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We have considered itinerant memory dynamics in a chaotic neural network composed of four
chaotic neurons with synaptic connections determined by two orthogonal stored patterns as a simple
example of a chaotic itinerant phenomenon in dynamical associative memory. We have analyzed a
mechanism of generating the itinerant memory dynamics with respect to intersection of a pair ofa
branches of periodic points and collapse of a periodic in-phase attracting set. The intersection of
invariant sets is numerically verified by a novel method proposed in this paper. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1601912#
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Aihara et al. proposed a simple chaotic neuron model and
an artificial neural network model composed of such cha-
otic neurons.1–3 The models have been widely used for
analysis of nonlinear neural dynamics with spatiotempo-
ral chaos in associative memory networks,1,4–6 combina-
torial optimization networks, 7–10 and electronic
implementation.3,11,12Among such studies we focus on the
associative memory dynamics in this paper. Adachi and
Aihara analyzed the dynamics of associative memory net
works composed of chaotic neurons in detail and exam
ined characteristics of the retrieval process.4 However,
the relation between dynamical association and chaotic
itinerancy has not been clarified yet. In this paper we
consider this relation from the viewpoint of nonlinear dy-
namical systems and illustrate that the generation of a
chaotic itinerant phenomenon in a simple model of cha-
otic neural network is based on the intersection of a
couple of unstable sets ora branches,13 each of which is
an invariant set associated with the characteristic multi-
plier of a periodic point outside the unit circle in the
complex plane. Because the system is a noninvertibl
map,14 the intersection of a branches is possible to occur
and, in fact, is numerically verified by a novel method
proposed in this paper.

I. INTRODUCTION

We analyze itinerant memory dynamics of a chaotic n
ral network1,2 with respect to global bifurcations. A chaot
neural network is composed of chaotic neurons,1,2 which
were derived on the basis of the Caianiello neuro
equation15 and the Nagumo–Sato neuronal model.16

Spatiotemporal dynamics of the chaotic neural netw
generates complex behavior with possible computatio
1121054-1500/2003/13(3)/1122/11/$20.00
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abilities. In particular, accumulating refractoriness inher
in the chaotic neurons makes it possible for the chaotic n
ral networks to escape from any fixed points except the q
escent state where all neurons are resting and keep itiner
in the state space. This unstable dynamics is useful for in
mation processing such as dynamical association and co
natorial optimization.1,3–8,17 These kinds of computationa
itinerant dynamics may be related to chaotic itinerancy.18

The purpose of this paper is to consider a mechanism
the generation of such chaotic itinerant memory dynam
observed when applied to associative memory, where
chaotic neural networks transit among stored states.
though chaotic itinerancy is typically observed in hig
dimensional dynamical systems, it would be desirable
possible, to treat a network model with a small size for co
sidering the essential property.5 We investigate a chaotic neu
ral network composed of just four chaotic neurons with sy
aptic connections determined by two orthogonal sto
patterns in this paper because we can calculatea branches of
periodic points in detail for such a small-scale network.

II. CHAOTIC NEURAL NETWORK

We consider a network made up of four chao
neurons1–3 coupled by synaptic connection weights, whic
are determined according to orthogonal stored patternsP 1

5(1,0,1,0) andP 25(1,1,0,0).5 The dynamics of thei th
chaotic neuron is described as follows fori 51, . . . ,4 andt
50,1,2, . . . :

oi~ t11!5gS (
j 51

4

Wi j (
t50

t

~kf !
toj~ t2t!

2a(
t50

t

~kr !
toi~ t2t!1AD , ~1!
2 © 2003 American Institute of Physics
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where oi(t11) is the output between 0 and 1,Wi j is the
synaptic weight from thej th chaotic neuron,kf and kr are
decay parameters for the feedback inputs and the refrac
ness,a is the refractory scaling parameter, andA is the bias
including the threshold.1–4 The nonlinear output functiong
of each neuron is assumed as follows:

g~u!5
1

11exp~2u/«!
, ~2!

where« is the steep parameter. The coupling coefficients
defined as follows:

Wi j 5 (
k51

2

skS pi
k2

1

2D S pj
k2

1

2D , i , j 51, . . . ,4, ~3!

wherepi
k is the i th component of thekth patternP k, and

s1512d, s2511d. ~4!

Equation~1! can be simplified to the following simultaneou
equations:1–4

h i~ t11!5kfh i~ t !1(
j 51

4

Wi j g~h j~ t !1z j~ t !!,
-
. F

o

b
e
o

n
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z i~ t11!5krz i~ t !2ag~h i~ t !1z i~ t !!1a, ~5!

whereh i and z i are internal states for the feedback inpu
and the refractoriness, respectively, and

a5A~12kr !.

Considering a small value of the parameterd in Eq. ~4!,
we can treat a slightly asymmetric system with differe
weights among stored patterns. The connection matrixW
5$Wi j % i , j 51, . . . ,4 is given as follows:

W5
1

2 S 1 d 2d 21

d 1 21 2d

2d 21 1 d

21 2d d 1

D . ~6!

Assuming ukf u,1, we have h1(t)1h4(t)→0 and
h2(t)1h3(t)→0 ast→`. Then the dynamics of Eq.~5! can
be written as the following six-dimensional map:
T2 :R6→R6

S x
y
z
u
v
w

D °S krx2ag~x1z!1a

kry2ag~y2z!1a

kfz1 1
2 ~g~x1z!2g~y2z!!1 1

2 d~g~u1w!2g~v2w!!

kru2ag~u1w!1a

krv2ag~v2w!1a

kfw1 1
2 ~g~u1w!2g~v2w!!1 1

2 d~g~x1z!2g~y2z!!

D . ~7!
Note that Eq.~7! with d50 is reduced to two indepen
dent subsystems, each of which has the same dynamics
example, the subsystem of (x,y,z) is written as follows:

T1 :R3→R3

S x
y
z
D °S krx2ag~x1z!1a

kry2ag~y2z!1a

kfz1 1
2 ~g~x1z!2g~y2z!!

D . ~8!

A. Property of T2

We are interested in the systemT2 with udu!1. In this
case,T2 is a perturbation system from a direct sum of tw
identical subsystems, each of which is described byT1 . The
direct sum of invariant sets appearing inT1 comes to be
invariant sets in the direct sum system, so we have com
nations of invariant sets. The stability of these invariant s
depends on the stability of the complementary subspace
subspace inT1 . Therefore both the symmetry ofT1 itself and
the symmetry ofT2 caused by the connection should be co
sidered.
or

i-
ts
f a

-

Here we note symmetric properties ofT2 . By defining
the following two transformations:

P2 :R6→R6

S x
y
z
u
v
w

D °S 0 1 0 0 0 0

1 0 0 0 0 0

0 0 21 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 21

D S x
y
z
u
v
w

D , ~9!

FIG. 1. Schematic diagram for intersection ofa branches.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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and

Q2 :R6→R6

S x
y
z
u
v
w

D °S 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

D S x
y
z
u
v
w

D , ~10!

a set of matrices representing transformations, each of w
andT2 are commutative, is obtained as follows:

G25$I ,P2 ,Q2 ,P2Q2%, ~11!

whereI denotes the identity transformation. The above-giv
set forms a group with respect to the product of matric
There exist invariant sets, including chaotic attractors as w
as periodic points, which behave in the invariant subsp

FIG. 2. Bifurcations of periodic points inT1 . The symbolsI 1
m andI 2

m denote
period-doubling bifurcations ofm-periodic points.
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
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with respect to the transformation in Eq.~11!. For example,
an invariant set with respect toP2 is called aP2-invariant
set.

B. Property of T1

The behavior of aQ2-invariant set is governed by th
dynamics in Eq.~8!. We note that Eq.~8! satisfies the sym-
metric propertyP1+T15T1+P1 where

P1 :R3→R3

S x
y
z
D °P1S x

y
z
D 5S 0 1 0

1 0 0

0 0 21
D S x

y
z
D . ~12!

This implies that the set of transformationsG15$I ,P1% is an
Abelian group. In other words, the mapT1 is G1-equivariant.
Therefore the lineL1 with x5y and z50 is invariant with
respect to the transformationP1 .

III. METHOD OF ANALYSIS

Before showing our results of analysis, we introdu
the method for calculating an intersection of thea branch
or unstable manifold and local bifurcations of period
points.

Consider, in general, the following noninvertible ma
T:

T:Rn→Rn; u°T~u!. ~13!

The pointu* satisfying

u* 2Tm~u* !50 ~14!

becomes a fixed (m51) or anm-periodic (m.1) point of
T. Let u* PRn be a periodic point ofT, then the character
istic equation of the periodic pointu* with respect to the
characteristic multiplierm is defined as follows:

det~mI 2DTm~u* !!50, ~15!

where I is the n3n identity matrix, andDTm denotes the
derivative ofTm. The pointu* is said to be hyperbolic, if all
ts,

FIG. 3. ~a! kr50.870 59. ~b! kr50.870 599. ~c! kr50.870 60. Phase portrait of iterated points, in~a! and ~c!, and a couple ofP1-symmetric a
branches contacted each other, in~b!, by T1 with kf50.3. SymbolsAi ( i 50,16) andu denote parts of periodic attracting sets and periodic poin
respectively.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the absolute values of the eigenvalues ofDTm are different
from unity. The symbolkD

m ~respectively,kI
m) denotes a

hyperbolic periodic point, whereD ~respectively,I ) indicates
a periodic point with an even~respectively, odd! number of
characteristic multipliers on the real axis (2`,21), k indi-
cates the number of characteristic multipliers outside the
circle in the complex plane, andm indicates anm-periodic
point. An attracting set19 is called periodic with periodm if it
is made up ofm disjoint setsA5ø i 50

m21Ai , where eachAi is
an attracting set of the mapTm.

A. Calculating intersection of a branches

In this section we propose a novel method for genera
calculating intersection ofa branches of anm-periodic point
for a three-dimensional system in Eq.~13! with n53.

Let us consider the intersection ofa branches ofDm

andT(Dm), whereDm is an unstablem-periodic point satis-
fying

Tm~Dm!5Dm, Tk~Dm!ÞDm for 1<k,m. ~16!

Note that for the occurrence of intersection ofa branches,
the mapT should be noninvertible. We takee neighborhoods

FIG. 4. Parameter regions for intersections ofa branches of periodic points
in T1 .
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
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U(e,Dm) and U(e,T(Dm)), i.e., U(e,Dm)5$xPR3:
ux2Dmu,e%, as shown in Fig. 1. Then there exist positiv
integersM andN such that

Q05TM~QM !, QMPU~e,Dm!, ~17!

Q05TN~QN!, QNPU~e,T~Dm!!. ~18!

Substituting Eq.~18! into Eq. ~17!, we obtain

TM~QM !2TN~QN!50. ~19!

We sete to be sufficiently small, so that insideU(e,Dm) the
a branch ofDm can be well approximated by the unstab
eigenspacesEu of the Jacobi matrix ofT at Dm.20–22 The
condition such that the pointsQM and QN belong to a
branches is written as

~QM2Dm!3e15O, ~20!

~QN2T~Dm!!3e25O, ~21!

whereO is the zero vector, ande1 and e2 are eigenvectors
associated with a characteristic multiplierma (umau.1), re-
spectively, satisfying

~maI 2DT~Dm!!e15O, ~maI 2DT2~Dm!!e25O.
~22!

If a branches intersect each other at the pointQ0 , then
Eq. ~19! is independent of Eqs.~20! and ~21!. Therefore we
can determine the variables (Dm,QM ,QN ,l)PR10 for the
set of Eqs.~16!, ~19!, ~20!, and ~21! by Newton’s method,
wherel is one of parameters included in the mapT. Then
the Jacobi matrix of Newton’s method must be calculat
For this purpose, we repeatedly use the variational equat
with respect to the initial condition and the system para
eter, respectively, given by
-

FIG. 5. ~a! kr50.87774. ~b! kr

50.87775. Collapse of in-phase
locked chaos inT1 with kf50.3.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. A perspective figure of the three-dimensional phase portrait for the intersecting pointQ0 ~circled point! and a couple ofa-branchesW1(2D4) and
W1(T1(2D4)) with respect to the four-periodic points2D4 andT1(2D4), respectively. Unrelated branches are omitted.
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]w

]u
~ t,u,l!5

]T

]x

]w

]u
~ t21,u,l!, with

]w

]u
~0,u,l!5I ,

]w

]l
~ t,u,l!5

]T

]x

]w

]l
~ t21,u,l!1

]T

]l
,

with
]w

]l
~0,u,l!5O,

where w(t,u,l) is a solution of Eq.~13! with w(0,u,l)
5u.23

B. Calculating local bifurcation

A local bifurcation occurs when the topological typ
of a periodic point is changed by the variation of a syst
parameter. The generic bifurcations of the periodic po
are known as codimension-one bifurcations: namely, tang
period-doubling, and the Neimark–Sacker bifurcatio
These bifurcations are observed when the hyperboli
is destroyed, which corresponds to the critical distribut
of the characteristic multiplierm such thatm511 for the
tangent bifurcation,m521 for the period-doubling bifurca
tion, andm5ej u for the Neimark–Sacker bifurcation, wher
j 5A21 and uPR. To calculate local bifurcations, w
use the method proposed in Ref. 23. Namely the fixed~or
periodic! point equation of Eq.~14! and the bifurcation con-
dition of Eq. ~15! are simultaneously solved by Newton
method.

In the bifurcation diagrams of Sec. IV, period-doublin
bifurcation sets of anm-periodic point are indicated by
curves with symbolsI ,

m , where , is the index number to
distinguish bifurcations of the same type.

IV. RESULTS OF ANALYSIS

In Eq. ~7!, the system parameters exceptkf and kr are
fixed as follows:

a54, a50.8, «50.015. ~23!

The parameter setting is based on lots of theoretical and
merical results1–4,7,8not only on periodic points but also o
chaotic attractors in chaotic neural networks, produc
rich dynamics with memory retrieving and searching p
cesses.
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
t
t,
.
y
n

u-

g
-

The motion of a periodic point that is invariant wit
respect to the transformationQ2 is restricted to the dynamic
of T1 . Therefore, we first focus periodic points related to t
occurrence of chaotic itinerancy inT1 , and consider both
local and global bifurcations of the periodic points. Then,
investigate the systemT2 perturbed from the direct sum o
two identicalT1’s.

A. Chaotic itinerancy in T1

We first explain a mechanism of the generation
chaotic itinerancy observed in the subsystemT1 by extend-
ing the former result5 with calculating intersection ofa
branches.

1. Generation of in-phase-locked chaos

A bifurcation diagram for period-doubling bifurcation
of periodic points located on the invariant setL1 is shown
in Fig. 2. Each curveI 1

m with m52k for k52,3,4,5 shows
a period-doubling bifurcation set of anm-periodic
point, whose eigenvector associated with the character
multiplier 21 has the same direction as the lineL1 . Because
this phenomenon is equivalent to the period-doubl
bifurcation appearing in a one-dimensional map:R→R;
x°krx2ag(x)1a, the bifurcation curve is independen
of the parameterkf , as shown in Fig. 2. A 2m-periodic
point bifurcates to an orthogonal direction with respect
the lineL1 , by passing through the period-doubling bifurc
tion curve I 2

m with increasing the parameter value ofkr .
The areas in which unstable periodic points2Dm with
m54,8,16 and 32 exist are shown by shading loose

TABLE I. An example of the values for the intersection ofa branches.

l5kr50.877 799 997 8

2D45(20.848 864 818 7,20.848 864 818 7,0)
T1(2D4)5(0.054 866 464 0,0.054 866 464 0,0)
M580, N560
QM5(20.841 063 167 2,20.856 666 470 1,20.000 263 068 2)
QN5(0.054 865 723 7,0.054 867 204 5,0.000 000 008 5)
T1

M(QM)5(0.014 755 074 1,0.022 178 454 0,20.000 056 812 1)
T1

N(QN)5(0.014 755 075 0,0.022 178 450 3,20.000 056 812 1)
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 7. ~Color! The (x,y)-projection
of a-branches W1(T1

n(u)), n
50,1,2,3, with respect to four-periodic
point u of T1 at each of thekr values
0.877 74 ~blue!, 0.877 75 ~red!, and
0.877 77~yellow!. ~b! A partially en-
larged diagram of~a!.
to
c-

o

n-
.

-
aos

-

packed dots, tightly packed dots, lines from top right
bottom left, and lines from top left to bottom right, respe
tively.

We note that a mechanism of the generation of alm
in-phase-locked chaos is related to the set of ana-branch
W1(2Dm) of them-periodic point associated with the eige
vector (6p,7p,q), wherep and q are nonzero constants
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
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Figures 3~a! and 3~c! show an example of the transition be
fore and after generation of an almost in-phase-locked ch
including a subset of the invariant setL1 . A part of
T1

32-invariant periodic attracting setsAi ( i 50, . . . ,31) is
shown in Fig. 3~a!. The disjoint attracting setAi satisfies
P1(Ai)5Aj , j 5 i 116 (i 50, . . . ,15), so acouple of the
setsAi and P1(Ai) is T1

16-invariant. By varying the param
-
FIG. 8. Phase portraits of four peri
odic points with type4D4 in T2 with
kr50.877 70.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 9. Phase portraits of four types o
four-periodic chaotic attracting sets in
T2 with kr50.877 70.
is
tio

nt
b-
rve
in
eter value ofkr from 0.870 59 to 0.870 60,Ai and P1(Ai)
overlap as shown in Fig. 3~c!. The generated attracting set
16-periodic. This phenomenon is caused by the intersec
of a-branchesW1(2D16) and P1(W1(2D16)) as illustrated
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
n

in Fig. 3~b!. By using the property that the intersecting poi
is located inL1 , the parameter set can be numerically o
tained by a modified method presented in Ref. 24. The cu
Hm (m58,16,32) in Fig. 4 denotes the parameter set
FIG. 10. Time series for iterated points ofT2
4 with kr50.877 75.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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which the conditionW1(2Dm)ùP1(W1(2Dm))Þf is satis-
fied. Therefore we see that anm-periodic attracting set exist
in the shaded portions of tightly-packed dots, diagona
packed dots and straight packed dots or regions surroun
by the curvesHm with m58, 16, and 32, respectively.

FIG. 11. Phase portrait of the attractor showing chaotic itinerancy obse
in T2 with kr50.877 75.
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
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2. Collapse of in-phase-locked chaos

Figures 5~a! and 5~b! show that, by a slight change of th
value ofkr , the four disjoint attracting sets come to be co
nected to each other and then iterated points ofT1 move
without a locking property. Namely, the in-phase-lock
chaos as a four-periodic attracting set collapses due to
occurrence of the following condition:

ed

FIG. 13. Autocorrelation function for the chaotic attracting sets inT2 with
kr50.877 70~solid line! andkr50.877 75~dashed line!.
t-
-

FIG. 12. Phase portrait of the same a
tractor as shown in Fig. 11 in short
term intervals.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 14. Distance between the output patterns ofT2 with kr50.8778 and the stored patterns~a! P 1 and ~b! P 2.
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W1~2D4!ùW1~T1
n~2D4!!Þf, for 'nP@1,2,3#.

~24!

In fact, we can confirm the intersection ofa branches as
shown in Fig. 6. The intersecting point in the state space
be calculated by the method presented in Sec. III A. T
concrete values of variables obtained after converge
within predefined accuracy are shown in Table I.

A mechanism of the merging ofT1
4-invariant periodic

attracting sets is illustrated as follows. Figure 7 sho
a-branchesW1(T1

n(u)), n50,1,2,3, with respect to four
periodic pointsu of T1 with different parameter values. T
compare the abrupt change ofa branches by the paramete
variation of the order of 1025, three differenta branches, at
kr50.877 74~blue!, 0.877 75~red!, and 0.877 77~yellow!,
are overlapped in the figure. After merging of periodic
tracting sets, thea branches with red and yellow colore
curves extend to outside the area where the in-phase-lo
chaos exists before merging. Parts of branches that are
most different from each other are shown in Fig. 7~b!.

B. Itinerant memory dynamics in T2

Next, let us considerT2 with variation of the paramete
value of kr for the fixed parameter valuesd50.01 andkf

50.3.
The direct sum system of two identical subsystems

four kinds of four-periodic points as direct sum sets of t
in-phase-locked four-periodic point2D4 of T1 . Because the
direct sum of the periodic point2D4 are P2-invariant in the
six-dimensional state space, they also exist inT2 with any
value of d. Figure 8 shows phase portraits of the period
points 4D4 in T2 with kr50.877 70. Four kinds of four-
periodic points areP2-invariant or satisfyx5y, u5v, and
z5w50. Additionally, the periodic point shown in Fig. 8~a!
is Q2-invariant or satisfiesx5u. In the following, we show a
mechanism of the generation of chaotic itinerancy obser
in T2 with variation of the parameter value ofkr .

1. Coexistence of P 2-invariant and in-phase-locked
periodic attracting sets

We show four types of four-periodic chaotic attractin
sets atkr50.877 70 in Fig. 9. The set labeled by the symb
Ai j in the figure satisfies

Ai 11,j 115T2~Ai j !, ~25!
Downloaded 08 Sep 2003 to 150.59.14.10. Redistribution subject to AIP
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where the suffix is an integer mod 4. Each attracting se
P2-invariant and has the following properties.

~1! The attracting set shown in Fig. 9~a! is Q2-invariant. We
call it an in-phase-locked periodic attracting set, beca
its motion is restricted to an invariant subspace arou
x5y5u5v andz5w50.

~2! On the other hand, each attracting set shown in F
9~b!–9~d! identically satisfies conditionsx5y, u5v,
and z5w50, although the solution emanating from
perturbed initial condition may go to the in-phase-lock
periodic attracting set. We call it aP2-invariant periodic
chaotic attracting set.

2. Collapse of in-phase-locked periodic attracting set

Now let us consider itinerant behavior of attractors
increasing the parameter value ofkr from the value 0.877 70
We can observe aP2-invariant periodic attracting set inT2

with up to, e.g.,kr50.877 90. On the other hand, the in
phase-locked periodic attracting set disappears atkr

50.877 75 due to a boundary connection. Figure 10 sho
the time series of the chaotic attractor byT2

4. The phase
portrait of the same attractor observed inT2 is shown in Fig.
11. We see that it moves around in a wider region in the s
space. Each phase portrait shown in Fig. 12 represents
behavior of the same attractor in appropriate short-term
tervals. Figures 12~a!–12~d! show motions that behav
around the sets shown in Figs. 9~a!–9~d!, respectively.
Therefore, the subspaces among which the chaotic attra
is itinerant are four quasiattracting states.

FIG. 15. The rate of countsr 1 for outputs around the stored patternP 1 and
its reversed pattern during 32 768 iterations.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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In Fig. 13 we show autocorrelation functions~ACF! for
the chaotic time seriesx of Figs. 9 and 11. The ACF fo
four-periodic attracting sets~solid line! is almost zero; this
means the chaotic attractor shown in Fig. 9 is similar
white noise. On the other hand, the ACF for the attrac
showing chaotic itinerancy~dashed line! has some correla
tion, because it moves around four-periodic quasiattrac
sets.

Here we consider the relation between itinerant beha
of internal states and itinerant memory dynamics of neuro
outputs that transit the two stored patterns. The outputoi of
neuroni is given byo15g(x1z), o25g(u1w), o35g(v
2w), ando45g(y2z), whereg is the nonlinear function in
Eq. ~2!. For the sake of simplicity, we now treat symbol
binary outputs 0 and 1, which are obtained by transform
the internal states through the Heaviside function. The se
symbolic outputs recalls one of the stored patternsP 1

5(1,0,1,0) andP 25(1,1,0,0), and their reversed patter
P̄15(0,1,0,1) andP̄25(0,0,1,1), if and only if the follow-
ing conditions are satisfied: a pair of the symbolic outputs
oi andoj are in reverse phases, for (i , j )5(1,4) and~2,3!.

BecauseP2- andQ2-invariant attracting sets are locke
in-phase or satisfyo15o4 and o25o3 exactly, collapse of
the invariant chaotic attracting sets is necessary for reca
any of the stored and reversed memory patterns. Indeed
seen from Fig. 7, after merging of the invariant sets, thea
branches rove over out-of-phase areas in the internal s
space. To demonstrate the transition of memory states,
14 shows a time course of the Hamming distances betw
the output pattern at the discrete timet and each stored pat
tern, which is defined bydk(t)5( i 51

4 uoi(t)2P ku, for k
51,2. The values 0 and 4 ofdk correspond to the exact reca
of the stored patternP k and its reversed patternP̄k, respec-
tively, for k51,2. The rate of countsr 1 that the output state
satisfies the condition eitherd1,0.1 ord1.3.9 is shown in
Fig. 15. Since the rater 1 becomes a nonzero value atkr

50.877 75 when increasingkr , the simultaneous occurrenc
of the collapse of in-phase-locked chaos and the genera
of itinerant memory dynamics is numerically verified.

V. CONCLUDING REMARKS

We have investigated chaotic itinerancy observed in
chaotic neural network model described by the s
dimensional discrete dynamical systemT2 . The behavior re-
stricted to theQ2-invariant subspace was investigated
analysis of the reduced subsystemT1 . The scenario for the
generation of chaotic itinerancy observed inT1 by increasing
the parameter value ofkr is summarized as follows: first
successive period-doubling bifurcations occur and perio
points 2Dm are generated, wherem52k (k50,1, . . . ,̀ );
second, intersection of a-branches W1(2Dm) and
P(W1(2Dm)) (m52k(k5`, . . . ,3,2)) gives birth to in-
phase-locked chaos as a periodic attracting set; and fin
intersection ofa-branchesW1(2D4) and W1(Tn(2D4)) (n
51,2,3) occurs and in-phase-locked chaos as a four-peri
attracting set collapses.

Itinerant memory dynamics inT2 can be simultaneously
observed when the collapse of the in-phase-locked chao
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T1 occurs. Namely, inT2 , we have a chaotic behavior itin
erating around both the periodicP2-invariant attracting set
and the periodic in-phase-locked attracting set, due to
boundary connection of theQ2-invariant attracting set.

Significant characteristics of our model are that the d
namics of the subsystemT1 is essential for the occurrence o
chaotic itinerancy inT2 , and connection between two sub
systems is also important for representing associa
memory dynamics during the phenomenon of chaotic itin
ancy. We consider that the six-dimensional systemT2 as a
perturbation system from a direct sum of two identical su
systemsT1 is one of the smallest discrete dynamical syst
representing itinerant memory dynamics. Although the
rametersk517d (k51,2) with a small value ofd in the
definition of the connection matrix is introduced to have d
ferent weights among stored patterns, the parameter play
important role for constructing the slightly perturbed syste
or avoiding no interaction between two subsystems.

Due to symmetric properties of the system, behavior
stricted to an invariant subspace can be investigated
analysis of a reduced subsystem. The setting of symm
makes it easier for theoretical and numerical analysis
should also be noted, however, that similar phenomena
cluding chaotic itinerancy can be observed in a class
asymmetric systems affected by a parameter perturba
from the symmetric system, and all methods of analysis u
in this paper are applicable to a general asymmetric syst

We have proposed a computational method to calcu
the intersection ofa branches of periodic points, and then th
occurrence in our system has been illustrated. The mani
of the set satisfying the intersecting condition is loca
codimension-one in the parameter space. Investigation of
global structure in a parameter space is an interesting fu
problem.
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