10,770 research outputs found

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    Yield-driven power-delay-optimal CMOS full-adder design complying with automotive product specifications of PVT variations and NBTI degradations

    Get PDF
    We present the detailed results of the application of mathematical optimization algorithms to transistor sizing in a full-adder cell design, to obtain the maximum expected fabrication yield. The approach takes into account all the fabrication process parameter variations specified in an industrial PDK, in addition to operating condition range and NBTI aging. The final design solutions present transistor sizing, which depart from intuitive transistor sizing criteria and show dramatic yield improvements, which have been verified by Monte Carlo SPICE analysis

    Selective quantum evolution of a qubit state due to continuous measurement

    Full text link
    We consider a two-level quantum system (qubit) which is continuously measured by a detector. The information provided by the detector is taken into account to describe the evolution during a particular realization of measurement process. We discuss the Bayesian formalism for such ``selective'' evolution of an individual qubit and apply it to several solid-state setups. In particular, we show how to suppress the qubit decoherence using continuous measurement and the feedback loop.Comment: 15 pages (including 9 figures

    Testing of hydrogen sensor based on organic materials

    Get PDF
    Práce je zaměřena na problematiku bezpečnostních vodíkových senzorů. Základní principy a teorie vodíkových senzorů je rozebrána v první části práce. Je navržena metodologie testování organických vodíkových senzorů vyvinutých a vyrobených na Fakultě Chemické Vysokého Učení Technického v Brně. Nejslibnější organický material byl testován. V závěrečné části byl navržen teplotní regulátor pro použití s keramickou senzorovou platformou.This thesis is focused on topic of safety hydrogen sensors. Theory of hydrogen sensors and main sensor principles are discussed. Methodology for testing of organic hydrogen sensors developed and fabricated at the Faculty of Chemistry of Brno University of Technology is outlined. A set of tests is done for the most promising organic material. Also, temperature regulator for ceramic sensor platform is designed.
    corecore