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We have considered itinerant memory dynamics in a chaotic neural network composed of four
chaotic neurons with synaptic connections determined by two orthogonal stored patterns as a simple
example of a chaotic itinerant phenomenon in dynamical associative memory. We have analyzed a
mechanism of generating the itinerant memory dynamics with respect to intersection of agair of
branches of periodic points and collapse of a periodic in-phase attracting set. The intersection of
invariant sets is numerically verified by a novel method proposed in this pap@008 American

Institute of Physics.[DOI: 10.1063/1.1601912

Aihara et al. proposed a simple chaotic neuron model and
an artificial neural network model composed of such cha-
otic neurons!~® The models have been widely used for
analysis of nonlinear neural dynamics with spatiotempo-
ral chaos in associative memory networks;*® combina-
torial  optimization networks,”'° and electronic
implementation.>'**2Among such studies we focus on the
associative memory dynamics in this paper. Adachi and
Aihara analyzed the dynamics of associative memory net-
works composed of chaotic neurons in detail and exam-
ined characteristics of the retrieval proces$. However,
the relation between dynamical association and chaotic
itinerancy has not been clarified yet. In this paper we
consider this relation from the viewpoint of nonlinear dy-
namical systems and illustrate that the generation of a
chaotic itinerant phenomenon in a simple model of cha-
otic neural network is based on the intersection of a
couple of unstable sets ow branches’® each of which is
an invariant set associated with the characteristic multi-
plier of a periodic point outside the unit circle in the
complex plane. Because the system is a noninvertible
map,'* the intersection of a branches is possible to occur
and, in fact, is numerically verified by a novel method
proposed in this paper.

I. INTRODUCTION

abilities. In particular, accumulating refractoriness inherent
in the chaotic neurons makes it possible for the chaotic neu-
ral networks to escape from any fixed points except the qui-
escent state where all neurons are resting and keep itinerating
in the state space. This unstable dynamics is useful for infor-
mation processing such as dynamical association and combi-
natorial optimizatior:>~81” These kinds of computational
itinerant dynamics may be related to chaotic itineraficy.

The purpose of this paper is to consider a mechanism of
the generation of such chaotic itinerant memory dynamics
observed when applied to associative memory, where the
chaotic neural networks transit among stored states. Al-
though chaotic itinerancy is typically observed in high-
dimensional dynamical systems, it would be desirable, if
possible, to treat a network model with a small size for con-
sidering the essential propeftyVe investigate a chaotic neu-
ral network composed of just four chaotic neurons with syn-
aptic connections determined by two orthogonal stored
patterns in this paper because we can calcutdieanches of
periodic points in detail for such a small-scale network.

II. CHAOTIC NEURAL NETWORK

We consider a network made up of four chaotic
neurond=3 coupled by synaptic connection weights, which
are determined according to orthogonal stored patt@hs
=(1,0,1,0) andP?=(1,1,0,0)°> The dynamics of theéth
chaotic neuron is described as follows fer1, ... ,4 and

We analyze itinerant memory dynamics of a chaotic neu=0,1,2 .. .:

ral network'? with respect to global bifurcations. A chaotic

neural network is composed of chaotic neurbAsyhich

were derived on the basis of the Caianiello neuronic

equatiort® and the Nagumo—Sato neuronal motfel.

Spatiotemporal dynamics of the chaotic neural network
generates complex behavior with possible computational
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where 0;(t+1) is the output between 0 and 1;; is the Li(t+1) =K. (1) — ag(ni(t)+ (1) +a, (5)
synaptic weight from thgth chaotic neuronk; andk, are
decay parameters for the feedback inputs and the refractor\iA—I
ness,a is the refractory scaling parameter, afids the bias
including the threshold=* The nonlinear output functiog
of each neuron is assumed as follows:

here n»; and ¢{; are internal states for the feedback inputs
and the refractoriness, respectively, and

a=A(1-k,).
(W=7 2 o .
g 1+exp(—ule) Considering a small value of the paramedein Eq. (4),
wheres is the steep parameter. The coupling coefficients ard/€ can treat a slightly asymmetric system Wlth d|ffe'rent
defined as follows: weights among stored patterns. The connection matrix

={Wij}ij=1,... ais given as follows:

W—é 2 p-2] =14 @
ij = & Tk Pi—5l iP5 LI=L....4 (©)) 1 d —-d -1

Wherepr is theith component of théth patternP*, and We E d 1 -1 -—d ©
o1=1-d, o,=1+d. (4) 2 -d -1 1 d |’
Equation(1) can be simplified to the following simultaneous -1 -d d 1
equations:™
4 Assuming |ki|<1, we have 7;(t)+ 74(t)—0 and
(D =ken )+ 2, Wigln O+ 40, b writen 5 the following svedimensional maps
T,:R8—=R®
k. Xx—ag(x+2z)+a
; ky—ag(y—2)+a
z| kiz+3(9(x+2)—g(y—2))+3d(g(u+w)—g(v—w)) -
u k.u—ag(u+w)+a '
v kiv—ag(v—w)+a
w

kew+ 3(g(u+w)—g(v—w))+3d(g(x+2)—g(y—2))

Note that Eq.(7) with d=0 is reduced to two indepen- Here we note symmetric properties ©5. By defining
dent subsystems, each of which has the same dynamics. Fire following two transformations:
example, the subsystem of,{/,z) is written as follows: P,:R6— RO
TiR—R’ 01 0 00 0
X X
X kix—ag(x+z)+a y 10 0 00 O y
(y)H kKiy—ag(y—2)+a ) (8) z s 0 0 -1 0 0 O z )
u 00 O 01 o uf’
z kiz+7(g(x+2)—g(y—2))
v 00 0O 10 O v
A. Property of T, w 00 0 0 0 -1 w
We are interested in the systef with |d|<1. In this
case,T, is a perturbation system from a direct sum of two
identical subsystems, each of which is described byThe o-branch 9 obranch

direct sum of invariant sets appearing Th comes to be
invariant sets in the direct sum system, so we have combi-
nations of invariant sets. The stability of these invariant sets
depends on the stability of the complementary subspace of a
subspace i ;. Therefore both the symmetry of itself and

the symmetry off, caused by the connection should be con-
sidered. FIG. 1. Schematic diagram for intersection@branches.

Ue, D™) 3 U(e, T(D™)) ; )
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FIG. 2. Bifurcations of periodic points ifi; . The symbols 7 andl 3 denote

period-doubling bifurcations ah-periodic points.
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with respect to the transformation in E@.1). For example,
an invariant set with respect #, is called aP,-invariant
set.

B. Property of T,

The behavior of &,-invariant set is governed by the
dynamics in Eq(8). We note that Eq(8) satisfies the sym-
metric propertyP,°T,=T;°P; where

P:R*—R3

X X 0 1 0)\/x
y|—Piy|=(1 0 0 ||y (12
z z 0 0 —-1/\%

This implies that the set of transformatioBs={I,P,} is an
Abelian group. In other words, the mdp is G-equivariant.
Therefore the lind; with x=y andz=0 is invariant with
respect to the transformatid® .

. METHOD OF ANALYSIS

Before showing our results of analysis, we introduce
the method for calculating an intersection of thebranch
or unstable manifold and local bifurcations of periodic
points.

Consider, in general, the following noninvertible map

T:
T:R"—R", u—T(u). (13
The pointu* satisfying
u*—T"(u*)=0 (14

a set of matrices representing transformations, each of whichecomes a fixednj=1) or anm-periodic (n>1) point of
andT, are commutative, is obtained as follows:

G,={1,P,,Q,,P,Q;},

wherel denotes the identity transformation. The above-given
set forms a group with respect to the product of matrices.

(11)

T. Letu* e R" be a periodic point off, then the character-
istic equation of the periodic poini* with respect to the
characteristic multipliey is defined as follows:

de{ ul —DT™(u*))=0, (15

There exist invariant sets, including chaotic attractors as welvherel is the nxn identity matrix, andDT™ denotes the
as periodic points, which behave in the invariant subspacderivative ofT™. The pointu* is said to be hyperbolic, if all
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FIG. 3. (a8 k,=0.87059.(b) k,=0.870599.(c) k,=0.87060. Phase portrait of iterated points, (8 and (c), and a couple ofP;-symmetric «
branches contacted each other,(b), by T, with k;=0.3. SymbolsA; (i=0,16) andu denote parts of periodic attracting sets and periodic points,

respectively.
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0.8708 U(e,D™ and U(e,T(D™), i.e., U(e,DM={xeR®:
|x—D™ <€}, as shown in Fig. 1. Then there exist positive

integersM andN such that

0.8707 Qo=T"(Qun), QueU(e,DM), 17

Qo=TN(Qn), QneU(eT(D™). (18)

< 0.8706

Substituting Eq(18) into Eq. (17), we obtain

T™(Qu)—TN(Qn)=0. (19

0.8705 .

kf —— We sete to be sufficiently small, so that insidé(e,D™) the
a branch of D™ can be well approximated by the unstable
FIG. 4. Parameter regions for intersectionsxdfranches of periodic points eigenspaceE” of the Jacobi matrix off at D™.2°-22 The
Ty condition such that the point®, and Qy belong to
branches is written as

the absolute values of the eigenvaluesDaf™ are different
from unity. The symbo|lD™ (respectively, /™) denotes a
hyperbolic periodic point, wher® (respectively]) indicates
a periodic point with an eve(respectively, oddnumber of (Qn—T(D™M) X e,=0, (22
characteristic multipliers on the real axis ¢, —1), k indi-

cates the number of characteristic multipliers outside the “nmhereo is the zero vector, and,
circle in the complex plane, anu indicates arm-periodic ’
point. An attracting séf is called periodic with periodh if it
is made up o disjoint setsA= U{“;olAi , Where eachd; is
an attracting set of the map™.

(Qu—D™)Xxe;=0, (20

ande, are eigenvectors
associated with a characteristic multiplief, (| u,|>1), re-
spectively, satisfying

(1ol =DT(D™)e; =0, (p,l—DT*DM)e,=0

A. Calculating intersection of  a branches '(22)
In this section we propose a novel method for generally

calculating intersection of branches of am-periodic point If @ branches intersect each other at the pQgt then

for a three-dimensional system in Ed.3) with n=3. Eqg. (19) is independent of Eq$20) and(21). Therefore we

Let us consider the intersection of branches ofD™  can determine the variable®{",Qy,Qn,\) e R* for the
andT(D™), whereD™ is an unstablen-periodic point satis- set of Egs.(16), (19), (20), and (21) by Newton’s method,
fying where\ is one of parameters included in the m&pThen

M/~ ~m K ~m m the Jacobi matrix of Newton’s method must be calculated.

THDT=D"  TADT#D™ for 1<k<m. (16 For this purpose, we repeatedly use the variational equations
Note that for the occurrence of intersection @foranches, with respect to the initial condition and the system param-
the mapT should be noninvertible. We takeneighborhoods eter, respectively, given by

2 T | 2 T |

(V) -
FIG. 5. (& k,=0.87774. (b) k,
=0.87775. Collapse of in-phase-
locked chaos inT; with k;=0.3.

2 -

4 i

4 2

(a) k, = 0.87774 (b) k, = 0.87775
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FIG. 6. A perspective figure of the three-dimensional phase portrait for the intersectingofaircled poin} and a couple of--branchesv* (,D%) and
W*(T,(,D%) with respect to the four-periodic poing®* and T,(,D*), respectively. Unrelated branches are omitted.

e JT dep e The motion of a periodic point that is invariant with
o (b =—2 - (t=1uh), - with —-(Ou,N) =1, respect to the transformati@y, is restricted to the dynamics
of T,. Therefore, we first focus periodic points related to the
de aT de aT occurrence of chaotic itinerancy ifi;, and consider both
X( U= % X(t_ Lun)+ N’ local and global bifurcations of the periodic points. Then, we

investigate the syster, perturbed from the direct sum of

(9 1 H 7,
with %(O,U,AFO, two identicalT,’s.

where ¢(t,u,\) is a solution of Eq.(13) with ¢(0,u,A — .
o3 o ) a.(13) o ) A. Chaotic itinerancy in T,

=u.
We first explain a mechanism of the generation of
B. Calculating local bifurcation chaotic itinerancy observed in the subsystémby extend-
. . . ing the former result with calculating intersection ofx
A local bifurcation occurs when the topological type branches

of a periodic point is changed by the variation of a system
parameter. The generic bifurcations of the periodic point
are known as codimension-one bifurcations: namely, tangend.- Generation of in-phase-locked chaos
period-doubling, and the Neimark—Sacker bifurcations. A pifurcation diagram for period-doubling bifurcations
These bifurcations are observed when the hyperbolicitysf periodic points located on the invariant det is shown
is destroyed, which corresponds to the critical distributionin Fig. 2. Each curvd T with m=2¥ for k=2,3,4,5 shows
of the characteristic multipliep. such thatu=+1 for the 3 period-doubling bifurcation set of arm-periodic
tangent bifurcationy.= —1 for the period-doubling bifurca-  point, whose eigenvector associated with the characteristic
tion, andu=e!? for the Neimark—Sacker bifurcation, where myjtiplier — 1 has the same direction as the ling Because
j=V—=1 and cR. To calculate local bifurcations, we this phenomenon is equivalent to the period-doubling
use the method proposed in Ref. 23. Namely the fit@d pifurcation appearing in a one-dimensional map=R;
periOdiO pOint equation of Eq(14) and the bifurcation con- XHer_ ag(x)+a, the bifurcation curve is independent
dition of Eq (15) are Simultaneously solved by Newton’s of the parametekf, as shown in F|g 2. A Q]_periodic
method. point bifurcates to an orthogonal direction with respect to
In the bifurcation diagrams of Sec. IV, period-doubling the lineL ,, by passing through the period-doubling bifurca-
bifurcation sets of anm-periodic point are indicated by tion curve I with increasing the parameter value kf.
curves with Symbols;n, where £ is the index number to The areas in which unstable periodic poirﬂ@m with
distinguish bifurcations of the same type. m=4,8,16 and 32 exist are shown by shading loosely-

IV. RESULTS OF ANALYSIS

In Eq. (7), the system parameters excd@tand kr are TABLE I. An example of the values for the intersection @branches.
fixed as follows: \—k,—0.877 799 997 8
a=4. a=0.8, &=0.015. (23) ,D*=(—0.848 864 818 7; 0.848 864 818 7,0)
T1(,D*) = (0.054 866 464 0,0.054 866 464 0,0)
The parameter setting is based on lots of theoretical and nuM =80, N=60
merical results"*"8not only on periodic points but also on Qu=(~0.841 063 167 2; 0.856 666 470 1 0.000 263 068 2)

. . ) . =(0.054 865 723 7,0.054 867 204 5,0.000 000 008 5
chaotic attractors in chaotic neural networks, producmg?&‘(Q( )= (0.014 755 074 1,0.022 178 454-00.000 056 812 1
M(Qum) = (0. 0. .

rich dynamics with memory retrieving and searching Pro-1i(Q,)=(0.014 755 075 0,0.022 178 450-3).000 056 812 1)
cesses.
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FIG. 7. (Color) The (x,y)-projection
of a-branches W*(T}(u)), n
=0,1,2,3, with respect to four-periodic
pointu of T, at each of the, values
0.877 74 (blue), 0.877 75 (red), and
0.877 77(yellow). (b) A partially en-
larged diagram ofa).

@ ' (®)

packed dots, tightly packed dots, lines from top right toFigures 3a) and 3c) show an example of the transition be-
bottom left, and lines from top left to bottom right, respec-fore and after generation of an almost in-phase-locked chaos
tively. including a subset of the invariant sét;. A part of

We note that a mechanism of the generation of almos’d'fz-invariant periodic attracting setd; (i=0,...,31) is
in-phase-locked chaos is related to the set ofedranch  shown in Fig. 8a). The disjoint attracting sef; satisfies
W*(,D™) of them-periodic point associated with the eigen- P;(A))=A;, j=i+16 (i=0,...,15), so acouple of the
vector (=p,+p,q), wherep andqg are nonzero constants. setsA; andP;(A)) is T}G—invariant. By varying the param-

U U
2 T T 2 T T
0 L - 0 [ .
. [
2 o - 2F *® -
° .
4 ] 1 :L‘ 4 1 ] a‘/‘
4 2 0 2 4 2 0 2
(a) (b) FIG. 8. Phase portraits of four peri-
odic points with type,D* in T, with
U U k,=0.877 70.
2 T T 2 T T
0F L - oF e i
° e
2 * . -2 d -
. .
-4 1 1 €T 4 1 1 T
-4 -2 0 2 4 2 0 2

(© (d)
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(2
2
0
2
-4
-4
@ (b) FIG. 9. Phase portraits of four types of
four-periodic chaotic attracting sets in

U T, with k,=0.877 70.

(© (d)

eter value ofk, from 0.87059 to 0.870604; and P,(A;) in Fig. 3(b). By using the property that the intersecting point
overlap as shown in Fig.(8). The generated attracting set is is located inL,, the parameter set can be numerically ob-
16-periodic. This phenomenon is caused by the intersectiotained by a modified method presented in Ref. 24. The curve
of a-branchesw™(,D%) and P{(W"(,D)) as illustrated H™ (m=8,16,32) in Fig. 4 denotes the parameter set in

| 0 4096 8192 12288 16384 ’ 0 4096 8192 12288 16384

(a) (b)

4096 8192 12288 16384 i 4096 8192 12288 16384

(© (d)

FIG. 10. Time series for iterated points ©f with k,=0.877 75.
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1.0
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A )
.
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.
05F N
L)
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\‘ "a e ~—.
A N N " A ety
ol i 0.0 [+ S i oy A e
“\ O"
- 4
05} AN o
\~-’O
-1.0 ] ] ]
2 . 0 2048 4096 6144 8192
delay time
FIG. 13. Autocorrelation function for the chaotic attracting set3 jrwith
k,=0.877 70(solid line) andk,=0.877 75(dashed ling
-4 L L £T
-4 -2 0 2

FIG. 11. Phase portrait of the attractor showing chaotic itinerancy observed
in T, with k,=0.877 75. 2. Collapse of in-phase-locked chaos

Figures %a) and 5b) show that, by a slight change of the
which the conditionW*™ (,D™ NP, (W*(,D™M))# ¢ is satis-  value ofk, , the four disjoint attracting sets come to be con-
fied. Therefore we see that amperiodic attracting set exists nected to each other and then iterated pointsT pfmove
in the shaded portions of tightly-packed dots, diagonally-without a locking property. Namely, the in-phase-locked
packed dots and straight packed dots or regions surroundethaos as a four-periodic attracting set collapses due to the

by the curveH™ with m=8, 16, and 32, respectively. occurrence of the following condition:
U u
2 T 2 T T
o . 0 .
2 - 2 -
4 ! 1 ZT -4 ] 1 €T
-4 -2 0 2 -4 -2 0 2
(a) 7200 < t < 8200 (b) 3400 < t < 4100 FIG. 12. Phase portrait of the same at-
tractor as shown in Fig. 11 in short-
U U term intervals.
2 I I 2 I 1
0F - 0} .
2k . 2 .
-4 1 1 €T -4 ] ] €T
-4 -2 0 2 -4 -2 0 2
(c) 0 <t <2000 (d) 2900 < t < 3300

Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



1130 Chaos, Vol. 13, No. 3, 2003 Kitajima et al.

1
0
0 4096 8192 12288 16384 20480 24576 28672 32768 0 4096 8192 12288 16384 20480 24576 28672 32768

(@) (b)

FIG. 14. Distance between the output patternd ofvith k,=0.8778 and the stored pattert@ P* and(b) P2.

W+(2D4)OW+(T2(2D4))¢¢, for Ane[1,2,3]. where the suffix is an integer mod 4. Each attracting set is
(24) P,-invariant and has the following properties.

In fact, we can confirm the intersection af branches as (1) The attracting set shown in Fig(& is Q,-invariant. We
shown in Fig. 6. The intersecting point in the state space can call it an in-phase-locked periodic attracting set, because
be calculated by the method presented in Sec. llIA. The its motion is restricted to an invariant subspace around
concrete values of variables obtained after convergence x=y=u=v andz=w=0.

within predefined accuracy are shown in Table I. (2) On the other hand, each attracting set shown in Figs.
A mechanism of the merging oT‘ll—invariant periodic 9(b)—9(d) identically satisfies conditiong=y, u=v,
attracting sets is illustrated as follows. Figure 7 shows andz=w=0, although the solution emanating from a
a-branchesW* (T}(u)), n=0,1,2,3, with respect to four- perturbed initial condition may go to the in-phase-locked
periodic pointsu of T, with different parameter values. To periodic attracting set. We call it R,-invariant periodic

compare the abrupt change efbranches by the parameter chaotic attracting set.
variation of the order of 10°, three differentx branches, at . o .
k,=0.877 74(blue), 0.877 75(red), and 0.877 77(yellow), 2. Collapse of in-phase-locked periodic attracting set

are overlapped in the figure. After merging of periodic at-  Now let us consider itinerant behavior of attractors by
tracting sets, thex branches with red and yellow colored jncreasing the parameter valuelgffrom the value 0.877 70.
curves extend to outside the area where the in-phase-lockegle can observe ®,-invariant periodic attracting set ifi,
chaos exists before merging. Parts of branches that are th@th up to, e.g.,k,=0.87790. On the other hand, the in-
most different from each other are shown in Fi¢o)7 phase-locked periodic attracting set disappears kat
B. Itinerant memory dynamics in T, =0.87775 due to a boundary connection. Figure 10 shows
. . o the time series of the chaotic attractor Eiﬁ. The phase
Next, let us consideT, with variation of the parameter o rrajt of the same attractor observedTinis shown in Fig.
value ofk; for the fixed parameter values=0.01 andk; 11 \we see that it moves around in a wider region in the state
=0.3. ) _ _ space. Each phase portrait shown in Fig. 12 represents the
The direct sum system of two identical subsystems hagenayior of the same attractor in appropriate short-term in-
four kinds of four-periodic points as direct sum sets of theygpyg)s. Figures 12)-12d) show motions that behave
in-phase-locked four-periodic poipD* of T, Because the  ground the sets shown in Figs(aB-9(d), respectively.
direct sum of the periodic poinD* are Po-invariant in the  Therefore, the subspaces among which the chaotic attractor

six-dimensional state space, they also exisTwith any g itinerant are four quasiattracting states.
value ofd. Figure 8 shows phase portraits of the periodic

points ,D* in T, with k,=0.877 70. Four kinds of four-
periodic points areP,-invariant or satisfyx=y, u=v, and 7104

z=w=0. Additionally, the periodic point shown in Fig(® T .

is Q,-invariant or satisfieg=u. In the following, we showa 4o 1
mechanism of the generation of chaotic itinerancy observec
in T, with variation of the parameter value kf. %

20 .
1. Coexistence of P ,-invariant and in-phase-locked
periodic attracting sets 10 A

We show four types of four-periodic chaotic attracting . L ]4;7,
sets ak,=0.877 70 in Fig. 9. The set labeled by the symbol °#”® 0_371775 088 0885 089

Aj; in the figure satisfies
FIG. 15. The rate of counts; for outputs around the stored patté?rt and
Ais1j1=TaoA)), (25 its reversed pattern during 32 768 iterations.
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In Fig. 13 we show autocorrelation functiot&CF) for T, occurs. Namely, inT,, we have a chaotic behavior itin-
the chaotic time seriez of Figs. 9 and 11. The ACF for erating around both the periodR,-invariant attracting set
four-periodic attracting setésolid line) is almost zero; this and the periodic in-phase-locked attracting set, due to the
means the chaotic attractor shown in Fig. 9 is similar toboundary connection of th®,-invariant attracting set.
white noise. On the other hand, the ACF for the attractor  Significant characteristics of our model are that the dy-
showing chaotic itinerancydashed ling has some correla- namics of the subsysteily is essential for the occurrence of
tion, because it moves around four-periodic quasiattractinghaotic itinerancy inl,, and connection between two sub-
sets. systems is also important for representing associative

Here we consider the relation between itinerant behaviomemory dynamics during the phenomenon of chaotic itiner-
of internal states and itinerant memory dynamics of neuronadncy. We consider that the six-dimensional systEjnas a
outputs that transit the two stored patterns. The oubpuatf ~ perturbation system from a direct sum of two identical sub-
neuroni is given byo;=g(x+2z), 0,=g(u+w), 03=9(v systemsT is one of the smallest discrete dynamical system
—w), ando,=g(y—2), whereg is the nonlinear function in representing itinerant memory dynamics. Although the pa-
Eqg. (2). For the sake of simplicity, we now treat symbolic rametero,=1+d (k=1,2) with a small value ofl in the
binary outputs 0 and 1, which are obtained by transforminglefinition of the connection matrix is introduced to have dif-
the internal states through the Heaviside function. The set derent weights among stored patterns, the parameter plays an
symbolic outputs recalls one of the stored pattefds  important role for constructing the slightly perturbed system
=(1,0,1,0) andP?=(1,1,0,0), and their reversed patterns or avoiding no interaction between two subsystems.

P'=(0,1,0,1) andP?>=(0,0,1,1), if and only if the follow- Due to symmetric properties of the system, behavior re-
ing conditions are satisfied: a pair of the symbolic outputs oftricted to an invariant subspace can be investigated by
o; ando; are in reverse phases, fdr,j) = (1,4) and(2,3). analysis of a reduced subsystem. The setting of symmetry

BecauseP,- and Q,-invariant attracting sets are locked makes it easier for theoretical and numerical analysis. It
in-phase or satisfy,;=0, and 0,=05 exactly, collapse of should also be noted, however, that similar phenomena in-
the invariant chaotic attracting sets is necessary for recallingluding chaotic itinerancy can be observed in a class of
any of the stored and reversed memory patterns. Indeed, &ymmetric systems affected by a parameter perturbation
seen from Fig. 7, after merging of the invariant sets, ghe from the symmetric system, and all methods of analysis used
branches rove over out-of-phase areas in the internal stat@ this paper are applicable to a general asymmetric system.
space. To demonstrate the transition of memory states, Fig. We have proposed a computational method to calculate
14 shows a time course of the Hamming distances betweeifie intersection o branches of periodic points, and then the
the output pattern at the discrete titnand each stored pat- occurrence in our system has been illustrated. The manifold
tern, which is defined byd(t)==%_,|o;(t)—P¥|, for k  of the set satisfying the intersecting condition is locally
=1,2. The values 0 and 4 df, correspond to the exact recall codimension-one in the parameter space. Investigation of the
of the stored patter®* and its reversed patterﬁ(, respec- global structure in a parameter space is an interesting future

tively, for k=1,2. The rate of counts, that the output state Problem.

satisfies the condition eithel;<0.1 ord;>3.9 is shown in

Fig. 15. Since the rate; becomes a nonzero value lgt ~ACKNOWLEDGMENTS
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