1,251 research outputs found

    Labyrinth chaos: Revisiting the elegant, chaotic, and hyperchaotic walks

    Get PDF
    Labyrinth chaos was discovered by Otto Rössler and René Thomas in their endeavour to identify the necessary mathematical conditions for the appearance of chaotic and hyperchaotic motion in continuous flows. Here, we celebrate their discovery by considering a single labyrinth walks system and an array of coupled labyrinth chaos systems that exhibit complex, chaotic behaviour, reminiscent of chimera-like states, a peculiar synchronisation phenomenon. We discuss the properties of the single labyrinth walks system and review the ability of coupled labyrinth chaos systems to exhibit chimera-like states due to the unique properties of their space-filling, chaotic trajectories, what amounts to elegant, hyperchaotic walks. Finally, we discuss further implications in relation to the labyrinth walks system by showing that even though it is volume-preserving, it is not force-conservative

    The mathematics behind chimera states

    Get PDF
    Chimera states are self-organized spatiotemporal patterns of coexisting coherence and incoherence. We give an overview of the main mathematical methods used in studies of chimera states, focusing on chimera states in spatially extended coupled oscillator systems. We discuss the continuum limit approach to these states, Ott--Antonsen manifold reduction, finite size chimera states, control of chimera states and the influence of system design on the type of chimera state that is observed

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements.

    Get PDF
    Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales

    Itinerant memory dynamics and global bifurcations in chaotic neural networks

    Get PDF
    We have considered itinerant memory dynamics in a chaotic neural network composed of four chaotic neurons with synaptic connections determined by two orthogonal stored patterns as a simple example of a chaotic itinerant phenomenon in dynamical associative memory. We have analyzed a mechanism of generating the itinerant memory dynamics with respect to intersection of a pair of ␣ branches of periodic points and collapse of a periodic in-phase attracting set. The intersection of invariant sets is numerically verified by a novel method proposed in this paper. 3,11,12 Among such studies we focus on the associative memory dynamics in this paper. Adachi and Aihara analyzed the dynamics of associative memory networks composed of chaotic neurons in detail and examined characteristics of the retrieval process

    Chaotic exploration and learning of locomotor behaviours

    Get PDF
    Recent developments in the embodied approach to understanding the generation of adaptive behaviour, suggests that the design of adaptive neural circuits for rhythmic motor patterns should not be done in isolation from an appreciation, and indeed exploitation, of neural-body-environment interactions. Utilising spontaneous mutual entrainment between neural systems and physical bodies provides a useful passage to the regions of phase space which are naturally structured by the neuralbody- environmental interactions. A growing body of work has provided evidence that chaotic dynamics can be useful in allowing embodied systems to spontaneously explore potentially useful motor patterns. However, up until now there has been no general integrated neural system that allows goal-directed, online, realtime exploration and capture of motor patterns without recourse to external monitoring, evaluation or training methods. For the first time, we introduce such a system in the form of a fully dynamic neural system, exploiting intrinsic chaotic dynamics, for the exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modelled as a network of neural oscillators which are coupled only through physical embodiment, and goal directed exploration of coordinated motor patterns is achieved by a chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organised dynamics each of which is a candidate for a locomotion behaviour. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states using its intrinsic chaotic dynamics as a driving force and stabilises the system on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced which results in an increased diversity of motor outputs, thus achieving multi-scale exploration. A rhythmic pattern discovered by this process is memorised and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronisation method. The dynamical nature of the weak coupling through physical embodiment allows this adaptive weight learning to be easily integrated, thus forming a continuous exploration-learning system. Our result shows that the novel neuro-robotic system is able to create and learn a number of emergent locomotion behaviours for a wide range of body configurations and physical environment, and can re-adapt after sustaining damage. The implications and analyses of these results for investigating the generality and limitations of the proposed system are discussed

    A Theory of Cortical Neural Processing.

    Get PDF
    This dissertation puts forth an original theory of cortical neural processing that is unique in its view of the interplay of chaotic and stable oscillatory neurodynamics and is meant to stimulate new ideas in artificial neural network modeling. Our theory is the first to suggest two new purposes for chaotic neurodynamics: (i) as a natural means of representing the uncertainty in the outcome of performed tasks, such as memory retrieval or classification, and (ii) as an automatic way of producing an economic representation of distributed information. We developed new models, to better understand how the cerebral cortex processes information, which led to our theory. Common to these models is a neuron interaction function that alternates between excitatory and inhibitory neighborhoods. Our theory allows characteristics of the input environment to influence the structural development of the cortex. We view low intensity chaotic activity as the a priori uncertain base condition of the cortex, resulting from the interaction of a multitude of stronger potential responses. Data, distinguishing one response from many others, drives bifurcations back toward the direction of less complex (stable) behavior. Stability appears as temporary bubble-like clusters within the boundaries of cortical columns and begins to propagate through frequency sensitive and non-specific neurons. But this is limited by destabilizing long-path connections. An original model of the post-natal development of ocular dominance columns in the striate cortex is presented and compared to autoradiographic images from the literature with good matching results. Finally, experiments are shown to favor computed update order over traditional approaches for better performance of the pattern completion process
    • 

    corecore