORALIGN in homologue recognition.

4,2,3 Implementing and Benchmarking Function Comparison 

Methods

Two methods, GOSIM and SAWTED, for comparing functional annotations were 

benchmarked for their ability to both recognise homologous protein domains and also 

homologous domains with the same function. For the purpose of benchmarking, CATH 

was used as the standard for homology and the Enzyme Classification (EC) was used for 

validating functionally related homologues. The PDBSprotEC (Martin 2004) database, 

linking PDB chains to EC numbers via SwissProt, was used to assign the EC mapping of
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a PDB chain to all CATH v2.6 S35Reps within that chain. This gave 2823 S35Rep 

domains with an associated EC annotation from the 6003 S35 Rep domains in CATH.

4.2.3.1 GO Mapping to CATH Domains

All 6003 sequence diverse (S35Reps) domains from CATH v2.6 were annotated, where 

possible, with GO terms using the GOA multispecies UniProt to PDB electronically 

inferred mapping. The GOA mappings are to the protein chain and the associated GO 

terms are then inferred to all domains within the chain. This mapping resulted in 3250 

S35Reps with at least one GO term assigned. Direct functional annotation achieved just 

over 54% coverage of CATH domains in the dataset. Further annotations were obtained 

using homology to transfer functional information.

As described in Section 2.3.4 an Intermediate Sequence Library (ISL) was constructed by 

scanning UniProt against the CATH HMM library described in section 2.2.3.1 

Homologous sequences were identified as those hits with an E-value < 0.001 and greater 

than 60% sequence overlap. These homologous sequences were then clustered into 

sequence families using directed multi-linkage clustering at sequence identity thresholds 

of 95%, 60% and 35%. By inferring GO annotations from clustered genomic sequences 

to CATH domains that are in the same 95% sequence identity cluster the coverage of 

functional annotations increases to 57% of CATH domains. Inferring at 60% sequence 

identity increased coverage to 60% and inferring at 35% sequence identity increased 

coverage to 64%. This gave four datasets termed GOA ID, GOA S95, GOA S60 and 

GOA_S35.

The GOSIM method requires a corpus of annotations to calculate the probability of 

observing each GO term and to calculate its subsequent information content. The GOA 

multispecies UniProt mapping was used as a corpus and the frequency of each GO term 

in the corpus calculated. To compare the semantic similarity of each term the Lord 

method described in Section 4.1.3 was used (Lord et al. 2003).

149



For each dataset the ability to recognise homologous and functional relationships was 

explored using ROC curves.

4.23.2 Using SA WTED to Compare PDB Functional Information

Many protein structures have no associated functional annotation in terms of GO or EC. 

Inferring annotations from homologous sequences can increase the coverage but this has 

a trade-off in the accuracy of the inferred annotation. Each CATH domain has an 

associated PDB file providing the 3D coordinates of the structure. As well as the 

structural information each PDB file has a series of fields with text information about the 

protein, including a ‘header’, a ‘title’, a ‘compound’ field and a ‘keywords’ field. For 

example the PDB file for the structure Icuk contains the header ‘Helicase’, the title 

‘Escherichia Coli RUVA Protein’, and has associated keywords ‘DNA Repair, SOS 

Response, DNA-Binding, DNA Recombination and Helicase’. By extracting this 

information from the PDB file for each CATH domain we can achieve 100% coverage of 

CATH domains having associated functional text information.

The SAWTED method of MacCallum (2000) as described in Section 4.1.3 can be 

implemented to score vectors of text from a corpus of knowledge. The text information 

in the header, title, compound and keywords fields was extracted from each of the PDB 

files associated with the 6003 S35Reps from version 2.6 of CATH to create the corpus. 

To reduce the noise unique words and words that were just numbers were removed. 

Vectors for all PDBs were calculated and scored, all against all, according to the vector- 

cosine model of text retrieval (Wilbur, Yang 1996). The similarity scores derived were 

modelled on a normal distribution and converted to Z-Scores.

The corpus described above contains many non-informative terms, such as conjunctions 

and many non-specific descriptions, ‘Protein’ for example. Although they appear with 

high frequency in the corpus they should be assigned a low information content and
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matching them should not yield a significant similarity score. In order to see the effect of 

limiting the corpus of text, used for comparing these terms, only text extracted tfom the 

PDB file that was also a SWISSPROT keyword was used.

For both the full and restricted corpuses the ability of the methods to identify homologous 

relationships and functional relationships was investigated.
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4.3 Results

4.3.1 Performance o f Sequence Comparison Methods in Recognising 

Homology

Five different sequence comparison methods were benchmarked against three different 

sequence datasets from CATH v3.0 (S35, S20 and SIO set) with the S35 set containing 

no sequences with greater than 35% sequence identity and so on. ROC curves which 

plotted the error per query against the percentage of true positives were produced for each 

data set. One can see from Figure 4.1(a-c) that the HMM-HMM method PRC 

outperforms all methods on all datasets. At a 5% error rate PRC achieves coverage of 

37% on the S35 dataset, 31% on the S20 dataset and 22% on the SIO dataset.

Interestingly PSI-BLAST is the next best performing method on the S35 dataset, 

outperforming the HMM based methods SAM and HMMer by achieving 25% coverage 

at a 5% error rate compared to 24% for SAM and only 17% for HMMer. This is perhaps 

surprising as previous analyses (Park et al. 1998;Madera, Gough 2002) had demonstrated 

that HMM based methods were significantly more sensitive than PSI-BLAST. Generally 

PSI-BLAST is used to build a profile with the query sequence, in this case however the 

profile was built with target2k. This means that PSI-BLAST had the benefit of using 

HMM technology in the construction of its profile. This may account for the increase in 

PSI-BLAST performance. Another factor may be the significant expansion of the 

sequence databases since the previous studies were done so that PSI-BLAST profiles may 

contain more information on remote homologues. The unusual curves associated with 

BLAST are due to the fact that the axes of EPQ plots are not independent and therefore 

there may be multiple values of y for a single value of x (i.e. the curve goes backwards).

Considering the more remote datasets, SAM performs equally as well as PSI-BLAST on 

the S20 dataset and significantly outperforms PSI-BLAST on the SIO dataset. Overall
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PRC is the best performing method outperforming all profile-sequence and sequence- 

sequence methods in remote homology detection.
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Figure 4.1(a-c). ROC curves plotting coverage against error per query for BLAST, PSI-BLAST, 

SAM, HMMer and PRC against three different datasets, (a) An S35 set where no hom ologues 

shared greater than 35% sequence identity, (b) a S20 set and (c) a SIO set.
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4.3.2 Benchmarking Structure Comparison Methods

4.3.2.1 Pairwise Structure Comparison Methods

ROC curves (see Figure 4.2) were plotted to assess the ability of the structure comparison 

methods to recognise homologous relationships. This was done on both the CATH and 

CATH-SCOP dataset for both the methods native and SAS score.

Figures 4.2(a) and 4.2(b) show the performance of the methods native scores. At a 2% 

error rate CATHEDRAL and DALI are the best performing methods. All methods show 

an increase in performance on the CATH-SCOP dataset compared to the CATH dataset. 

As stipulated in Section 3.3.1.2 the CATH-SCOP dataset is the agreement between the 

two classification protocols and therefore should contain fewer errors than the CATH 

dataset and also more easily classified structures and this may account for the increase in 

performance.

Figures 4.2(c) and 4.2(d) show the performance of the methods in identifying 

homologous relationships based on the SAS score. CATHEDRAL is again the best 

performing method at 2% error on both the CATH and CATH-SCOP datasets. An 

interesting observation is that for all methods there is either no significant improvement 

or a significant decrease in performance for classification based on the SAS score rather 

than the native score. This is interesting because when considering fold similarities (see 

Section 3.3.1.2) the SAS score was shown to be a better discriminator of fold space than 

nearly all methods native scores.

This is perhaps not surprising since the previous chapter showed that although SAS 

scores were better at distinguishing correct fold matches, the native score performed 

better at recognising the closest fold as the best match i.e. rank 1 in a list of matches.
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Figure 4.2(a,b,c,d). ROC curves plotted for different structural comparison methods where a 

positive match represents a true superfamily match. Plot 2(a) is based on the native score on 

the CATH dataset, 2(b) is based on the native score for the CATH-SCOP dataset. 2(c) is based  

on the SAS score for the CATH dataset. Plot 2(d) is based on the SAS score for the CATH- 

SCOP dataset.
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Performance in Identifying the Closest Homologue

In order to assess the performance in recognising the closest relatives in the superfamily 

each domain in the data-set was compared all against all and the matches produced sorted 

on the appropriate score. The frequency of producing a correct homologue match at a 

particular rank was then calculated for all query domains and the cumulative percentage 

of correctly assigned homologous superfamilies plotted at each descending rank. Again 

this analysis was performed on both the CATH and CATH-SCOP dataset.

Figure 4.3(a) shows the ranking performance of each structural comparison method using 

their native score on the CATH dataset and Figure 4.3(b) the CATH-SCOP dataset. 

SSAP finds the most homologous pairs (>95%) on both data-sets. Similar to before, 

most methods perform at least as well or better on the CATH-SCOP dataset. All methods 

perform worse using the SAS score rather than their native score in the ranking analysis 

consistent with finding the closest fold match as with fold recognition (see Section 

3.3.1.3).
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Figure 4.3(a,b,c,d). Plot of the percentage of correct superfamily relatives matched against the 

ranked native score for the (a) CATH and (b) CATH-SCOP dataset and the ranked SAS score 

for (c) CATH and (d) CATH-SCOP dataset.
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43.2,2 Benchmarking the Performance of 3D templates in Homologue 
Recognition

As described in the methods, CORALIGN is a structural alignment method that scores a 

query structure against a 3D template on the basis of shared residue contacts. CORA 3D 

templates were created for structural sub-groups within superfamilies. The 6003 sequence 

diverse domains of v2.6 of CATH were scanned against these templates using 

CORALIGN. To assess the ability of the method to find remote structural homologues 

true positives were considered to be matches between a query domain and a structural 

sub-group from the same superfamily that does not contain the query domain. When 

comparing the pairwise methods against CORALIGN, to ensure a fair comparison with 

the pairwise methods, homologous domains which match by pairwise methods but both 

reside in the same structural sub-group were ignored.

Figure 4.4 shows a ROC curve of CORALIGN's performance against SSAP in 

recognising distant homologues. Surprisingly the pairwise SSAP method achieves a 10% 

greater coverage than the profile method CORALIGN. Perhaps the SSGs need to be 

identified at a higher SSAP score in very structurally diverse families to ensure a reliable 

multiple structural alignment (i.e. SSAP score of 90) though this has not yet been tested. 

This could be important for the P-loop hydrolases which are highly structurally variable 

and contain (211) SSGs. Misaligned relatives will result in noise in the contact plots and 

reduce the signal for conserved positions.
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Figure 4.4. ROC curve show ing the performance of the profile based CORALIGN method  

against SSAP in the recognition of remote protein homologues.

Figure 4.5(a-b) shows the performance of CORALIGN & SSAP in distinguishing non

related proteins, analogous proteins (those in the same fold but different superfamilies) 

and homologous proteins. To test which method best discriminates between the 

homologous and analogous populations a heteroscedastic two-sample unequal variance 

TTEST was calculated, with the hypothesis that the two distributions are in fact one i.e. 

the scores cannot discriminate between analogous and homologues. Using the SSAP 

scores the probability of the two distributions being the same is 0.007 compared to 

CORALIGN which is 0.06. This shows that SSAP better discriminates between 

analogous and homologous proteins and would be a better approach to use in a combined 

homologue detection protocol.
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Figure 4.5. Graphs show ing the distribution of scores from CORALIGN(a) and SSAP(b) on 

non-related proteins (pink), analogous proteins (green) and hom ologous proteins (blue).
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4.3,3 Assessing the Performance o f GOSIM and SAWTED in 

recognising functionally related homologues

4.3.3.1 GOSIM

Figure 4.6 shows the performance of the GOSIM methods for each of the four datasets 

(GOA ID, GOA S95, GOA S60, GOA S35) in terms of identifying homologous and 

functional relationships. The GOA S35 dataset shows a slight increase in performance 

compared to the others in both identifying homologous and functional relationships 

though this may not be significant. Todd et al (2001) showed that at 35% sequence 

identity 90% of homologous domain pairs shared related functions (to three levels of the 

enzyme classification). Therefore although using a 35% sequence identity cut-off 

increases the proportion of homologous with functional annotations, there is a cost in that 

a small percentage of these relatives will have been incorrectly annotated. However the 

ROC curve showing the increased performance of the S3 5 dataset shows that any 

increase in error has been more than compensated for by an increase in coverage.

The GOSIM method is better at identifying functionally related homologues than 

functionally unrelated homologues with the GOA S3 5 dataset identifying 15% more 

functional relationships than homologous relationships for a 5% error. This is 

unsurprising as remote homologues may have diverged in their functions and therefore 

would be annotated with unrelated GO terms.
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Figure 4.6. ROC curves show ing the performance of the GOSIM method of comparing the 

semantic similarity of GO terms on four differently annotated data-sets. Figure (a) shows the 

performance based on hom ology and Figure (b) show  the performance based on identifying  

functionally related hom ologues as defined by their enzym e classification.
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4.33.2 SAWTED

As described in Section 4.2.3.2 the SAWTED algorithm was utilised to create text 

vectors from each PDB file containing CATH version 2.6 domains. Words were 

extracted from the ‘Title’, ‘Header’, ‘Compound’ and ‘Keywords’ field. A restricted 

corpus was also created that excluded any extracted words that were not SWISSPROT 

key terms. As with benchmarking GOSIM, the ability to identify both homologous and 

functional relationships was explored.

Figure 4.7 shows that as for the GOSIM method, SAWTED achieves higher performance 

when trying to delineate functionally related homologues compared to all homologous 

relationships, with an increase in coverage of 30% at a 5% error. On both benchmarking 

criteria using the full corpus yields better results than the SWISSPROT keyword 

restricted corpus. This suggests that the method can handle noise in the full corpus as 

low information content and that some of the additional information in the full corpus is 

valuable.

4.3.3.3 Comparing GOSIM and SAWTED

To make this comparison possible the SAWTED dataset was restricted to only protein 

domains that were annotated with a GO term from the GOA S3 5 dataset so that both 

methods were benchmarked on the same protein pairs. It can be seen from Figure 4.8 

that the SAWTED method outperforms GOSIM in identifying both homologous and 

functional relationships, achieving 15% greater coverage at 5% error for identifying 

homologues and 40% greater coverage at identifying homologues with the same function.
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Figure 4.7. ROC curves show ing the performance of the SAWTED method of scoring text 

vectors extracted from the PDB on both the full corpus and a restricted corpus only containing  

SWISSPROT keywords. Figure (a) shows the performance based on hom ology and Figure(b) 

show the performance based on identifying functionally related hom ologues as d efin ed  by  

their enzym e classification.
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Figure 4.8. ROC curves show ing the performance of the SAWTED (Full Corpus) and GOSIM  

(GOA_S35 dataset) m ethods. Figure (a) shows the performance based on hom ology and Figure 

(b) show  the performance based on identifying functionally related proteins as defined  by  

their enzym e classification.
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4.4 Discussion

Detecting homology between proteins domains requires methods that compare different 

features of proteins, namely their sequences, structures and functions. This chapter 

presented the benchmarking of various methods used to detect homologous relationships.

For sequence comparisons profile-profile methods, such as PRC, outperform the profile- 

sequence and sequence-sequence methods at detecting remote homology, achieving an 

extra 10% coverage over any other method. By comparing a profile against a library of 

profiles it maximises the amount of evolutionary information in both the query and the 

target.

Structural methods are vital for the classification of very remote homologues when the 

sequence signal has faded. The analyses presented in this chapter coupled with the 

previous chapter highlight how important the choice of scoring scheme is. When 

attempting to recognise homologous relationships all methods benchmarked performed 

significantly better using their native score rather than the geometric SAS score.

Chapter 2 showed that in some homologous superfamilies there is a high degree of 

structural variation. It was therefore hypothesised that a method that captured the 

structural regions that are highly conserved across a superfamily might be useful in 

classifying remote homologues. With this in mind CORA was used to create 3D 

templates derived from Structural Sub-Groups (SSGs) and CORALIGN used to scan 

domain structures against a library of these 3D templates from CATH superfamilies. 

Surprisingly when CORALIGN was compared to SSAP, SSAP proved to be more 

accurate at recognising homologous relationships and also at separating analogues from 

homologues. A possible explanation for this may be that the conserved contacts currently 

identified by the CORA method are not in fact indicative of homology but simply 

represent the core of the fold. Alternatively, higher thresholds on structural similarity
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may be needed for clustering the SSGs to ensure more accurate alignements and less 

noise in the contact plots.

Finally different ways of comparing functional information was explored. Using the 

GOSIM method to compare the semantic similarity of GO terms it was shown that there 

was significant gain in performance achieved by extending functional annotations 

through inheritance. The performance on all data-sets was rather disappointing. This 

may be partly caused by the fact that some terms are not annotated fully, and have been 

given very general annotations, e.g. kinase, that result in low semantic similarity scores 

when compared against more comprehensively annotated terms e.g. serine-threonine 

kinase. A possible improvement in performance could be achieved by excluding general 

annotations, though such an approach would have a cost in decreasing the overall 

annotation coverage.

In contrast to the GO based methods, complete functional annotation of all domains in 

the dataset could be achieved by using the text information from the PDB files. The 

SAWTED method which compares vectors of text extracted from the PDB, outperformed 

the GOSIM method by as much as 40% when identifying functionally related 

homologues.

In summary, when classifying remote homologues, individual features may have 

diverged sufficiently between structures to make classification difficult if only one 

measure of similarity is used. In this chapter different methods of measuring protein 

similarity have been assessed for their performance in identifying homologous 

relationships. It is clear that for remote homologues the combination of different signals, 

sequence, structure and function, may give a more powerful signal for accurate 

classification into evolutionary families.

In the next chapter the outputs of the methods benchmarked here will be used as features 

for the construction and benchmarking of a machine learning classifier to predict protein 

homology.
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5 A Machine Learning Approach to 

Homologue Recognition

5.1 Background and Aims

Recent high throughput approaches to analyse biological systems provide vast quantities 

of data. The international genomics initiatives have resulted in the sequence and 

structure databases expanding exponentially over time. However the cost of such 

approaches is that large numbers of the newly deposited sequences and structures have no 

information about their function. To improve our understanding of the biological context 

of such entities, biological information associated with evolutionary related proteins can 

be used. Since only a small percentage of sequences are experimentally characterised 

(<10%) methods to quantify relatedness, that is to identify remote homology, are in great 

demand to bridge this knowledge gap.

Traditionally the classification of protein structure data, for example in CATH or SCOP, 

in terms of evolutionary relationships has been a largely subjective activity, guided by 

expert knowledge. The maturation of structural classification resources such as SCOP 

(Andreeva et al. 2004) has required a high degree of manual assessment but how long can 

these resources keep pace with high throughput structure determination?

CATH (Orengo et al. 1997) employs a semi-automated approach to protein structure 

classification. The structural comparison algorithms SSAP (Orengo, Taylor 1996) and 

CATHEDRAL (see Chapter 3) are used to define domain boundaries and assign fold 

groups based on the three-dimensional environment of residues. Classifying domains 

further into homologous superfamilies still requires manual analysis, particularly for 

remote homologues where sequence signals are weak.
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The FSSP resource of Holm and co-workers (1997) uses a fully automated approach to 

determine pairwise measures of homology between protein structures. The DALI 

algorithm (Holm, Sander 1998) is used to measure structural similarity in terms of a Z- 

score and the authors state that when the Z-score is greater than 6 and the sequence 

identity greater than 25%, there is a high probability that an evolutionary relationship 

exists. However, Hadley and Jones (1999) showed that the agreement with homologues 

identified by manual inspection in SCOP falls to below half when the sequence identity is 

below 20% and much less if the DALI Z-score is below 6. This highlights the problems 

of automated assignment of homology using fixed thresholds.

A principal difficulty in automated homology detection is the classification of proteins 

with the same fold into appropriate homologous superfamilies. This is difficult for two 

reasons. Firstly, as demonstrated in Chapter 2 different superfamilies show different 

tolerances to variability in sequence, structure and function, with some families 

seemingly well conserved in all attributes, while other families have diverged to such an 

extent that even the global structural similarity between remote homologues is negligible. 

Therefore, if two proteins have the same fold but are in different homologous 

superfamilies they are not necessarily unrelated by evolution, but may simply mean that 

there is not enough empirical evidence currently to be certain a relationship exists. 

Furthermore, due to a limited number of ways that a-helices and p-sheets can pack three 

dimensionally there is the possibility of convergence of evolutionary unrelated proteins to 

adopt similar folds (Chothia 1992). These scenarios result in a very broad range of 

values in sequence, structural and functional similarity observed between relatives in 

different protein fold groups and superfamilies. Therefore finding an automated 

approach towards classification which yields both a high coverage and a low error rate is 

problematic.

Another problem is that fold space is not uniformly populated, four architectures, a- 

orthogonal (1.10), the two-layer P-sandwich (2.60), two layer (aP) sandwiches (3.30) and 

the three-layer (aP) sandwiches (3.40) are very highly populated in CATH and the 

Protein Data Bank (PDB), comprising nearly 60% of all structural families having at least
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3 diverse relatives (<35%  sequence identity). Structural annotation of completed 

genomes suggest that the high populations of these architectures in the PDB is not simply 

due to over-sampling but genuinely reflects high occurrence in the genomes (Orengo, 

Thornton 2005). Many of these highly populated superfamilies are very structurally 

diverse with some relatives varying in size by fourfold or more. This all contributes to 

the difficulty of separating homologues from convergently folded analogues and 

delineating fold space in general.

Dietmann and Holm (2001) produced the most sophisticated and successful approach to 

automated classification of structural homologues to date. They aimed to replicate the 

SCOP protein structure classification with a method based on the premise that natural 

selection preserves structural and functional continuity within a diverging protein family. 

To overcome the difficulties of different protein families showing different rates of 

structural divergence, structural similarity was first used to cluster proteins into a discrete 

fold ‘dendrogram’. A neural network was trained against the fold-to-superfamily 

transition in SCOP (Murzin et al. 1995) using various features including DALI Z-score, 

sequence identity, conserved ligand contacts and ‘functional preference’. The neural 

network was then used to subdivide the identified fold groups into superfamilies based on 

these similarity measures. In a validation test against the SCOP classification 77% of 

homologous pairs were identified with 92% specificity and 85% accuracy (see Equations 

3.1-3.3).

Machine learning can be described as the ability of a system to improve its performance 

based on its past performance. In the context of homology recognition the concept is that 

by exposing the system to examples of protein homologues and non-homologues the 

‘machine’ can leam the rules of homology and therefore predict such relationships in 

unknown examples. Machine learning systems generally use non-linear classification to 

combine information about the training examples to produce some kind of prediction or 

classification. As detailed in Section 1.5 of the Introduction common examples of 

machine learning systems to tackle classification problems include artificial neural 

networks and support vector machines. Since the work of Holm et a l over 6 years ago
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showed encouraging results the use of machine learning techniques to combine different 

aspects of protein similarity to recognise homology seems a reasonable approach for 

optimally combining different evolutionary signals. Furthermore the sequence and 

structure databases have expanded considerably since then and the increase in 

information relating to homologues together with improvements in methods of structure 

comparison (see Chapter 3) and sequence profiles (Reid A et al. 2007) suggests that 

better performances in these machine learning approaches might be expected. In this 

chapter an artificial neural network has been used to combine sequence, structure and 

functional similarity measures. Further information on the construction and training of 

artificial neural networks can be found in the Section 1.5.1 of the Introduction.

This chapter shows the construction and benchmarking of an artificial neural network 

classifier to predict protein homology. This included the process of feature selection, 

architecture optimisation and finally optimising and benchmarking the final classifier. 

The results from algorithms quantifying the sequence, structure and functional similarity 

between protein domains were used to generate the features to train the classifier. This 

yielded a significant improvement in performance of the classifier when compared to the 

performance of the composite methods alone and other comparable techniques (e.g. of 

Holm et al).
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5.2 Methods

5.2.1 DataSets

Similar datasets to those employed in benchmarking the sequence methods (see Section 

4.2.1) were used to train, test and validate artificial neural networks designed to recognise 

homologous relationships. The benchmarking datasets comprised three separate sets 

containing increasingly remote homologues. These were constructed from version 2.6 of 

CATH.

An ‘S35’ set contains domains with 35% or less sequence identity to any relative in the 

set, an ‘S20’ set contains domains with 20% or less sequence identity to any relative and 

finally an ‘SIO’ set contained domains that had only very remote homologous 

relationships no greater than 10% sequence identity. The S35 set contained 5234 

domains from across 805 superfamilies. The S20 set contained 2934 domains from 549 

superfamilies and the S10 set 1495 domains from 362 superfamilies.

5.2.2 Data Generation ^Feature Selection

The best performing methods in terms of homology recognition from Chapter 4 were 

used to generate the features for the construction of the neural network. These included 

the profile-profile sequence comparison method PRC (Madera 2006), the structural 

comparison method, CATHEDRAL (see Chapter 3), the SAWTED method (MacCallum 

et al. 2000) to compare text vectors, the GOSIM method (Lord et al. 2003) to compare 

the semantic similarity of associated GO terms and a further method for comparing EC 

classification terms.

PRC Models were built using SAM-T2K (Karplus et al. 1998), with each sequence in the 

S35 dataset as a seed on the GenBank nr database. Each dataset (S35, S20, and SIO) was 

scanned all against all HMM against HMM.
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An all against all CATHEDRAL scan was performed for all 5234 domains in the S3 5 

dataset as described in Section 3.2.3.

GOSIM was used to compare the associated GO term domain annotations of all domains 

in each dataset. All domains were annotated with GO terms, where possible, using the 

GOA multispecies UniProt to PDB electronically inferred mapping, culminating in 54% 

of the CATH domains having at least one assigned GO term. To increase the annotation 

coverage further inference of GO terms from homologous genomic sequences was used. 

The procedure for inference is described in Section 4.2.3.1 of Chapter 4. Inferring GO 

annotations to homologous domains that share greater than 35% sequence identity 

increased the domain coverage by GO terms to 64%. Furthermore in the benchmarking 

procedure detailed in Section 4.3.3.1 this dataset outperformed the 60%, 95% and 

identical inferred datasets at recognising both homologous and functional relationships.

The SAWTED method, as detailed in Section 4.2.3.2 of Chapter 4, was re-implemented 

to compare the text information extracted from the PDB files of each CATH domain. 

Text from the ‘Title’, ‘Header’, ‘Compound’ and ‘Keywords’ fields of each PDB file was 

extracted and formed the knowledge corpus. Vectors of text from each PDB file were 

calculated and scored, all against all, using the vector-cosine model of text retrieval 

(Wilbur, Yang 1996) as described in Section 4.2.3.2.

As described in Section 4.2.3 in Chapter 4 the PDBSprotEC (Martin 2004) database, 

linking PDB chains to EC numbers via SwissProt, was used to obtain the EC mapping of 

a PDB chain for all CATH domains within that chain. This led to 47% of the S3 5 CATH 

domains having an associated EC annotation.
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From these methods the possible input features of the neural network are listed below and 

where appropriate the program used to obtain the information is shown in brackets;

Domain 1 length (number of residues)

Domain 2 length (number of residues)

Number of structurally equivalent residues (CATHEDRAL)

Number of positions in total structural alignment (including gaps) 

(CATHEDRAL)

Structural Alignment Score (CATHEDRAL)

RMSD (CATHEDRAL)

SAS score (CATHEDRAL)

E-Value for sequence similarity (PRC)

Functional similarity raw score (GO-SIM)

Functional similarity Z-Score (SAWTED)

EC conservation

A semi-exhaustive feature selection protocol was constructed. The generalisation error 

was first estimated using only the features extracted from CATHEDRAL, then the PRC 

features were added and finally all combinations of the functional features (GO-SIM, 

SAWTED and EC) were evaluated. This culminated in 9 datasets with between 7 and 11 

features.

5,2,3 Optimisation and Benchmarking Procedure

The artificial neural network package used was SNNS (Stuttgart Neural Network 

Simulator). The neural network was trained on pairwise sequence, structure and 

functional comparisons of protein domains and asked to produce a prediction of 

homology between 0 and 1 (0 for non-relative, 1 for homologue).
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Layered feed-forward neural networks were constructed with various architectures. One 

input layer comprising ten input units was connected to a hidden layer, connected to the 

one output unit. The number of hidden units was initially set to 2 x (number of input 

units) +1 as used by Dietmann and Holm (2001) and varied until optimised. All weights 

in the neural network were initialised to a random value +/- 1 prior to training.

For each dataset (S35, S20, SIO) the input features were normalised to be between 0 and 

1, and the datasets randomised and split into three partitions to form the training set, test 

set and validation set. The number of homologue and non-homologue examples in each 

set was balanced. This led to the S3 5 training, test and validation sets each containing 

27936 patterns, the S20 sets each containing 14364 patterns and the SIO sets each 

containing 3442 patterns.

A neural network was trained for each dataset (S35, S20 and SIO) using the standard 

back-propagation algorithm and the free parameters optimised. A binary activation 

function was used to provide a threshold type response on homologue recognition rather 

than a linear likelihood response. The early stopping technique was used to prevent the 

overfitting of the free parameters of the network. The error function (summed difference 

between desired and actual output) of the training set is monitored during learning and it 

can be expected to decrease over time until it converges on some value when the network 

has optimally learned the training set. The error function of the test set will fall and then 

rise once the neural network is overfitting towards the training set. Early stopping stops 

the training at the minimum error function of the test set, to ensure that the classifier is 

not biased towards the training set. Finally a validation set is passed through the trained 

neural network to assess the performance on unseen data.

For each dataset (S35, S20, SIO) the final validation set prediction result was measured 

using the Mathews Correlation Coefficient (MCC) (see Equation 5.4) and also plotted 

against the composite methods as a ROC curve. Accuracy is also used as a statistical 

measure of how well a binary predictor predicts each class based on the number of true 

positives and false positives observed in the validation set and is defined in Equation 5.1.
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Conversely sensitivity is the statistical measure of how well a binary predictor correctly 

identifies one class, in the context of this chapter homologous pairs for example (see 

Equation 5.2). Finally specificity is a statistical measure of how well the classifier 

identifies negative examples (see Equation 5.3).

TP + 7TV
dccurdcy = 7P + TA/ + fP + FN 

Equation 5.1. Accuracy equation.

TP
sensitiv ity  =

TP 4- FN

Equation 5.2. Sensitivity equation.

TN
Specificity  =

TN 4-FP

Equation 5.3 Specificity equation.

_ T P x T N  -  F P ^ F N
V(TP + FP){JP + FN){TN + FP){TN + FN)

Equation 5.4 M atthew's Correlation Coefficient Equation.

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

5.2.4 Superfold Classifier

As discussed previously certain folds and architectures are far more prevalent in the 

protein domain databases (e.g. CATH, SCOP) than others. These highly recurrent folds 

have been termed ‘Superfolds’ (Orengo et al. 1994). If a general classifier is built using 

data from these protein structure databases it will contain the same biases. This will lead 

to the classifier seeing more examples of relationships between these types of domains 

than between domains of rarer folds. Analyses of completed genomes (Marsden et al. 

2007) have shown that sequences adopting these Superfolds are found as frequently in 

the genomes as in the PDB and therefore an automated classifier with bias to frequently 

observed relationships may actually be of some benefit. However it was decided to 

investigate whether creating a separate classifier for each Superfold as well as a ‘generic’
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classifier for other relationships provides more discriminatory power than a single 

classifier.

Folds that had greater than 5000 analogous relationships were selected as Superfolds. 

These included the Orthogonal Bundle Arc Repressor Fold (1.10.10), the Jelly Rolls

(2.60.120), the Immunoglobulin-like fold (2.60.40), the TIM Barrels (3.20.20), the 

Alpha-Beta Plaits (3.30.70) and the Rossmann fold (3.40.50). Homologous relationships 

in the S35 dataset were partitioned into one of the Superfolds or, if not a Superfold, to a 

‘generic’ bin. Neural networks were constructed, trained and validated as described in 

Section 5.2.3.
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5.3 Results

5.3.1 Feature Selection

A semi-exhaustive feature selection protocol was constructed using the features described 

in section 5.2.2. Using the S35 dataset a neural network was trained using the standard 

back-propagation algorithm with default parameters (t] = 0.1 & dmax ~ 0.2) and the 

number of nodes in the hidden layer set to 2 x (number of input units) +1 for each feature 

set.

Table 5.1 shows the feature selection that gives the optimal performance. The feature 

combinations are ranked by the mean squared error (MSE), the average distance of 

prediction by the classifier compared to the correct answer. It can be seen that the 

GOSIM score feature increases the summed squared error and therefore provides no 

additional discriminatory power when included alongside the SAWTED or EC 

conservation score. The GOSIM score feature was therefore not used as a feature in the 

benchmarking protocol to reduce the dimensionality of the classification problem. This 

left 10 input features to utilise in the classifier.

The process of identifying the optimal features is not independent of the optimisation of 

the structure of the neural network. With this in mind the exhaustive feature selection 

was repeated over a range of neural network architectures with the number of hidden 

nodes varied from 15 to 25. Presented in Table 5.1 are the results of the feature selection 

for the optimal number of hidden nodes (20).
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Rank Domain 1 

Length

Domain 2 

Length

No. of Equiv. 

Residues

Length of 

Alignment

Structural

Alignment

Score

RMSD SAS

Score

PRC

E-value

GO-SIM

Score

SAWTED

Z-Score

EC SSE/N

1 X X X X X X X X X X 0.0536

2 X X X X X X X X X X X 0.0537

3 X X X X X X X X X X 0.0547

4 X X X X X X X X X 0.0551

5 X X X X X X X X X 0.0557

6 X X X X X X X X X X 0.0559

7 X X X X X X X X X 0.0564

8 X X X X X X X X 0.0600

9 X X X X X X X 0.0976

Table 5.1. Shows the rank based on the normalised sum squared error for each of the feature sets.

5.3.2 Optimisation of the Neural Network

Following the feature selection the architecture was re-optimised using the final feature 

set. Again using the S3 5 dataset a neural network was trained using the standard back- 

propagation algorithm with default parameters and the number of nodes in the hidden 

layer varied. Early stopping was used to prevent overfitting. Figure 5.1 shows that the 

optimum number of hidden nodes (defined by the lowest sum squared error function) was 

found to be 20. Therefore the architecture of an input layer containing 10 nodes, a hidden 

layer containing 20 nodes and an output layer of one node was used for all training. This 

leads to a final architecture with (10 x 20) + (20 x 1) = 220 adjustable weights.
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Figure 5.1. Graph show ing the optimisation of the architecture of the hidden layer.

Once the architecture was optimised it was necessary to optimise the free parameters 

associated with the standard back-propagation algorithm for each dataset. The version of 

the standard back propagation used in the SNNS package is termed “Vanilla” back- 

propagation and has two free parameters; the learning parameter v\ and the parameter 

d„ax. The learning parameter specifies the step width of the gradient descent and dmax 

represents the maximum difference between a teaching value and an acceptable value of 

an output unit which is tolerated i.e. which is propagated back through the network. If 

values above 0.9 should be regarded as 1 and values below 0.1 regarded as 0 then dmax 
should be set to 0.1. This prevents overtraining of the network.

Using each dataset a neural network was trained using the standard back-propagation 

algorithm with parameters (ti = O.l-l.O & d̂ ax = 0-0.2) again early stopping was used to 

prevent overfitting. Table 5.2 shows the optimal values of these parameters for each the 

S35, S20 and SIO datasets.
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n dmox SSE/N

S35 0.4 0.2 0.053

S20 0.6 0.2 0.069

SIO 0.6 0.2 0.080

Table 5.2. Optimal parameter of r\ and d„ax for the Vanilla back-propagation learning algorithm for 

each dataset used.

5.3.2.1 Benchm arking the S35, S20 and SIO N eural Networks

Once the architecture and free parameters were optimised, the neural networks for each 

dataset (S35, S20, SIO) were retrained on the optimal parameters and assessed on the 

basis of the predictions made for the validation set. Figure 5.2 shows the performance of 

the neural network predictors against the best performing sequence comparison method, 

PRC, the best performing structural comparison method, CATHEDRAL (native score) 

and the best performing frinctional methods SAWTED and EC-Conservation for each 

dataset (S35, S20, SIO). One can see the neural network predictors for each dataset 

significantly outperforms all other methods. On the S35 dataset (Figure 5.2(a)) the neural 

network predictor achieves 97% coverage for a 5% error rate. The sequence profile 

based PRC method is the next best performing method with coverage of 86% followed by 

the native CATHEDRAL score at 85%. The SAWTED PDB text comparison method 

achieves coverage of 45%, whilst using EC conservation yields coverage of 20% for a 
5% error.

On the S20 dataset (Figure 5.2(b)) the neural network predictor again achieves 97% 

coverage for a 5% error. CATHEDRAL is the next best performing method on the S20 

dataset achieving 15% greater coverage than PRC at a 5% error. This fall in PRCs 

performance is to be expected as the sequence signal is reduced. On the SIO dataset the 

neural network still achieves 95% coverage at 5% error, with CATHEDRAL at 80% and
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PRC at 62%. It is highly encouraging that the performance of the neural networks 

remains relatively consistent on all datasets even when the composite methods are 

beginning to struggle to recognise the more remote homologous.
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Figure 5.2. ROC curves showing the performance of the neural networks at hom ology  

recognition compared to the sequence comparison methods (PRC), the structure comparison 

method (CATHEDRAL (native score)) and function comparison methods (PDB-SAWTED & 

EC Conservation) on the 835(a), 820(b) and 810(c) datasets.
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The validation sets exploited above to assess the performance of the networks, although 

previously unseen by the neural network, are not truly representative of the data in 

protein structure databases. Neural networks require a balanced dataset of true and false 

examples to optimally separate the data. However in reality there are far more non- 

homologous relationships than homologous relationships in the protein structure 

databases, therefore when classifying a new domain it is important for the classifier to be 

able to handle this disparity in the data. With this in mind a new validation set was 

constructed that contained all of the CATH S35Reps not used in previous training and 

testing and had 10 times as many non-homologous relationships to homologous 

relationships to ensure that the neural network was not biased towards predicting 

homology. This dataset is referred to as the CATH-All dataset for the rest of this chapter. 

Furthermore the CATH-All benchmark provided a way to compare the 3 neural networks 

produced for each of the S35, S20 and SIO datasets to see which was most effective at 

classifying novel domains in CATH.

Figure 5.3 shows the Error Per Query (EPQ) ROC curves for each of the 3 neural 

networks (S35, S20 and SIO) based on the CATH-All dataset. It can be seen that the best 

performing neural network is the S35 network achieving coverage of 80% for a 5% error. 

PRC and CATHEDRAL both achieve 60% coverage for the same error rate. The neural 

networks that were trained on the S20 and SIO datasets fair less well. The S20 network 

dipping under the performance of PRC and CATHEDRAL at below 12% error and the 

SIO networks performance showing no coverage below 15% error. The unusual curves 

associated with the SAWTED and EC performance are due to the fact that the axes of 

EPQ plots are not independent and therefore there may be multiple values of y for a 

single value of x (i.e. the curve goes backwards).
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Figure 5.3. EPQ curves show ing the performance of the neural networks created on the S35, 

S20 and SIO datasets using the CATH-All dataset. Also shown is the performance of the 

individual methods PRC, CATHEDRAL, PDB-SAWTED and EC Conservation.

Table 5.3 shows that when considering the proportion of true positives, false negatives, 

true negatives and false positives (TP, FP, TN, FP) the S35 dataset performs best at 

detecting homologues relationships in the CATH-All dataset achieving an accuracy of 

95.5% (see Equation 5.1) and a sensitivity of 92% (see Equation 5.2). Table 5.3 shows 

that both the S20 and 810 accumulate more false positives and therefore it can be 

assumed that these networks are over sensitive presumably because they were trained on 

very remote homologues.

Neural networks combine features in a non-linear way. Therefore the effect of 

combining the PRC and CATHEDRAL methods in a linear, threshold based way was 

also assessed. Suitable thresholds were calculated that produced a 5% error rate in the 

methods individual benchmarks as presented in Chapter 4. This corresponded to a
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CATHEDRAL score of 80 and a PRC E-value of le-196. An OR logic relationship was 

used that predicts a homologue if either the SSAP score or the PRC E-value is within the 

allowed threshold. As Table 5.3 shows the performance of this combined approach is 

much lower than any of the neural network approaches identifying 67% of the true 

positives for an accuracy of just over 55%.

Sensitivity Specificity Accuracy MCC

NN_S35 92% 99% 95.5% 0.894

NN_S20 90% 98% 94% 0.8517

NN_S10 91% 98% 94.5% 0.8319

PRC/

CATHEDRAL

67% 41% 55.5% N/A

Table 5.3. The performance of the three neural networks created on the S35, S20 and SIO dataset in 

homology recognition on the CATH-All dataset in terms of Accuracy (TP+TN/TP+FP+TN+FN) and 

Mathews Correlation Coefficient (MCC). Also shown is the performance of combining PRC and 

CATHEDRAL scores.

5.3,2.2 Benchmarking the SuperFold Neural Networks

The S35 network benchmarked above was not built to take into account of the fact that 

some areas of fold space are densely populated while others are more sparse. As the 

classifier will ‘see’ more relationships including domains from highly populated areas of 

fold space it may be biased towards ‘learning’ characteristics of homology associated 

with those types of domain. Four architectures, a-orthogonal (1.10), the two-layer p- 

sandwich (2.60), two layer (aP) sandwiches (3.30) and the three-layer (ap) sandwiches 

(3.40) are very highly populated in CATH and the Protein Data Bank (PDB), comprising 

nearly 60% of all structural families. Six highly populated folds from the highly 

populated architectures were chosen on the basis of having greater than 5000 analogous
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relationships. These folds were the Arc Repressor Fold (1.10.10), the Jelly Rolls

(2.60.120), the Immunoglobulin-like fold (2.60.40), the TIM Barrels (3.20.20), the 

Alpha-Beta Plaits (3.30.70) and the Rossmann fold (3.40.50). Those relationships that 

did not contain a domain from any of the above folds were termed ‘Generic’ and 

designated their own category. For each of these seven categories (6 Superfolds + 1 

generic) neural networks were constructed to see if fold specific classifiers could be more 

discriminatory than one general neural network trained on all the data.

Figure 5.4 shows the validation set ROC curves for neural networks for the 6 highly 

populated folds and the Generic classifier and compares the performance of them against 

the S35 network and their individual methods (i.e. CATHEDRAL, PRC, and SAWTED). 

At a 5% error, the networks trained on the Superfolds perform at least as well as the 

general S3 5 network and for some folds a significant improvement is observed.

Different Superfolds show markedly different results in terms of how well the classifier 

and the individual methods perform. The ROC curve associated with the Orthogonal 

Bundle Arc Repressor Fold (1.10.10) show the classifier achieving coverage of 97% (at 

5% error) with CATHEDRAL just behind. However PRC only achieves 50% coverage 

at the same error rate. This suggests that in this fold group many of the homologous 

relationships within CATH are very remote with little sequence similarity however the 

relatives remain structurally similar. For this reason the S3 5 general classifier also has 

problems detecting relationships in this fold group.

CATHEDRAL and PRC both perform relatively poorly on the Alpha-Beta Plaits 

(3.30.70), 85 and 72% coverage for a 5% error respectively. However the classifier stills 

achieves a coverage of 100% at a 1% error again highlighting the benefits of a 

combinatorial approach to homologue recognition.
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Figure 5.4. ROC curves show ing the performance of the neural networks trained specifically  

on each of the ^Superfolds' against the general 'S35' trained network. A lso shown is the 

performance of the individual methods PRC, CATHEDRAL and SAWTED. The Superfolds 

are the Arc Repressor Fold (1.10.10), the Jelly Rolls (2.60.120), the Im m unoglobulin-like fold  

(2.60.40), the TIM Barrel fold (3.20.20), the Alpha-Beta Plait fold (3.30.70) and the Rossmann  

fold (3.40.50).

The most useful way of evaluating the effectiveness of the SuperFold classifiers versus 

the general classifier is to see how well each network classifies the CATH-All dataset 

since this dataset best represents the task of assigning novel domains to the CATH 

classification. Figure 5.5 shows the performance of the NNS35 network versus the 

SuperFold neural network, which is the combined performance of the fold-specific 

classifiers, on the CATH-All dataset. It can be seen that the fold-specific classifier 

(SuperFold NN) outperforms the general NNS35 network by about 10% at 5% error, 

achieving coverage of -88%.
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Figure 5.5. ROC curves show ing show ing the performance of the NNS35 network, the 

Superfold neural network and the individual methods for the CATH-All dataset.

Table 5.4 shows that when considering the proportion of true positives, false negatives, 

true negatives and false positives (TP, FP, TN, FP) the Superfold NN dataset performs 

best at detecting homologues relationships in the CATH-All dataset achieving an 

accuracy of 96% (see Equation 5.1) and a sensitivity of 93% (see Equation 5.2).

1 Sensitivity Specificity Accuracy MCC

Superfold NN 93% 99% 96% 0.915

NN_S35 92% 99% 95.5% 0.894

Table 5.4. The performance of the three neural networks created on the S35, S20 and SIO 

dataset in hom ology recognition on the CATH-All dataset in terms of Accuracy 

(TP+TN/TP+FP+TN+FN) and Mathews Correlation Coefficient (MCC).
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In conclusion it seems that there is added benefit in creating separate classifiers to 

counteract the bias in fold space, within the PDB and genomes. The general classifier 

may over-train towards the highly populated areas of fold space which results in 

occasional misclassification of rare homologous relationships. By using the fold-specific 

classifier this can be accommodated.
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5,4 Discussion

Due to high-throughput approaches such as the international genome initiatives, 

bioinformatic data resources, such as the protein sequence and protein structure 

databases, have been rewarded by a rapid influx of new data. However many of the 

proteins have no experimental annotations describing their function. Detecting 

homologous relationships is a vital tool in transferring information between well 

characterised and poorly characterised domains, and putting new entities into their correct 

evolutionary and biological context. As the characterisation of homologous relationships 

in CATH and SCOP can often be very time consuming because of the manual validation 

performed, the development of more sensitive automated approaches that achieve high 

coverage at low error rates is imperative to keep pace with the genome initiatives. This 

chapter presented a machine learning approach to homology recognition.

The sequence similarity, structural similarity and functional similarity of a pair of protein 

domains gives three independent signals that can provide evidence for a homologous 

relationship. During manual classification these signals are used subjectively by the 

curator to inform their decision. Here an automated approach was presented that uses this 

information to teach a neural network to recognise the patterns of homology.

Neural networks were trained on 3 balanced datasets containing increasingly remote 

homologues using the optimal features which included scores extracted from the 

sequence profile-profile method PRC, the structural comparison method CATHEDRAL, 

the text vector comparison method SAWTED and also a measure of EC conservation. 

For all balanced validation datasets the S35 neural network could identify ~97% of the 

homologous relationships for a 5% error, significantly outperforming the individual 

methods.

The protein structure databases (e.g. PDB) are not balanced in terms of homologous and 

non-homologous relationships and therefore a dataset termed CATH-All was constructed
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that had 10 times the number of non-homologous pairs to homologues to reflect the 

typical situation encountered when classifying a new domain in CATH. The neural 

network trained on the S35 dataset out performed the S20 and SIO datasets significantly 

with the two datasets trained on more remote homologous relationships proving to be too 

sensitive and accumulating more false positives. The S35 dataset was able to recognise 

92% of the homologous relationships in this dataset at an accuracy of 96%.

Protein structure space is not evenly distributed, with the presence of highly populated 

architectures accounting for 60% of the PDB and the genomes. Therefore a general 

classifier will inherently be biased towards learning the relationships between these 

frequently observed types of domains, neglecting the rarer cases. Therefore separate 

neural networks were created for the most highly populated folds (Superfolds) within 

these architectures. The combined performance of these Superfold neural networks 

achieved a 10% increase in coverage at a 5% error over the general S3 5 classifier. This 

suggests that the S3 5 classifier was over-training on common examples and losing some 

discriminatory power in delineating the rarer relationships. The SuperFold NN classifier 

achieves a sensitivity of 93% on the CATH-All dataset with an accuracy of 96%. 

Previous approaches to using neural networks for detecting homologues (Dietmann, 

Holm 2001) achieved a sensitivity of 77% with a 85% accuracy on a similar dataset 

constructed from the SCOP protein classification. Therefore a significant improvement 

in automated homologue classification has been achieved. Possible reasons for this 

increase in performance may be due to the use of more sophisticated sequence and 

structure comparison methods to generate the learning features. Furthermore the protein 

sequence and structure databases have increased dramatically in size in the past 5 years 

and therefore more relationships were available to leam from. Finally the development 

of Superfold classifiers to account for the biases in fold space has provided more 

specificity allowing the correct classification of rare homologous relationships.
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6. Conclusions

The aim of this thesis was to investigate different methods of recognising homologous 

relationships between protein domains with the overall goal of developing an automated 

protocol for homologue recognition that yielded high coverage and a low error rate. 

Protein structural family resources such as CATH and SCOP rely on the identification of 

homologous relationships in the classification of new structures. The identification of 

these relationships requires a large degree of manual validation and this is becoming 

increasingly difficult due to the high numbers of novel structures being produced by the 

structural genomics initiatives. Therefore an accurate and reliable automated homology 

recognition protocol could make significant strides in relieving this classification burden.

The design and implementation of an automated homologue recognition protocol was 

informed by an analysis of how different homologous superfamilies of proteins evolve in 

sequence, structure and function relationaships and a characterisation of the mechanisms 

by which this occurs and this was presented in Chapter 2. It is apparent that some 

superfamilies remain structurally well conserved even when the sequences diverge 

significantly whilst others can tolerate extensive structural change. Results showed that 

greater than half of the highly populated superfamilies (comprising >9 sequence diverse 

sub-families) also show a high degree of structural variation and frequently diverge in 

function e.g. in the galectin binding domains the structural embellishments around the 

active site modulate the geometry and substrate accessibility. Superfamilies that are 

highly conserved in terms of structure often have functional constraints with many of 

these families involved in cell signalling where a large proportion of the exposed 

structure is likely to be involved in ligand binding and protein-protein interactions. 

Updated information on the variability observed between homologues determined in this 

analysis was presented in an established web resource the Dictionary of Homologous 

Superfamilies.
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The first step in the classification of protein domains is to delineate the multi-domain 

protein structure chain into its composite domains followed by the identification of the 

correct fold. Chapter 3 describes a new structural comparison algorithm, CATHEDRAL, 

which combines both secondary structure matching and accurate residue alignment in an 

iterative protocol for determining the location of previously observed folds in novel 

multi-domain structures. CATHEDRAL was able to assign 76% of domain boundaries 

within a test set of 680 sequence diverse multi-domain chains correctly (within 10 

residues of the manually assigned boundaries) compared to 33% for a sequence based 

protocol (HMMer). Furthermore CATHEDRAL performed best when benchmarked 

against other leading structural comparison methods in identifying the correct fold 

matches between single domains in CATH and a union dataset between SCOP and 

CATH. An interesting observation in this chapter highlighted the importance of the 

measure used to score structural similarity. It was shown that geometric scores based on 

the RMSD (e.g. SAS) are often better discriminators of fold space then the native scores 

employed by many algorithms which often perform better at detecting the closest 

structural neighbour. Another key finding was the importance of achieving a global 

alignment in terms of domain boundary assignment.

Chapter 4 presented the optimisation and benchmarking of several methods for detecting 

homology, this included methods that compare the structural similarity of proteins and 

methods that attempt to assess functional similarity. In terms of using sequence 

similarity as a gauge of homology the profile-profile method PRC outperformed all other 

sequence similarity methods recognising 10% more homologous relationships. When 

identifying homologous relationships through structural similarity CATHEDRAL 

performs better than most other widely used algorithms in recognising global domain 

structure similarity between homologues. Finally ways of measuring functional 

similarity to inform the assignment of homology were explored. The text comparison 

method SAWTED outperformed GOSIM in recognising both functional and homologous 

relationships, the latter being a method which compares the semantic similarity of 

assigned GO terms.
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The sequence similarity, structural similarity and functional similarity of a pair of protein 

domains gives three independent signals that can provide evidence for a homologous 

relationship. In Chapter 5 a neural network was used to combine this information to 

recognise the patterns of homology. Neural networks were trained on 3 balanced datasets 

containing increasingly remote homologues using the optimal features which included 

scores extracted from the sequence profile-profile method PRC, the structural comparison 

method CATHEDRAL, the text vector comparison method SAWTED and also a measure 

of EC conservation. On a validation dataset compiled to represent the task of classifying 

a new domain in CATH the neural network trained on sequence diverse relatives with 

less than 35% sequence identity recognised over 80% of the homologous relationships for 

a 5% error significantly outperforming the individual methods.

Some areas of fold space are more populated than others, with the presence of highly 

populated architectures accounting for 60% of the PDB and the genomes. An analysis 

was conducted to determine whether neural networks created for the most highly 

populated folds (superfolds) within these architectures would give rise to more accurate 

classifiers. The combined performance of the Superfold neural networks achieves a 10% 

increase in coverage over the general classifier described above recognising 93% of the 

homologous relationships with an accuracy of 96%. Previous approaches to using neural 

networks for detecting homologues (Dietmann, Holm 2001) recognised 77% of 

homologues with 85% accuracy on a similar dataset constructed from the SCOP protein 

classification.

This thesis presented a new automated approach to recognising homologous relationships 

between protein domains that should provide great value in the pipeline of the CATH 

classification system. In the future, similar approaches could be used to identify 

functionally related homologues.
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Appendix

SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EquivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

1.10.10.10 47.41 62.5 9.4 50 928 33 77
1.10.10.160 91.28 0.0 7.1 2 9 1 1
1.10.10.60 48.84 25.0 16.8 23 917 23 23

1.10.1060.10 71.83 12.5 14.9 2 85 2 10
1.10.12.10 78.72 0.0 28.5 3 32 2 1

1.10.1200.10 68.15 25.0 10.5 5 162 4 4
1.10.15.10 54.83 40.0 19.6 5 21 4 6

1.10.150.120 83.66 33.3 2.8 2 6 1 2

1.10.150.130 81.87 20.0 13.4 2 52 1 2
1.10.150.20 60.87 20.0 21.4 4 26 4 1
1.10.150.70 44.69 66.7 19.1 11 19 9 4
1.10.20.10 54.69 71.4 10.5 13 277 8 2
1.10.230.10 86.58 0.0 5.4 3 35 1 1
1.10.238.10 43.47 55.6 16.6 28 464 39 3
1.10.275.10 55.35 71.4 12.9 5 27 4 5

1.10.287.110 79.22 25.0 13.8 3 86 3 3

1.10.287.280 61.13 40.0 2.7 2 68 3 1
1.10.287.40 82.68 0.0 5.0 2 14 2 2
1.10.287.60 75.28 0.0 20.8 3 12 2 1
1.10.287.70 35.36 33.3 7.8 4 192 3 2
1.10.287.80 84.25 0.0 4.4 2 24 1 1
1.10.290.10 86.68 0.0 1.4 2 3 1 2
1.10.300.10 89.19 20.0 3.8 2 9 1 1
1.10.340.10 82.64 40.0 10.5 4 49 2 5
1.10.390.10 72.57 50.0 7.7 2 20 2 1
1.10.40.30 67.43 42.9 6.4 4 30 3 4
1.10.405.10 77.50 28.6 22.5 2 3 2 1
1.10.420.10 79.07 40.0 4.7 3 29 2 1
1.10.439.10 85.83 18.2 5.4 2 7 1 1
1.10.443.10 67.90 37.5 15.5 5 315 5 4
1.10.455.10 87.61 0.0 9.3 2 15 1 1

212



SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EqnivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

1.10.460.10 86.55 9.1 7.1 2 3 1 2
1.10.472.10 68.73 50.0 11.4 14 183 5 1
1.10.486.10 75.20 30.0 11.1 3 17 2 2
1.10.490.10 68.70 44.4 12.6 16 89 13 4
1.10.510.10 75.75 42.9 12.1 9 211 6 2
1.10.520.10 80.27 28.6 6.3 3 18 3 1
1.10.530.10 51.31 53.8 18.0 7 108 6 4
1.10.540.10 89.40 14.3 7.4 3 90 1 1
1.10.560.10 87.59 5.9 8.3 2 19 1 1
1.10.569.10 91.29 16.7 6.3 2 4 1 1
1.10.570.10 91.19 0.0 5.9 2 3 1
1.10.580.10 83.48 18.8 8.4 2 7 1
1.10.599.10 86.75 0.0 6.1 2 7 1 1
1.10.615.10 56.54 27.8 25.2 5 40 5 1
1.10.620.20 47.50 53.8 14.5 6 36 5 1
1.10.630.10 75.11 18.5 11.6 9 257 6 1
1.10.645.10 87.68 0.0 3.2 2 26 1 4
1.10.720.10 88.10 0.0 7.7 2 6 1 3
1.10.730.10 49.77 41.7 9.2 5 63 4 5
1.10.760.10 47.38 55.6 13.9 23 233 16 10
1.10.8.10 57.16 50.0 12.1 6 15 4 3
1.10.8.60 67.26 50.0 20.3 7 32 4 13
1.10.8.80 71.37 42.9 16.3 2 9 2 2
1.10.800.10 79.11 9.5 4.3 2 10 1 1
1.10.940.10 62.30 0.0 14.1 2 18 2 2

1.20.1010.10 89.91 16.7 7.6 2 4 1 2

1.20.1050.10 73.72 55.6 9.0 10 118 6 2

1.20.1060.10 69.16 28.6 4.4 2 5 3 1

1.20.1070.10 65.06 35.7 10.2 5 520 2 1
1.20.120.10 78.69 33.3 6.8 5 18 2 1

1.20.120.140 85.14 0.0 11.8 3 21 1 2

1.20.120.160 80.01 25.0 5.5 3 54 2 4

1.20.120.190 77.89 16.7 2.4 7 53 2 10

1.20.120.260 86.13 12.5 11.0 2 3 1 1
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SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EquivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

1.20.120.280 78.73 25.0 5.9 2 6 1 1
1.20.120.80 77.37 44.4 4.9 2 33 2 1
1.20.20.10 65.73 33.3 24.3 2 32 2 1
1.20.200.10 67.01 28.6 28.7 4 10 3 5
1.20.210.10 72.65 16.7 4.6 2 33 2 3
1.20.272.10 83.01 0.0 8.9 2 4 2 2
1.20.272.20 82.29 28.6 2.2 2 4 1 1
1.20.58.100 86.23 25.0 3.6 3 5 1 2
1.20.80.10 92.35 0.0 3.1 2 11 1 1
1.20.840.10 70.01 38.9 5.9 2 17 2 2
1.20.910.10 84.09 20.0 6.7 2 13 1 2
1.20.970.10 87.02 33.3 1.5 2 19 1 2
1.20.990.10 84.06 12.5 7.5 2 2 1 1
1.25.40.10 62.06 78.9 12.3 10 973 6 38
1.25.40.120 81.17 0.0 9.4 2 86 2 1
1.25.40.20 66.17 60.0 10.6 4 516 5 1
1.25.40.70 69.09 37.5 10.0 2 18 2 1
1.25.40.80 88.34 0.0 10.7 2 27 1 2
1.50.10.10 75.18 36.8 5.3 2 11 2 1
1.50.10.20 57.94 33.3 8.8 7 84 5 3
1.50.10.30 63.55 15.0 12.2 5 34 5 2
2.10.10.20 75.36 25.0 7.9 3 22 2 1
2.10.109.10 78.84 33.3 13.9 4 111 2 5
2.102.10.10 73.33 40.0 12.0 6 118 4 3
2.120.10.10 71.09 24.1 11.3 7 75 5 4
2.130.10.10 73.73 0.0 11.5 3 376 2 16
2.130.10.30 79.91 27.6 4.5 2 53 1 1
2.140.10.10 83.71 10.6 7.9 2 118 1 3
2.160.10.10 74.42 53.8 12.9 4 138 4 10
2.160.20.10 70.38 24.2 38.3 8 88 7 3

2.170.120.12 81.53 25.0 6.1 2 4 2 1

2.170.130.10 80.97 20.0 9.8 2 210 2 5
2.170.16.10 75.67 29.4 23.3 4 23 3 3
2.20.25.10 60.19 100.0 10.3 6 32 4 2
2.20.25.50 65.99 33.3 20.3 5 17 4 1
2.20.25.60 73.41 28.6 10.4 8 24 2 1
2.20.25.70 76.11 27.3 14.9 6 101 4 11
2.20.28.10 78.48 33.3 28.0 2 13 2 4
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SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EquivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

2.30.100.10 82.39 20.0 8.9 4 20 3 1
2.30.110.20 83.03 7.7 11.6 2 22 1 1
2.30.29.30 60.14 36.4 14.0 23 328 15 1
2.30.30.100 77.36 28.6 17.1 7 52 2 2
2.30.30.40 61.31 28.6 9.7 4 259 7 1
2.30.30.70 71.06 20.0 10.5 4 13 3 1
2.30.30.90 78.74 12.5 13.8 3 4 2 2
2.30.33.40 81.26 14.3 6.6 2 7 2 1
2.30.35.100 79.82 42.9 10.4 4 6 2 1
2.30.35.20 90.26 16.7 2.7 2 7 1 1
2.30.35.30 63.25 55.6 9.6 12 137 5 12
2.30.38.10 90.54 16.7 6.2 2 150 1 5
2.30.39.10 75.80 36.4 14.3 8 96 3 1
2.30.42.10 72.23 33.3 7.8 9 275 5 6
2.40.10.10 0.87 55.6 27.9 23 345 29 5
2.40.100.10 81.11 16.7 5.0 2 56 2 2
2.40.128.20 60.24 28.6 19.7 15 74 12 1
2.40.128.70 81.02 0.0 8.8 3 75 2 4
2.40.160.10 74.94 22.7 8.2 4 41 4 1
2.40.170.10 82.51 13.0 6.2 2 12 2 1
2.40.170.20 74.93 0.0 9.6 2 51 2 5
2.40.240.10 73.33 28.6 24.5 4 16 3 2
2.40.30.10 45.42 45.5 15.7 17 181 9 15
2.40.30.20 71.36 25.0 11.6 3 33 2 1
2.40.37.10 72.07 7.7 22.0 2 40 2 2
2.40.40.20 68.39 30.0 8.1 8 36 3 11
2.40.50.100 55.68 72.7 7.3 8 274 6 10
2.40.50.140 40.72 50.0 25.0 38 332 33 36
2.40.50.150 82.30 25.0 3.5 2 12 1 1
2.40.50.180 79.78 28.6 7.0 2 11 2 6
2.40.70.10 37.94 75.0 24.7 16 184 9 2
2.60.120.10 77.77 14.3 16.0 4 196 3 18

2.60.120.200 44.87 50.0 25.3 19 211 16 3

2.60.120.260 53.39 60.0 27.3 20 126 15 9

2.60.120.320 83.66 25.0 14.1 2 5 1 1
2.60.130.10 72.42 29.4 6.4 3 18 3 1
2.60.15.10 89.79 11.1 18.4 2 14 1 1
2.60.200.20 68.61 22.2 35.9 4 90 3 4
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SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EquivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

2.60.40.10 37.21 100.0 14.4 85 1020 56 5

2.60.40.1070 85.84 25.0 3.9 2 14 1 1

2.60.40.1080 85.84 12.5 6.6 2 6 1 3

2.60.40.1090 78.81 11.1 5.9 2 77 2 1

2.60.40.1180 67.37 44.4 11.3 14 66 8 3

2.60.40.200 80.51 18.2 9.6 3 20 2 1
2.60.40.290 73.03 30.0 9.8 3 28 3 2
2.60.40.30 64.79 44.4 12.2 39 371 17 5
2.60.40.320 70.12 42.9 8.6 4 31 3 2
2.60.40.420 43.48 62.5 8.6 22 235 15 6
2.60.40.680 90.56 0.0 5.2 2 6 1 1
2.60.40.710 82.89 20.0 6.4 2 4 2 1
2.60.40.730 82.66 30.0 5.5 2 3 2 1
2.60.40.790 77.06 22.2 5.0 4 108 2 2
2.70.110.10 85.90 3.8 7.0 3 5 1 1
2.70.20.10 84.92 22.2 7.5 2 11 1 2
2.70.40.10 86.07 0.0 10.1 2 40 1 2
2.80.10.50 69.86 35.7 14.7 13 157 8 3
3.10.105.10 88.19 0.0 6.2 2 13 1 4
3.10.120.10 80.73 0.0 5.0 2 36 1 2
3.10.129.10 73.00 10.0 11.4 3 111 3 9'
3.10.129.20 79.33 11.1 6.1 2 5 1 1
3.10.150.10 83.79 20.0 14.7 3 20 2 1
3.10.170.10 87.13 0.0 9.3 2 15 1 1
3.10.180.10 62.22 46.7 15.3 13 218 8 9
3.10.20.200 81.01 57.1 15.1 3 24 1 3
3.10.20.30 66.49 28.6 10.2 11 125 7 14
3.10.200.10 86.48 6.7 7.5 3 23 1 1
3.10.28.10 64.98 72.7 11.9 7 87 5 3
3.10.290.10 75.50 12.5 8.7 3 83 3 9
3.10.310.10 79.69 11.1 6.3 2 4 2 2
3.10.330.10 80.77 25.0 21.2 4 3 2 1
3.10.400.10 85.94 7.7 8.3 2 10 1 1
3.10.50.40 64.30 37.5 27.4 4 123 5 4
3.20.10.10 83.54 7.7 9.6 4 15 1 1
3.20.20.10 78.51 5.9 11.5 3 30 3 6
3.20.20.100 77.12 17.4 7.1 3 44 2 4
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SuperFamily Min
SSAP
Score

2DSEC
Percentage
Variation

Score

EquivSEC
Score

CATH
S35Reps

CATH
ISL

SSG
Number

COG
Number

3.20.20.120 70.21 36.8 14.0 6 44 5 3
3.20.20.140 53.73 34.6 18.0 6 71 5 12
3.20.20.150 68.92 33.3 11.6 4 103 4 10
3.20.20.170 64.05 13.6 14.2 4 11 3 3
3.20.20.20 80.86 5.6 7.0 2 16 2 4
3.20.20.210 88.77 4.2 5.7 2 12 1 1
3.20.20.240 82.90 11.5 11.9 2 2 1 1
3.20.20.270 76.87 37.0 11.2 3 14 2 3
3.20.20.280 77.72 20.0 6.4 2 8 2 4
3.20.20.30 69.08 37.5 9.9 5 75 4 1
3.20.20.40 81.70 5.9 9.9 2 20 1 1
3.20.20.60 68.98 28.0 11.7 4 27 4 8
3.20.20.70 64.39 13.6 16.7 6 61 3 3
3.20.20.80 50.29 32.0 13.1 39 436 31 21
3.20.20.90 55.89 45.8 13.3 27 359 20 38
3.20.80.10 77.60 8.3 8.2 2 14 2 4
3.30.160.20 83.47 0.0 4.9 4 50 1 1
3.30.160.70 79.90 0.0 5.1 2 2 2 1
3.30.190.20 88.23 12.5 2.9 2 13 1 1
3.30.200.20 66.64 37.5 11.5 11 1401 10 6
3.30.230.10 71.46 37.5 12.4 5 44 5 10
3.30.230.20 70.77 27.3 5.2 2 16 2 5
3.30.260.10 84.81 16.7 5.4 2 33 1 1
3.30.30.20 88.34 25.0 3.3 2 9 1 2
3.30.300.10 61.92 14.3 9.8 4 12 4 2
3.30.300.20 77.18 28.6 6.3 5 45 3 7
3.30.300.30 87.23 37.5 4.6 2 60 1 5
3.30.310.10 78.03 12.5 5.9 2 28 2 1
3.30.360.10 57.82 68.4 7.7 5 40 4 3
3.30.365.10 64.63 22.2 12.7 7 29 3 2
3.30.365.20 66.20 40.0 9.0 4 25 2 2
3.30.379.10 82.65 12.5 10.5 2 44 2 1
3.30.390.10 72.92 37.5 8.3 6 40 3 2
3.30.390.30 77.07 20.0 9.3 4 12 3 3
3.30.390.50 85.01 0.0 5.6 2 12 1 2
3.30.413.10 78.26 11.1 10.3 2 39 2 4
3.30.420.10 36.93 64.3 39.6 17 714 13 19

3.30.420.110 86.20 11.1 6.4 2 7 1 1
3.30.420.40 51.12 53.8 13.9 13 151 8 14

3.30.428.10 70.66 58.3 8.5 5 82 3 2
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3.30.43.10 66.11 42.9 12.1 7 104 5 4
3.30.450.20 79.20 20.0 9.1 5 326 4 16
3.30.460.10 71.06 18.2 10.8 4 95 4 5
3.30.465.10 73.94 41.7 9.4 4 17 2 3
3.30.465.20 74.83 33.3 11.5 3 53 3 1
3.30.470.10 76.46 27.3 9.3 4 32 2 1
3.30.470.20 47.65 65.0 10.3 16 136 11 17
3.30.470.30 72.09 22.2 10.6 3 2 3 1
3.30.497.10 77.61 8.3 8.4 5 20 2 1
3.30.499.10 71.08 14.3 33.4 2 7 2 3
3.30.540.10 73.83 28.6 7.0 6 39 3 3
3.30.550.10 80.68 9.1 10.5 3 12 3 2
3.30.559.10 76.61 12.5 12.8 3 16 2 1
3.30.565.10 54.15 50.0 12.5 8 567 6 19
3.30.572.10 76.26 13.3 5.7 2 11 2 1
3.30.69.10 83.48 25.0 5.6 2 8 1 1
3.30.70.100 68.34 28.6 9.6 8 92 4 5
3.30.70.130 72.50 0.0 6.9 2 31 2 2
3.30.70.150 87.28 0.0 4.8 2 31 1 1
3.30.70.160 54.39 50.0 8.7 25 156 15 23
3.30.70.20 65.62 33.3 11.3 5 246 8 26
3.30.70.210 72.61 28.6 9.7 4 73 3 7
3.30.70.220 74.08 25.0 10.6 3 18 3 2
3.30.70.270 29.18 69.2 10.0 7 375 11 3
3.30.70.330 49.85 87.5 23.4 17 586 14 2
3.30.70.350 89.49 0.0 3.4 2 4 1 1
3.30.70.370 70.71 45.5 2.8 3 15 2 3
3.30.70.420 85.89 11.1 12.8 2 28 1 1
3.30.70.430 90.66 0.0 5.4 2 7 1 1
3.30.70.470 78.37 27.3 9.5 2 3 2 2
3.30.70.480 76.60 11.1 13.7 4 25 2 5
3.30.70.520 61.12 16.7 24.6 2 2 2 1
3.30.70.530 78.12 0.0 7.4 3 25 3 2
3.30.70.540 77.24 0.0 34.1 2 7 2 2
3.30.70.60 73.03 0.0 7.1 4 33 3 2
3.30.70.730 82.85 5.6 6.6 2 50 2 3
3.30.70.80 81.81 0.0 18.2 2 41 2 1
3.30.70.810 79.86 22.2 7.4 2 8 1 1
3.30.700.10 66.13 50.0 8.1 3 61 3 3
3.30.750.24 82.29 25.0 6.7 2 90 2 5
3.30.780.10 74.99 0.0 10.5 2 18 2 1
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3.30.830.10 70.54 50.0 9.9 11 103 4 3
3.30.870.10 73.98 25.0 8.3 3 105 2 7
3.30.9.10 43.42 30.8 29.1 5 10 4 4
3.30.920.10 88.67 0.0 6.5 2 9 1 1
3.30.930.10 51.57 56.5 24.9 13 140 12 15

3.40.1050.10 54.76 26.7 21.7 3 32 4 1
3.40.109.10 79.20 13.3 11.9 4 52 2 3
3.40.120.10 90.43 10.0 1.9 2 32 1 2
3.40.140.10 80.21 22.2 5.4 2 15 1 2
3.40.190.10 43.05 50.0 32.4 38 737 23 28
3.40.190.80 73.97 20.0 10.3 6 62 4 3
3.40.192.10 83.16 11.1 8.5 3 11 2 1
3.40.225.10 78.62 40.0 9.0 4 22 2 2
3.40.228.10 81.55 26.3 6.6 3 4 2 4
3.40.250.10 77.86 11.1 11.6 6 153 3 4
3.40.30.10 41.58 46.2 12.2 35 762 29 33
3.40.309.10 81.95 21.4 5.3 3 82 2 2
3.40.33.10 78.47 33.3 4.4 2 51 1 1
3.40.350.10 78.87 14.3 8.3 2 26 2 1
3.40.390.10 48.83 46.7 16.5 12 231 10 7
3.40.430.10 82.30 20.0 9.2 7 39 1 2
3.40.47.10 55.08 50.0 8.8 7 171 5 6
3.40.470.10 69.95 16.7 10.2 2 33 2 3
3.40.50.10 57.59 33.3 20.6 8 48 6 1

3.40.50.1000 76.66 26.7 14.4 5 594 3 24

3.40.50.10090 69.62 30.8 29.5 2 44 2 1

3.40.50.1010 64.52 50.0 16.3 4 22 4 1

3.40.50.1100 63.85 56.3 8.7 7 89 6 5

3.40.50.1110 72.40 13.3 22.4 3 115 3 3

3.40.50.1120 78.59 26.3 11.6 2 22 2 2

3.40.50.1220 70.10 40.0 10.1 8 58 5 10

3.40.50.1240 61.33 43.5 15.6 7 132 6 3
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3.40.50.1370 66.54 35.7 11.5 3 22 3 2

3.40.50.1380 75.27 35.7 7.9 3 8 2 3
3.40.50.140 83.55 23.1 3.5 2 4 1 3

3.40.50.1400 67.30 18.2 10.6 6 40 4 3

3.40.50.1420 83.02 10.0 15.9 2 104 2 4

3.40.50.1460 79.39 23.1 3.7 3 16 3 1
3.40.50.150 51.57 44.4 11.3 23 1520 20 74

3.40.50.1580 76.51 23.5 11.3 5 46 3 4
3.40.50.170 85.97 20.0 4.8 2 22 1 3

3.40.50.1770 87.56 0.0 5.7 2 8 1 2

3.40.50.1820 39.50 65.6 22.6 43 1580 30 42

3.40.50.1860 71.01 18.2 4.7 2 17 2 3

3.40.50.1890 84.83 0.0 6.8 2 16 1 1

3.40.50.1940 77.42 35.7 10.0 3 86 3 8

3.40.50.1950 87.88 15.4 6.7 2 13 1 3

3.40.50.1980 90.74 0.0 6.1 2 32 1 2

3.40.50.20 61.52 50.0 12.4 10 42 7 9
3.40.50.200 76.66 21.7 9.5 3 118 2 2

3.40.50.2000 69.54 26.7 10.4 6 206 6 9

3.40.50.2010 89.51 0.0 6.1 2 15 1 2

3.40.50.2030 65.88 29.4 15.2 4 6 3 2

3.40.50.2050 83.20 25.0 3.2 2 19 1 1

3.40.50.2300 65.32 42.9 10.3 26 407 11 1

3.40.50.261 81.03 8.3 8.5 2 14 2 3
3.40.50.270 74.34 11.1 9.7 3 14 2 5
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3.40.50.280 71.67 16.7 8.2 4 18 4 3
3.40.50.360 81.03 10.0 8.3 4 62 2 8
3.40.50.410 83.56 14.3 6.4 4 142 1 10
3.40.50.50 84.23 25.0 4.0 3 19 1 2
3.40.50.610 67.45 50.0 12.3 6 152 6 15
3.40.50.620 61.47 46.7 13.8 11 104 7 13
3.40.50.720 49.48 50.0 20.1 77 2127 50 89
3.40.50.740 76.88 33.3 7.5 3 19 3 5
3.40.50.790 85.68 22.2 9.2 2 9 1 1
3.40.50.80 79.02 38.5 7.6 9 117 4 5
3.40.50.800 83.94 11.1 6.6 7 72 1 5
3.40.50.850 78.76 28.6 6.7 3 42 2 2
3.40.50.880 53.44 44.4 15.7 10 158 7 14
3.40.50.920 74.80 20.0 12.8 3 49 3 10
3.40.50.960 86.59 20.0 5.3 2 4 1 2

3.40.50.9600 78.68 13.3 7.7 5 125 2 2
3.40.50.970 60.67 50.0 7.9 14 147 8 18
3.40.50.980 73.48 30.8 7.1 4 201 3 6
3.40.510.10 35.98 44.0 16.5 8 67 8 10
3.40.605.10 53.34 23.8 7.4 4 26 2 2
3.40.630.10 64.02 25.0 10.4 8 167 4 12
3.40.630.30 48.25 46.2 11.8 12 696 10 21
3.40.640.10 67.65 40.9 14.0 25 479 14 28
3.40.710.10 54.52 45.8 9.9 12 252 9 9
3.40.718.10 76.11 6.9 10.2 2 13 3 3
3.40.720.10 84.69 0.0 9.4 2 14 1 2
3.40.800.10 85.89 5.6 4.3 2 26 1 1
3.40.930.10 85.45 20.0 8.3 2 38 1 3
3.40.950.10 85.32 27.3 2.3 2 5 1 1
3.40.980.10 78.10 7.7 9.6 2 21 2 3
3.50.12.10 80.65 9.1 22.8 4 178 2 4
3.50.30.10 83.79 40.0 21.1 2 18 2 3
3.50.50.60 42.08 23.1 11.9 28 1273 15 34
3.50.6.10 80.41 23.5 17.7 3 104 2 3
3.50.60.10 78.45 17.4 8.1 3 38 3 1
3.50.7.10 78.69 8.3 17.5 2 5 2 1
3.60.10.10 79.20 18.2 10.4 3 179 2 4
3.60.15.10 68.90 15.0 8.8 5 303 4 13
3.60.20.10 51.49 41.7 19.5 17 81 8 8
3.60.21.10 58.03 34.6 16.9 5 310 5 14
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3.65.10.10 79.11 16.7 8.9 4 29 3 2
3.70.10.10 86.95 4.5 3.6 2 35 1 1
3.75.10.10 79.28 29.6 6.5 2 25 1 3
3.80.10.10 52.62 69.6 7.3 12 860 10 5
3.90.10.10 69.22 70.0 6.1 7 57 5 2
3.90.110.10 80.28 27.3 11.6 3 18 3 1
3.90.120.10 68.88 28.6 65.0 3 39 3 1
3.90.149.10 79.99 21.4 4.7 2 18 2 1
3.90.180.10 80.91 25.0 16.6 4 60 2 6
3.90.190.10 59.82 52.4 7.4 7 215 6 4
3.90.190.20 76.82 18.2 9.2 4 22 4 5
3.90.199.10 84.54 5.6 9.3 2 6 1 1
3.90.226.10 68.60 45.0 17.3 9 134 5 7
3.90.230.10 82.48 23.5 11.7 4 63 2 2
3.90.245.10 86.14 4.2 8.6 2 18 1 1
3.90.25.10 66.19 50.0 6.1 5 68 4 3
3.90.280.10 77.69 33.3 13.0 3 29 2 1
3.90.320.20 91.94 0.0 1.1 4 1 1 1
3.90.45.10 84.00 10.0 6.6 2 19 1 1
3.90.470.10 83.62 25.0 2.5 2 12 1 1
3.90.55.10 69.80 11.1 8.8 2 48 2 3
3.90.550.10 55.44 43.5 13.7 14 637 14 26
3.90.640.10 77.51 16.7 11.2 5 42 2 3
3.90.660.10 70.30 7.1 17.9 2 12 2 1
3.90.70.10 55.51 45.0 16.5 6 81 5 2
3.90.700.10 73.91 33.3 9.6 3 5 2 2
3.90.710.10 54.41 12.5 7.2 2 16 3 1
3.90.730.10 83.01 23.1 7.6 4 22 2 1
3.90.740.10 73.26 50.0 8.3 3 6 2 3
3.90.76.10 81.51 28.6 14.7 2 50 1 3
3.90.770.10 82.51 11.8 6.6 2 8 1 1
3.90.78.10 86.90 55.6 4.5 2 3 1 1
3.90.79.10 69.36 30.8 10.3 5 247 4 7
3.90.80.10 79.56 41.2 7.4 2 8 2 1
3.90.800.10 80.82 25.0 6.5 2 10 2 1
3.90.850.10 78.25 31.6 8.8 2 32 2 4
3.90.870.10 67.00 6.7 12.8 4 20 4 3
3.90.930.12 82.22 25.0 5.6 4 17 1 1
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4.10.320.10 77.75 0.0 1.4 2 13 2 1
4.10.640.10 81.47 33.3 8.1 2 15 1 1
4.10.860.10 86.63 33.3 8.5 2 11 1 4
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