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Belgium
2)Department of Mathematical Sciences, University of Essex, UK
3)Department of Physics, Faculty of Sciences, Qom University of Technology,
Iran
(Dated: 26 October 2020)

Labyrinth chaos was discovered by Otto Rössler and René Thomas in their endeavour to identify the necessary
mathematical conditions for the appearance of chaotic and hyperchaotic motion in continuous flows. Here, we
celebrate their discovery by considering a single labyrinth walks system and an array of coupled labyrinth chaos
systems that exhibit complex, chaotic behaviour, reminiscent of chimera-like states, a peculiar synchronisation
phenomenon. We discuss the properties of the single labyrinth walks system and review the ability of coupled
labyrinth chaos systems to exhibit chimera-like states due to the unique properties of their space-filling,
chaotic trajectories, what amounts to elegant, hyperchaotic walks. Finally, we discuss further implications
in relation to the labyrinth walks system by showing that even though it is volume-preserving, it is not
force-conservative.
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In the course of their pioneering work on the
properties of feedback circuits and their relation
to chaos and hyperchaos, Otto Rössler and René
Thomas proposed a minimal model of a dynam-
ical system they termed Labyrinth Chaos. It
turned out that even though it is simple, it is full
of surprising properties that no-one could thought
of. Simple and elegant as it is, it still holds great
promise in elucidating aspects of chaotic dynam-
ics that are not evident in other systems. Our
paper revisits their work and highlights the in-
credible riches of this system in its disconcerting
simplicity and importance in the context of dy-
namical systems and in other fields.

I. INTRODUCTION

Undoubtedly, two of the most celebrated, low-
dimensional, chaotic systems in the theory of dynamical
systems are the Rössler and Lorenz systems with their
iconic Rössler and Lorenz attractors12,13. Rössler’s work
to elucidate the fundamentals of the topology of chaos,
led him to investigate expanding and contracting circuits
for his famous folding mechanism. His construction re-
mains one of the simplest and most elegant chaotic dy-
namical systems to date, the Rössler system41.
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Rössler’s imperative to focus on the role of feedback,
bore fruits quickly: For the first time, the Rössler sys-
tem provided a clear demonstration of one of the two
scenaria for the Shilnikov-route to chaos, the period dou-
bling cascade11. In his work, in bringing forward the con-
cept of feedback circuits in dynamical systems theory, he
found a great ally and coworker, Thomas. Thomas was
already a renown biologist and deeply familiar with the
idea of feedback circuits and their Boolean-logic aspects,
present in phenomena associated with gene-expression,
homeostasis, multi-stationarity and memory. He joined
forces with his friend Rössler and turned him to an “am-
ateur mathematician”, as he would put it! Rössler, wrote
in25 about his attractor and the role of feedback circuits:
“Later, René Thomas saw much deeper into the topology
of this feedback circuit”. However, the truth is that to-
gether, they managed to see so deep that they discovered
many things which are fundamental in chaotic dynamics.
Among them, was the importance of the coexistence of
positive and negative circuits as the necessary mathe-
matical conditions for the appearance of chaos and hy-
perchaos, in the sense of the presence of more than one
positive Lyapunov exponents. In this context, the term
“circuits” was used by Rössler and Thomas to refer to
those terms in the Jacobian matrix of the dynamical sys-
tem, whose row and column indices are in circular per-
mutation. Therefore, circuits can be positive or negative
according to the sign of the product of their terms as they
appear in the determinant of the Jacobian matrix46,47 of
the system.

In their venture46,47,49, Rössler and Thomas proposed
a class of continuous-flow dynamical systems, called
Thomas-Rössler (TR) systems6. Their motive was to in-
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vestigate what kind of nonlinearity is necessary to sup-
port chaos and hyperchaos in the simplest possible way.
This led them to focus on the necessary mathematical
conditions for the appearance of chaos, in terms of posi-
tive and negative circuits.

Their pioneering work on TR systems provided the
ground for a plethora of published works of biological
relevance (e.g. the special issue in memory of Thomas45,
and contributions therein) and of a more general scope
in complex systems30,45, especially related to the emer-
gence of complex behaviour via simple-circuit feedback
structures in complex-systems science at large.

The main results of their work can be summarised in
the following three statements: (i) a positive circuit is
necessary for the system to have stable states, (ii) a neg-
ative circuit is necessary for the system to exhibit, robust,
sustained oscillations, and (iii) a necessary condition for
chaos is the presence of both a positive and a negative
circuit in the system (for a more complete analysis, one
may have a look at45, where the authors discuss the sub-
ject in more details). However, concerning hyperchaos,
we can add a fourth statement: (iv) a necessary condition
for hyperchaos is the presence of more than one positive
and negative, circuits.

What Rössler and Thomas called labyrinth chaos and
“Arabesques”4,6,47 drew wide attention as examples of
elegant chaos, also discussed in41. Here, the term “ele-
gant” is understood in the sense of Poincaré’s demand for
beauty and simplicity in expressing mathematical ideas,
something that Rössler and Thomas’ work surely adheres
to.

Interestingly, the class of TR systems exhibit typ-
ical properties, such as complex periodicity, multi-
stationarity, symmetries, etc. Notably, for appropriate
parameter ranges, there typically appear coexisting, sym-
metric, chaotic attractors. However, one of their most
spectacular findings is that of the special case of a to-
tally new type of chaos in the absence of attractors: a
chaotic, volume-preserving dynamical system with no at-
tractors, the so-called labyrinth walks system. The ex-
istence of chaos in the absence of chaotic attractors is
due to the existence of only unstable fixed points, lo-
cated on an infinitely large, periodic lattice in a volume-
preserving state-space. Hence, the trajectories wander
through the lattice of unstable fixed points, exhibit-
ing one or more positive Lyapunov exponents (i.e. hy-
perchaotic behaviour), depending on the dimensional-
ity of the system. They termed these wandering, space
filling trajectories, labyrinth walks46,47,49, in the sense
they exhibit super-diffusive, fractional Brownian proper-
ties, which can also be described by complex, symbolic
dynamics42.

What has also been attributed to Rössler since the
early dates of the development of chaos theory, is the
term “hyperchaos”34, drawing attention to the topologi-
cal idiosyncrasies of chaos, what refers to dynamics with
more than one exponentially expanding directions, i.e. to
more than one positive Lyapunov exponents. Ever since,

its special significance has been studied in a plethora of
works, ranging from fractional-order dynamical systems8

to coupled quantum systems3. His contribution was and
still remains seminal as certain fundamental questions,
especially about the topology of chaos, are still open
today13,26,35. Rössler and co-workers have also demon-
strated that labyrinth chaos and labyrinth walks are hy-
perchaotic systems in more than three dimensions, show-
ing the truth of condition (iv) as the necessary condition
for the existence of hyperchaos47.

Amazingly, these systems still continue to surprise us
with their elegance, beauty and combination of prop-
erties: As it has been reported recently in6, arrays of
coupled labyrinth chaos systems exhibit stereotypical,
chimera-like states, reminiscent of chimera states ob-
served in coupled Kuramoto oscillators2,6,24,32 and in
other systems18,21,33,36,37. These results emphasise fur-
ther its significance as an example of an elegant dynam-
ical system with a repertoire of rich properties, among
which, hyperchaoticity is prominent.

The paper is organised as follows: In Sec. II, we re-
view the concept of circuits introduced by Rössler and
Thomas and their role in the appearance of chaos and
hyperchaos in dynamical systems. In Sec. III, we ex-
plore the dynamics in the neighbourhood of the fixed
points of labyrinth walks and discuss how there can exist
chaos and hyperchaos in the absence of attractors. Sub-
sequently, in Sec. IV, we turn our attention to a more
complex setting; namely, to that of an array of coupled
TR systems and the role of labyrinth walks in the emer-
gence of chimera-like states. In Sec. V, we discuss further
implications in relation to the labyrinth walks system by
showing that even though it is volume-preserving, it is
not force-conservative. Finally, we conclude our work in
Sec. VI, where we discuss possible future directions of
work.

II. FEEDBACK CIRCUITS AND CHAOS

The concepts of circuits and feedback stem from elec-
tromechanical systems and biology. However, they were
redefined by Rössler and Thomas to describe certain
properties of dynamical systems and their equations of
motion. We own them that “complex dynamics can be
thought of in terms of feedback circuits”47. According to
them, a feedback circuit (in short, a circuit) is the influ-
ence of a variable to its own evolution. This can happen
directly or indirectly by the coupling of the variable with
other variables in the system. Importantly, the coupling
can be linear or nolinear and their realisation was piv-
otal in connecting graph theory with multistationarity
and chaos22,40.

In particular, what proved fruitful was that the feed-
back circuits are directly identifiable through the Jaco-
bian matrix J of a dynamical system,

dX

dt
= F (X),
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defined by

J ≡ J(X) =


J11 J12 · · · J1n

J21 J22 · · · J2n

...
...

. . .
...

Jn1 Jn2 · · · Jnn

 ,
where t is the time, X = (X1, . . . , Xn) ∈ Rn the solution-
vector and F : Rn → Rn a differentiable function with
F (X) = (F1(X), . . . , Fn(X)). The entries in the Jaco-
bian matrix are the partial derivatives

Jij ≡ Jij(X) = ∂Fi

∂Xj
,

where i, j = 1, . . . , n.
Consequently, if Jij = 0, variable Xj does not influence

variable Xi. However, if Jij is different than zero, then
variable Xj influences variable Xi. This is in the sense
that if Jij = ∂Fi

∂Xj
is positive, then there is a positive

feedback from variableXj to variableXi, whereas if Jij =
∂Fi

∂Xj
is negative, it results in a negative feedback from

variable Xj to variable Xi. Of course, the values of the
entries in J might depend on the solution X(t).

Since a non-zero entry in J implies that variable Xj

influences variable Xi, one can define a vertex from Xj

to Xi in a graph of incidences (see Figs. 1 and 2 for two
examples). Thus, circuits are the non-zero entries in J ,
with their indices forming cyclic permutations with each
other.

For example, for the labyrinth chaos system of Eq. (1)
where n = 3, the graph of incidences is shown in Fig.
1 for b 6= 0, which shows its three element circuits, the
closed path X1 → X3 → X2 → X1 and the three, one-
element, circuits which are self-loops, due to the diagonal
elements in J .

FIG. 1. Graph of incidences of the circuits in the Jacobian
matrix J of the system of Eq. (1), where n = 3 and b 6= 0.
The curved arrows indicate self-loops (one-element circuits),
where entries in J influence themselves as they are its diagonal
elements.

In contrast, in Fig. 2, the graph of incidences of the
labyrinth walks system (2), where n = 3 and b = 0,
has only one, three-element, circuit, which is the same

as the three-element circuit in system (1), shown in Fig.
1. However, there is no one-element circuit, since the
diagonal elements in J are zero, which implies there are
no self-loops.

FIG. 2. Graph of incidences of the circuits in the Jacobian
matrix J of the system of Eq. (2), where n = 3. Note the
absence of self-loops as the diagonal elements in J are equal
to 0, thus there are no one-element circuits, in contrast to the
graph of incidences of system (1) in Fig. 1.

The circuits that can be identified in the Jacobian ma-
trix are directly implicated in its characteristic equation,
eigenvalues, eigenstates and determinant. Importantly,
they are also implicated in the stability of fixed points
and chaoticity, quantified by the spectrum of Lyapunov
exponents.

Furthermore, circuits can be positive or negative de-
pending on the sign of the product of their terms, i.e. on
the signs of the entries in J . In this sense, the parity
of the number of negative interactions of a circuit deter-
mines its sign: if it is even, the circuit is positive and if it
is odd, it is negative48. If its sign depends on the values
of the solution X, i.e. on the position in the state-space,
then the circuit is called an ambiguous circuit.

The locus of points that the sign of a non-ambiguous
circuit changes from positive to negative is called a fron-
tier. Depending of the character of change of the eigen-
values of J , the frontiers have been categorised in48,
where computer codes are also offered for their calcu-
lation.

The principal frontier48, F1, is the locus of points
where the sign of the determinant of the Jacobian matrix,
det J , changes and partitions the phase space according
to the sign of the product of its eigenvalues. This is so
as
∏
λk = det J , where λk are the eigenvalues of J .

Consequently, positive and negative circuits play con-
trasting roles in the dynamics of a system. The neces-
sary condition for multistationarity is the presence of a
positive circuit, whereas the presence of a negative cir-
cuit is a necessary condition for the existence of a sta-
ble attractor. Coexisting positive and negative circuits
are necessary conditions for oscillations, chaos and hy-
perchaos (see conditions (i)-(iv)). Based on their work
on TR systems and labyrinth walks, Rössler, Thomas
and co-workers, proposed and demonstrated a necessary
condition for the existence of hyperchaos: namely that
hyperchaos of order m (i.e. with m positive Lyapunov
exponents) can be generated by a single feedback circuit
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in n = 2m+ 1 dimensions47.
The idea of feedback circuits is a common theme in

engineering, biology, network science, nonlinear dynam-
ics and complexity. The formulation of feedback circuits
for the analysis of dynamical systems, as discussed by
Rössler, Thomas, Rosen, Shilnikov, Nicolis and other pi-
oneers in nonlinear dynamics and chaos theory, has be-
come an integral part of the vocabulary, not only in rela-
tion to biological systems45 per se, but also, in complexity
theory at large23,29,30.

We shall now turn to the role of feedback circuits in the
dynamics of the surprisingly elegant 3D labyrinth walks
system.

III. CHAOS AND HYPERCHAOS IN THE ABSENCE OF
ATTRACTORS

We focus now on the system47

dXi

dt
= sin(Xi+1)− bXi (1)

where i = 1, . . . , n, t is the time and b a real constant.
In this context, Xn+1 = X1, signifying the cyclic per-
mutation in variables Xi. The system has n one-element
circuits, which makes it ideal for checking graphically,
analytically and computationally the ideas developed by
Rössler and Thomas. The particular case b = 0 cor-
responds to the labyrinth walks system that we study
next.

In particular, we study the case n = 3 and b = 0, what
amounts to the 3D labyrinth walks system

dX1

dt
= sin(X2) = F1,

dX2

dt
= sin(X3) = F2,

dX3

dt
= sin(X1) = F3,

(2)

where F = (F1, F2, F3). System (2) can be written in the
compact form

Ẋ = PMf(X),

where X = (X1, X2, X3), Ẋ = (Ẋ1, Ẋ2, Ẋ3) =(
dX1
dt ,

dX2
dt ,

dX3
dt

)
,

f(X) =


sin (X1)

sin (X2)

sin (X3)

 ,
and

PM =


0 1 0

0 0 1

1 0 0



is the permutation matrix.
The Jacobian matrix of system (2) is given by

J =


0 cos (X2) 0

0 0 cos (X3)

cos (X1) 0 0



= PM


Ḟ3 0 0

0 Ḟ1 0

0 0 Ḟ2

 .
(3)

Thus, the signs of circuit-changes occur in an alter-
nating, nonlinear fashion depending on the cosines in
Ḟ = (Ḟ1, Ḟ2, Ḟ3), due to the cyclic permutations encoded
in PM . The determinant of J is given by

det J(X) = cos(X1) cos(X2) cos(X3).

In the general case of n variables, one can easily see
that J has the form of the permutation matrix PM in n
dimensions, where its entries are given by the generali-
sation of Eq. (3) in n dimensions. It follows that in the
nD case, its determinant is given by the product of the
cosines of all variables, i.e. by

det J(X) =
n∏

i=1
cos(Xi),

since the determinant of PM is 1 and the determinant of
the corresponding diagonal matrix (see Eq. (3) for n = 3)
is
∏n

i=1 Ḟi =
∏n

i=1 cos(Xi). This shows that the princi-
pal frontier F1 of system (2), where the circuits change
sign48, has zero dimension. This is because F1 is an nD-
lattice of points defined by the solution to the equation∏n

i=1 cos(Xi) = 0. This is a set of distinct points and
not a surface or hyper-surface, what is common in other
systems4,48 studied by Rössler, Thomas and co-workers.

The stability analysis of system (2) shows there is a
simple, yet elegant structure endowed with an intricate
symmetry. The fixed points are the solutions to the equa-
tion dX

dt = 0, therefore solutions to the system of equa-
tions

sin(X1) = 0,
sin(X2) = 0,
sin(X3) = 0.

This leads to a countably-infinite set of fixed points, ar-
ranged in the 3D lattice where sin(Xi) = 0, i = 1, 2, 3,
i.e. the fixed points are given byXi = kπ, k ∈ N (see Fig.
3(b) for a subset of them). We note that these properties
define an infinitely-large lattice of fixed points in the 3D
state-space of the system composed of collated, identical
cubic cells of unit-length π (see Fig. 3(a) for an example
of such a cubic cell and (b) for a part of the infinitely-large
3D lattice of fixed points, what amounts to a number of
collated, cubic cells of unit-length π). These properties
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FIG. 3. Unit-cell of fixed points in panel (a) and part of
the 3D fixed-points lattice with a labyrinth walk trajectory
in panel (b). (a) The black and grey sets of unstable fixed
points Xi = kπ, i = 1, 2, 3 of the labyrinth walks system (2)
in the unit cell for k = 0 and 1. We note that the unit-length
of the cell is π in all 3 directions and that the state-space of
system (2) in panel (b) is composed of collated versions of the
cell in (a) in all 3 directions. (b) Part of the lattice of fixed
points in the 3D state-space of system (2) (black points) and
a labyrinth walks trajectory (grey curve).

can be carried out straightforwardly for any n. For exam-
ple, for k = 0 and 1, the set of fixed points of system (2)
is given by {(0, 0, 0), (0, 0, π), (0, π, 0), (π, 0, 0), (π, π, 0),
(π, 0, π), (0, π, π), (π, π, π)} and is shown in Fig. 3(a).
These are the only fixed points of the system and they
all turn out to be unstable, what amounts to the absence
of attractors. In particular, the eigenvalues of J for each
of the eight fixed points evaluate either to the cubic roots
of unity, ω1,2,3 =

{
1, −1±i

√
3

2

}
, or to their opposites,

ω1,2,3 =
{
− 1, 1∓i

√
3

2

}
. Thus, the fixed points belong

to two sets: The first set (black points in Fig. 3(a)) con-

(a)

(b)

FIG. 4. Time evolution of X1, X2 and X3 of the grey curve
in Fig. 3(b) and its projections in the (X3, X1), (X2, X1)
and (X3, X2) planes. (a) Evolution of X1, X2 and X3 of the
grey curve shown in Fig. 3(b) over time, what constitutes an
example of a labyrinth walks trajectory. (b) Projections of
the same trajectory in the (X3, X1), (X2, X1) and (X3, X2)
planes.

sists of fixed points with one positive real eigenvalue and
two complex, with negative real parts, eigenvalues, what
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signifies an outgoing unstable, spiral motion. The sec-
ond set (grey points in Fig. 3(a)) consists of fixed points
with one negative real eigenvalue and two complex, with
positive real parts, eigenvalues, what signifies an incom-
ing, unstable, spiral motion. All fixed points, in both
sets, have complex eigenvectors attributed to their com-
plex eigenvalues, which adds a very interesting aspect for
further investigations in terms of spinor properties17. All
fixed points are thus unstable and give rise to a structure
that can sustain complex unstable periodic orbits, wan-
dering, space-filling trajectories (the so-called, labyrinth
walks) and thus, to chaotic behaviour.

In Fig. 4(a), we present the time-evolution of X1, X2
and X3 of system (2) for the labyrinth walks, grey trajec-
tory shown in Fig. 3(b) and in Fig. 4(b), its projection in
the planes (X3, X1), (X2, X1) and (X3, X2), where some
very interesting patterns can be seen. This trajectory
is an example of a wandering, space-filling trajectory in
the 3D state-space of system (2), part of which is shown
in panel (b) in Fig. 3, what amounts to the fractional,
super-diffusive character7,42 of labyrinth walks.

The results for the 3D case can be readily generalised in
n dimensions, where the unit cells will be nD hypercubes,
building up an nD lattice of unstable fixed points, located
at their vertices. In this case, the eigenvalues of the n×n
Jacobian matrix J will be the nth roots of unity, result-
ing in a structure of higher-order symmetries that can
sustain higher-order hyperchaos without the presence of
attractors. In47, it has been reported that systems with
even and odd dimensionality have been examined and it
has been predicted by Rössler and Thomas that they ex-
hibit hyperchaos of order m, i.e. m positive Lyapunov
exponents, for n = 2m + 1. One-element circuits have
been verified for n = 5, 7, 25, 99.

It is the existence of infinitely-many, unstable fixed
points arranged on an infinite lattice, where there are no
attractors that makes the labyrinth walks system so in-
teresting. Even though it is deterministic, these proper-
ties lead to fractional-like chaotic motion reported in7,42,
reminiscent of Levy-flights in stochastic systems! The co-
existence of channels of free, ballistic flights along with
unstable periodic orbits brings in mind trajectories and
motion in infinite-horizon Lorenz-gas type billiards52.
This combination of properties makes labyrinth walks not
only an elegant system to study but also, a good example
to elucidate the concept of volume preservation, a topic
we will touch upon in Sec. V.

Before that, we turn our attention in the next section
to coupled TR systems (1) and revisit their surprising
role in sustaining chimera-like states, a peculiar synchro-
nisation phenomenon.

IV. CHIMERA-LIKE STATES IN ARRAYS OF COUPLED
LABYRINTH WALKS AND TR SYSTEMS

The fractional, super-diffusive character7,42 of
labyrinth walks provides the mechanism for the emer-

gence of chimera-like states in arrays of coupled 3D TR
systems6 (see Eqs. (1)). In this section, we revisit the
recent results in6, in light of the ability of labyrinth
walks and its lattice of unstable fixed points to facilitate
complex, chimera-like states, even with very strong
coupling.

To this end, the authors in6 considered the following
system of coupled 3D labyrinth walks and TR systems
arranged, in a simple ring topology with non-local cou-
pling

dXk
1

dt
= −bkX

k
1 + sin

(
Xk

2
)

+ d

2P

k+P∑
j=k−P

(
Xk

1 −X
j
1
)
,

dXk
2

dt
= −bkX

k
2 + sin

(
Xk

3
)
,

dXk
3

dt
= −bkX

k
3 + sin

(
Xk

1
)
,

(4)
where k = 1, . . . , n, 2P ≤ n is the number of coupled
neighbours, d ≥ 0 is the strength of the linear coupling
and bk ≥ 0 for all k. The term 1

2P is a normalisation con-
stant that distributes equally the linear coupling among
the n coupled systems.

The system of Eqs. (4) was introduced and studied in6,
where n = 40 TR systems were considered, with the first
half (k = 1, . . . , 20) performing labyrinth walks (bk = 0)
and the other half set in the labyrinth chaos regime with
bk = 0.18 for k = 21, . . . , 40. Each system was coupled
with its P = 20 nearest-neighbour systems in both sides
(10 + 10), with the coupling strength set at d = 0.6. For
these parameters and setting, system (4) is hyperchaotic,
with more than 1 positive Lyapunov exponents.

For such a strong coupling (d = 0.6) and without
the presence of labyrinth walks in the second part of
the system, one would expect the prevalence of chaotic
synchronisation, what would result in an almost, fully
synchronised system over time; yet, due to the pres-
ence of labyrinth walks, the emergence of partial, spatio-
temporal synchronisation, reminiscent of chimera-like
states2,18,21,32,33,36,37 was observed6. In this context, par-
tial is meant in the sense that the absolute differences of
the xk

1 , k = 1, . . . , n solutions were less than a thresh-
old of the order of 10−4 to 10−3, i.e. they were locked
in time, but not continuously over time. Here, we show
in Figs. 5 and 6, the results of a similar study where
the only difference with the study in6 is that bk = 0.17
for k = 21, . . . , 40, which corresponds again to labyrinth
chaos. In particular, Fig. 5(a) shows an example of lock-
ing at two different times as depicted in the two panels
for t ≈ 13401 and t ≈ 13404. Even though, these dif-
ferences are locked (but not continuously) over time, the
system remains hyperchaotic as a whole, as shown in Fig.
6(a), where the first four largest Lyapunov exponents λi,
i = 1, . . . , 4, can be seen to converge to positive, non-zero,
values.

Apparently, it is the presence of chaotic walks that
gives rise to the emergence of chimera-like states, what of-
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FIG. 5. Snapshots of temporal phenomena of coherent and
incoherent patterns, reminiscent of chimera-like states in sys-
tem (4) (see text for the details) as depicted in their spatio-
temporal evolution in panel (b) in Fig. 6. (a) Snapshots at
time t ≈ 13401 and (b) at a later time t ≈ 13404. Note that
here, d = 0.6, n = 40, bk = 0 for k = 1, . . . , 20 (labyrinth
walks) and bk = 0.17 for k = 21, . . . , 40 (labyrinth chaos).
Note also that Xk

1 values seen at almost the same height (val-
ues at the vertical axes), imply they are locked (see text for
more details). The group of locked Xk

1 values is the coherent
group and the group of non-locked, Xk

1 values, the incoherent
group.

fers a novel phenomenon of chaotic synchronisation that
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FIG. 6. Hyperchaotic and, spatio-temporal behaviour and
emergence of alternating patterns of chimera-like states in
system (4). (a) Evolution of the first four largest Lyapunov
exponents λi, i = 1, . . . , 4, seen to converge to positive, non-
zero values (hyperchaoticity) and (b) chimera-like behaviour
in n = 40 TR- and labyrinth walks systems (4) (see text for
the details). Note that here d = 0.6, bk = 0 for k = 1, . . . , 20
(labyrinth walks), bk = 0.17 for k = 21, . . . , 40 (labyrinth
chaos) and that the whole system is hyperchaotic with more
than one positive Lyapunov exponents, as shown in panel (a).

is worth analysing further, both in terms of labyrinth
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walks and in terms of the appearance of chimera-like
states in arrays of hyperchaotic dynamics. Moreover,
these results are promising as they also offer the oppor-
tunity to study the emergence of chimera-like states in
scale-free, small-world and Erdős-Rényi networks of cou-
pled TR systems.

V. LABYRINTH WALKS: A VOLUME PRESERVING,
NON FORCE-CONSERVATIVE SYSTEM

We now turn to two very important properties of the
labyrinth walks system (2).

The first one is that it is volume-preserving1,44, in the
sense it is preserving volumes in its 3D state-space. In-
deed, if we write system (2) in the form

Ẋ = F (X),

where, we recall, X = (X1, X2, X3) and F =
(F1, F2, F3) = (sin(X2), sin(X3), sin(X1)), the incom-
pressibility condition (divergence) gives

∇Ẋ = ∇F = ∂F1

∂X1
+ ∂F2

∂X2
+ ∂F3

∂X3
= 0. (5)

This means the flow F of system (2) is divergence-free,
i.e. it is incompressible. This, in turn, implies that the
solution to Liouville’s equation31

dV

dt
=
∫

V

(
∇Ẋ

)
dV

is

V (t) = e(∇Ẋ)tV (0) = V (0),

where V is the volume of a set of initial conditions in the
3D state-space of system (2). The last result shows that
volumes in its state-space are preserved in time, and thus
it is a volume-preserving dynamical system. We note
here that Eq. (5) is essentially the sum of the diagonal
entries in the Jacobian matrix J (see Eq. (3)) of system
(2), thus it is equal to its trace. In other words, the
divergence of the flow is the trace of the Jacobian matrix
of the dynamical system.

As we shall show next, the second property is that
system (2) is not force-conservative, in the sense that∮ −→

F .
−→
dr 6= 0. (6)

The “acceleration” field Ẍ, that would be proportional
to a force F (from Newton’s second law), can be obtained
by computing the time-derivative of Eq. (2). This yields

d2X1

dt2
= sin(X3) cos(X2),

d2X2

dt2
= sin(X1) cos(X3),

d2X3

dt2
= sin(X2) cos(X1),

which can be written in the compact form

Ẍ = F ,

with Ẍ = (Ẍ1, Ẍ2, Ẍ3) and

F = (F1,F2,F3),

where

F1 = sin(X3) cos(X2),
F2 = sin(X1) cos(X3),
F3 = sin(X2) cos(X1).

(7)

The potential U , if it existed, would be related to the
force F by

F = −∇U,

it would be path independent and would represent the
“mechanical energy” of the system, when added to its
“kinetic energy”. In this context, ∇ is the gradient of
the scalar-valued differentiable function U : R3 → R that
we want to check whether it is the potential energy of
system (2).

As we show here, this is not the case as we can find a
counter-example of two different paths (solid and dashed
in Fig. 7) along which U is not the same function:
To this end, let us integrate F along the two paths
shown in Fig. 7. The solid-line path starts at the
origin O(0, 0, 0) and ends at M(X1, X2, X3), following
the three straight lines from O(0, 0, 0) to P (X1, 0, 0) to
Q(X1, X2, 0) to M(X1, X2, X3) and the dashed-line path,
following the straight lines from O(0, 0, 0) to H(0, 0, X3)
to M(X1, X2, X3).

Following the dashed-line path, U reads

U =−
∫ X1

0
F1(X ′1, X ′2, X ′3)

∣∣∣∣∣X′
2=0

X′
3=0

dX ′1

−
∫ X2

0
F2(X ′1, X ′2, X ′3)

∣∣∣∣∣X′
1=X1

X′
3=0

dX ′2

−
∫ X3

0
F3(X ′1, X ′2, X ′3)

∣∣∣∣∣X′
1=X1

X′
2=X2

dX ′3.

Substituting F1, F2 and F3 from Eq. (7) into the last
equation, U yields

U = −X2 sin(X1)−X3 sin(X2) cos(X1). (8)

Now, following the dashed-line path, U reads

U =−
∫ X3

0
F1(X ′1, X ′2, X ′3)

∣∣∣∣∣X′
1=0

X′
2=0

dX ′3

−
∫ M

H

F (dX ′1 + dX ′2),
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FIG. 7. An example of two paths (depicted by solid and
dashed lines) along which U is different, implying that F is
not a conservative force and thus, the labyrinth walks system
(2) is not force-conservative.

which can be written as

U =−
∫ X3

0
F3(X ′1, X ′2, X ′3)

∣∣∣∣∣X′
1=0

X′
2=0

dX ′3

−
∫ X1

0
F1(X ′1, X ′2, X ′3)

∣∣∣∣∣ X′
3=X3

X′
2=( X2

X1
)X′

1

dX ′1

−
∫ X2

0
F2(X ′1, X ′2, X ′3)

∣∣∣∣∣ X′
3=X3

X′
1=( X1

X2
)X′

2

dX ′2.

Again, substituting Eq. (7) into the last equation, U
becomes

U = −X1

X2
sin(X2) sin(X3) + X2

X1
cos(X1) cos(X3). (9)

Comparing, U from Eqs. (8) and (9) computed along
the two paths, we deduce they are not the same func-
tion. Therefore, U depends on the path, a potential
function cannot be defined and system (2) is not force-
conservative, since Eq. (6) holds.

This discussion is motivated further by the fact that
when one studies the volume-preservation properties of
system (2), given that the trace of its Jacobian matrix
is zero (what corresponds to a divergence-free, incom-
pressible flow) and in view of Liouville’s theorem for

Hamiltonian systems1,14,44, one is tempted to consider
whether it falls in the realm of Kolmogorov-Arnold-Moser
(KAM) theory5. This might be driven further by the
computation of Poincaré surfaces of section, such as those
in4,42, where islands of stability can be seen within the
chaotic sea and where the diffusive aspect of wandering
trajectories is similar in appearance to those of chaotic
Hamiltonian systems27,38,39. Yet, this is where similar-
ities stop as labyrinth walks (2), even though is not a
force-conservative system, preserves volumes in its 3D
state-space. However, the fact it preserves volumes does
not mean there is an integral of motion. The existence
of a global conserved quantity in the 3D state-space is
prohibited since that would render the system effectively
two dimensional and hence chaos could not appear.

VI. CONCLUSIONS & OUTLOOK

As all Rössler’s pioneering contributions, labyrinth
chaos still holds promise for very interesting further
developments. Its simplicity and elegance, both in
terms of symmetries, topology and feedback-circuit struc-
ture, makes it a good candidate to compare it with
other nonlinear, cyclically coupled systems, such as
the Arabesques4,49, the Lotka-Voltera system and its
variants19, and the Arnold-Beltrami-Childress (1:1:1
ABC) model9,10.

In connection to arrays of coupled TR systems, where
chimera-like states have been shown to emerge even un-
der strong coupling settings, the investigation of the
role of inhomogeneities in parameters and in network
topology (e.g. scale-free, small-world, Erdős-Rényi) are
worth studying further as well as in connection to other
systems20,21.

Here, we discussed further implications pertaining to
the labyrinth walks system by showing that, even though
it is volume-preserving, it is not force-conservative. This
makes it a fine and elegantly simple example of a low-
dimensional volume-preserving, chaotic system with no
attractors and with only unstable fixed points. We note
that in Statistical Mechanics, where phase spaces are
high-dimensional, there are also examples of systems that
are volume-preserving, chaotic, with no attractors and
with only unstable fixed points, such as extensions of the
Nose-Hoover thermostat known as the Martyna-Klein-
Tuckerman, chain thermostats28.

The investigation of the appropriate Hamiltonian (non-
holonomic) or Lagrangian (with constrains) formalism
that might encompass the labyrinth walks system, could
reveal deeper connections between chaos, volume preser-
vation, symplectic structure, diffusion and KAM the-
ory. It would be interesting to seek a comparison of the
labyrinth walks system with the class of systems pertain-
ing to the construction of Hoover thermostats in Sta-
tistical Mechanics28,50,51. This is because this class of
systems provides: (a) a framework for the required anal-
ysis by determining phase-space distributions assuming
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ergodicity and (b) expresses the balance between the ki-
netic, dissipative and potential parts, what makes their
phase-space incompressible.

Finally, information transfer in networks of
coupled labyrinth walks systems as “carriers of
information”15,16,43 emerges as another exciting field
of future research, since it is related to the volume-
preservation property of individual labyrinth walks
systems.
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