4,609 research outputs found

    Active attenuation of propeller blade passage noise

    Get PDF
    Acoustic measurements are presented to show that active cancellation can be used to achieve significant reduction of blade passage noise in a turboprop cabin. Simultaneous suppression of all blade passage frequencies was attained. The spatial volume over which cancellation occurred, however, is limited. Acoustic intensity maps are presented to show that the acoustic input to the fuselage was sufficiently non-localized so as to require more judicious selection of cancellation speaker location

    Infinite non-causality in active cancellation of random noise

    Full text link
    Active cancellation of broadband random noise requires the detection of the incoming noise with some time advance. In an duct for example this advance must be larger than the delays in the secondary path from the control source to the error sensor. In this paper it is shown that, in some cases, the advance required for perfect noise cancellation is theoretically infinite because the inverse of the secondary path, which is required for control, can include an infinite non-causal response. This is shown to be the result of two mechanisms: in the single-channel case (one control source and one error sensor), this can arise because of strong echoes in the control path. In the multi-channel case this can arise even in free field simply because of an unfortunate placing of sensors and actuators. In the present paper optimal feedforward control is derived through analytical and numerical computations, in the time and frequency domains. It is shown that, in practice, the advance required for significant noise attenuation can be much larger than the secondary path delays. Practical rules are also suggested in order to prevent infinite non-causality from appearing

    Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging

    Get PDF
    Functional magnetic resonance imaging (fMRI) is one of the principal neuroimaging techniques for studying human audition, but it generates an intense background sound which hinders listening performance and confounds measures of the auditory response. This paper reports the perceptual effects of an active noise control (ANC) system that operates in the electromagnetically hostile and physically compact neuroimaging environment to provide significant noise reduction, without interfering with image quality. Cancellation was first evaluated at 600 Hz, corresponding to the dominant peak in the power spectrum of the background sound and at which cancellation is maximally effective. Microphone measurements at the ear demonstrated 35 dB of acoustic attenuation [from 93 to 58 dB sound pressure level (SPL)], while masked detection thresholds improved by 20 dB (from 74 to 54 dB SPL). Considerable perceptual benefits were also obtained across other frequencies, including those corresponding to dips in the spectrum of the background sound. Cancellation also improved the statistical detection of sound-related cortical activation, especially for sounds presented at low intensities. These results confirm that ANC offers substantial benefits for fMRI research

    Active control of sound inside a sphere via control of the acoustic pressure at the boundary surface

    Full text link
    Here we investigate the practical feasibility of performing soundfield reproduction throughout a three-dimensional area by controlling the acoustic pressure measured at the boundary surface of the volume in question. The main aim is to obtain quantitative data showing what performances a practical implementation of this strategy is likely to yield. In particular, the influence of two main limitations is studied, namely the spatial aliasing and the resonance problems occurring at the eigenfrequencies associated with the internal Dirichlet problem. The strategy studied is first approached by performing numerical simulations, and then in experiments involving active noise cancellation inside a sphere in an anechoic environment. The results show that noise can be efficiently cancelled everywhere inside the sphere in a wide frequency range, in the case of both pure tones and broadband noise, including cases where the wavelength is similar to the diameter of the sphere. Excellent agreement was observed between the results of the simulations and the measurements. This method can be expected to yield similar performances when it is used to reproduce soundfields.Comment: 28 pages de text

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Aircraft interior noise reduction by alternate resonance tuning

    Get PDF
    Model problem development and analysis continues with the Alternate Resonance Tuning (ART) concept. The various topics described are presently at different stages of completion: investigation of the effectiveness of the ART concept under an external propagating pressure field associated with propeller passage by the fuselage; analysis of ART performance with a double panel wall mounted in a flexible frame model; development of a data fitting scheme using a branch analysis with a Newton-Raphson scheme in multiple dimensions to determine values of critical parameters in the actual experimental apparatus; and investigation of the ART effect with real panels as opposed to the spring-mass-damper systems currently used in much of the theory

    Howling and Entrainment in Hearing Aids: A Review

    Get PDF
    This review focuses on howling and entrainment artifacts in digital hearing aids. The howling may occur (especially at high gains), essentially due to the close proximity of the input microphone and the output loudspeaker. The entrainment, on the other hand, occurs when the input to the hearing aids is periodic, for example, music signals or alarm signals with strong tonal characteristics. We give details on methods for howling avoidance, which are mainly based on adaptive filtering-based acoustic feedback cancellation. We also give an overview of many recent works on entrainment in hearing aids. Finally, we remark that efficient acoustic feedback cancellation scheme which can avoid howling, can also well manage the entrainment artifact

    A Novel Method for Acoustic Noise Cancellation

    Get PDF
    Over the last several years Acoustic Noise Cancellation (ANC) has been an active area of research and various adaptive techniques have been implemented to achieve a better online acoustic noise cancellation scheme. Here we introduce the various adaptive techniques applied to ANC viz. the LMS algorithm, the Filtered-X LMS algorithm, the Filtered-S LMS algorithm and the Volterra Filtered-X LMS algorithm and try to understand their performance through various simulations. We then take up the problem of cancellation of external acoustic feedback in hearing aid. We provide three different models to achieve the feedback cancellation. These are - the adaptive FIR Filtered-X LMS, the adaptive IIR LMS and the adaptive IIR PSO models for external feedback cancellation. Finally we come up with a comparative study of the performance of these models based on the normalized mean square error minimization provided by each of these feedback cancellation schemes
    corecore