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ABSTRACT 
 

 
 

Over the last several years Acoustic Noise Cancellation (ANC) has been an active area 

of research and various adaptive techniques have been implemented to achieve a 

better online acoustic noise cancellation scheme. Here we introduce the various 

adaptive techniques applied to ANC viz. the LMS algorithm, the Filtered-X LMS 

algorithm, the Filtered-S LMS algorithm and the Volterra Filtered-X LMS algorithm 

and try to understand their performance through various simulations. We then take 

up the problem of cancellation of external acoustic feedback in hearing aid. We 

provide three different models to achieve the feedback cancellation. These are - the 

adaptive FIR Filtered-X LMS, the adaptive IIR LMS and the adaptive IIR PSO models for 

external feedback cancellation. Finally we come up with a comparative study of the 

performance of these models based on the normalized mean square error 

minimization provided by each of these feedback cancellation schemes. 
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A major complaint of hearing-aid users is acoustic feedback which is perceived as whistling 

or howling (at oscillation) or distortion (at sub-oscillatory intervals). This feedback occurs, 

typically at high gains, because of leakage from the receiver to the microphone. Acoustic 

feedback suppression in hearing-aids is important since it can increase the maximum 

insertion gain of the aid. The ability to achieve target insertion gain leads to better 

utilization of the speech bandwidth and, hence, improved speech intelligibility for the 

hearing-aid user. The acoustic path transfer function can vary significantly depending on 

the acoustic environment. Hence, effective acoustic feedback cancellers must be adaptive. 

 

One way to reduce this problem is to cancel the acoustic feedback by an internal feedback 

path as in Fig. 1.1 The internal feedback path should have the same characteristics as the 

external feedback path from the input of the DA to the output of the AD. The output of the 

internal feedback path is subtracted from the microphone signal to remove the component 

of the microphone signal that constitutes feedback. The external feedback path will change 

when the hearing aid is used, when the user is chewing or placing the palm of the hand by 

the ear. Thus, it is desirable to continuously identify the external feedback path. The 

identification should be done without modifying the output signal of the hearing aid in such 

a way that the user could detect the modification. Another desirable characteristic of the 

identification algorithm is low computational complexity, as power consumption and size 

limit the processors used in digital hearing aids. 

 

A number of different schemes that cancel the feedback as in Fig. 1.1, but uses alternative 

ways to identify the feedback path can be found in the literature. Some schemes identify 

 

 

 

 

 

 

 

Fig 1.1    Hearing aid with an internal feedback path used to cancel the acoustic feedback. 
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the feedback path in open loop by interrupting the throughput of the hearing aid and 

applying some probe signal, e.g., white noise, to the output. This may be disturbing for the 

user, especially if identification is required frequently. There is a second class of system 

where a probe signal (noise) is added to the output of the hearing aid and the identification 

is based on the information in the probe signal and the microphone signal. The main 

difference from the first class is that the identification can be performed without 

interrupting the throughput. The probe signal should have substantially lower level than 

the ordinary out of the hearing aid in order to be inaudible. A problem with this approach is 

that only a marginal part of the microphone signal will originate from the probe signal. This 

may reduce the accuracy of the achieved estimate. A third class of feedback cancellation 

schemes uses the output of the hearing aid and the microphone signal collected in closed 

loop as data for the identification. This corresponds to closed loop identification with the 

direct method. The output signal of the hearing aid can then be the sum of the ordinary 

output and a probe signal (as in the second class) or the ordinary output alone. An 

advantage over the second class is that a larger part of the microphone signal originates 

from the output signal, which can improve the accuracy of the identification. The 

disadvantage is that it is not only feedback that generates correlation between the output 

signal and the microphone signal. Input signals with substantial autocorrelation can also 

generate correlation between these signals. The feedback cancellation scheme will then 

predict and cancel more of the microphone signal than the signal via the external feedback. 

The performance of this scheme will thus depend on the input signal to the hearing aid. 

 

Here, the characteristics of the recursive prediction error identification method Filtered-X 

LMS (FXLMS) applied to the feedback cancellation problem is analyzed. The data used for 

identification is the output and input signal of the hearing aid. The scheme would thus be 

classified to the third of the above classes of feedback cancellation schemes. The internal 

feedback path will then consist of a fixed filter in series with an adaptive filter with 

adjustable impulse response. The analyzed system also utilizes prefiltering of the data used 

for identification. FXLMS corresponds to system identification with an output error model. 

The feedback path is then identified under the assumption that the input signal to the 

system is white. The input signal to the hearing aid will in the identification be considered 
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as noise. Prefiltering can be seen as a way to modify the noise model. A good noise model 

(model of the input signal) is desirable in closed loop identification with the direct method 

as the error in the noise model may introduce bias in the estimate to which the adaptive 

filter converges. 

 

In the following discussion the steady state characteristics of this system are analyzed. The 

analyzed system differs from many other systems where adaptive filters are used in that 

the system to be identified (the feedback path) is a part of a closed loop and that the data 

used for identification depends on previous estimates achieved with the adaptive filter. 

Thus, we cannot apply analysis of adaptive filters that assume that the system to be 

identified is operating in open loop or that the input signal to the system to be identified is 

independent of the adaptive filter. 



6 

 

Chapter2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ADAPTIVE TECHNIQUES APPLIED TO 

ACOUSTIC NOISE CANCELLATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

 

One of the major features of acoustic noise cancellation schemes is the identification of 

external feedback paths and cancellation of this feedback signal. Continuous adaption to 

changing environment requires the use of adaptive systems for the identification purposes. 

Various techniques used for adaptive system identification have been implemented in 

acoustic noise cancellation problems. Some of these techniques have been discussed below. 

 

2.1 THE LEAST MEAN SQUARE (LMS) ALGORITHM 

The Least Mean Square Algorithm is a linear adaptive filtering algorithm that consists of 

two basic processes: 

1. A filtering process which involves  

a) Computation of the output of a transverse filter produced by a set of tap 

inputs, and 

b) Generating an estimation error by comparing this output to a desired 

response. 

2. An adaptive process, which involves the automatic adjustment of the tap weights 

of the filter in accordance with the estimation error. 

The LMS algorithm can be described in the form of three basic equations as follows 

1. Filter output:   y(n) = wH(n)x(n) 

2. Estimation error:       e(n) = d(n) – y(n) 

3. Tap weight adaptation:  w(n + 1) = w(n) +  2µx(n)e*(n) 

 

 

Fig 2.1 Block diagram of adaptive transversal filter 
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2.2 ADAPTIVE CHANNEL EQUALISATION USING LMS ALGORITHM 

 

Traditionally, ISI problem is resolved by channel equalization in which the aim is to 

construct an equalizer such that the impulse response of the channel/equalizer 

combination is as close to z-d as possible, where d is a delay. Frequently the channel 

parameters are not known in advance and moreover they may vary with time, in some 

applications significantly. Hence, it is necessary to use the adaptive equalizers, which 

provide the means of tracking the channel characteristics. 

 

In Fig. 2.2, a digital transmission system using channel equalization is depicted. Here, as 

most often in practice, the analog signal is sampled at Nyquist rate and then the different 

samples are coded with binary sequences taking the two possible values –1 and 1. In Fig. 

3.1 s(n) denotes the transmitted signal where the sampling period T = 1. Actually s(n) is a 

random sequence of –1s and 1s. Here the channel is dispersive and can be modeled by a 

FIR filter. Thus the channel output is written as 

 

x�n� �  �a	s�n � 1�
N

	��
 

 

where N is filter order and ai, 0�i�N, are filter coefficients. 

 

 
Fig 2.2 Digital transmission system using channel equalization 

 

In addition     

y(n) = x(n) + n(n) 

is the adaptive equalizer input, where n(n) is the inevitably present additive noise.  
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Obviously the problem to be considered is that of using the information represented 

in the observed equalizer inputs y(n) to produce an estimate of transmitted symbols in the 

sequence s(n). There is a delay through the adaptive equalizer, which means that the 

estimate is delayed by d symbols. In Fig. 2.2 this is denoted as d(n - d) that is an estimate of 

s(n - d). In the scheme shown in Fig. 2.2, a decision device applies a set of thresholds to 

recover the original data symbols selecting the symbol which is closest to the estimate d(n - 

d). For example, if the transmitted signal takes values �1, the decision device would simply 

be  

đ(n - d) = sign [d(n - d)] 

where sign [ ] is the sign function. Here the object is that đ(n - d) = s[d(n - d)]. 

 

In such a digital transmission system a transversal filter can be used as an adaptive 

equalizer. In this arrangement the equalizer forms the linear combination of input samples 

as follows 

d�n � d� �  �w��n�y�n � d � j�
N

	��
 

 

where wj, -d�j�d, are the filter coefficients. The object of the adaptive algorithm is to adjust 

the filter coefficients in such a manner that d(n - d) �s(n - d). A criterion that can be applied 

to adapt the coefficients is the minimization of the output mean square error E[e2(n - d)] 

where  

e(n - d) = d(n - d) –  s(n - d). 

The estimation error is determined as the difference between the estimate and the 

original signal, which implies that the transmitted sequence is known in advance. In this 

case the equalizer operates in so-called training mode.  

 

The second possible fashion of working is decision direction mode where 

e(n - d) = d(n - d) - đ(n - d). 

 

This manner of adaptation is acceptable for tracking a slowly varying channel, but cannot 

be used for initial channel identification. In this case the approach is to utilize a 

deterministic data sequence and a training period. The time it takes for training of the 
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equalizer is strongly dependent on the choice of adaptive algorithm. The main concern is to 

reduce the training time as much as possible and this suggests the usage of adaptive 

algorithms, which converge rapidly. Although the LMS algorithm has low adaptation rate, 

its strongest point is its low computation complexity. 

 

2.3 THE FILTERED-X LEAST MEAN SQUARE ALGORITHM 

 

The filtered–X least-mean-square (LMS) algorithm is one of the most popular adaptive 

control algorithm used in DSP implementations of active noise and vibration control 

systems. There are several reasons for this algorithm’s popularity. First, it is well-suited to 

both broadband and narrowband control tasks, with a structure that can be adjusted 

according to the problem at hand. Second, it is easily described and understood, especially 

given the vast background literature on adaptive filters upon which the algorithm is based. 

Third, its structure and operation are ideally suited to the architectures of standard DSP 

chips, due to the algorithm’s extensive use of the multiply / accumulate (MAC) operation. 

Fourth, it behaves robustly in the presence of physical modeling errors and numerical 

effects caused by finite-precision calculations. Finally, it is relatively simple to set up and 

tune in a real-world environment. 

 

 

The block diagram of a single channel filtered–X LMS adaptive feed forward controller is 

shown in Fig. 2.3, in which a sensor placed near a sound source collects samples of the 

input signal x(n) for processing by the system. This system computes an actuator output 

signal y(n) using a time-varying FIR filter of the form  

 

���� ���������� � ��
�� 

���
 

 

where , �����, 0 � � � # � 1are the controller coefficients at time n and L is the controller 

filter length. The acoustic output signal produced by the controller combines with the 

sound as it propagates to the quiet region, where an error sensor collects the combined 

signal. We model this error as 
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$��� � %��� & � '(��� � )�
∞

(��∞

 

 

where d(n) is the undesired sound as measured at the error sensor and '(, �∞ * ) * ∞ 

is the plant impulse response. The filtered–X LMS coefficient updates are given by 

 

���� & 1� �  ����� &  µ$���+�� � �� 
 

where µ is the algorithm step size, the filtered input sequence is computed as 

 

+��� � � '(��� �)�
,

(� 
 

 

and M is the FIR filter length of an appropriate estimate of the plant impulse response.  

 

 

Fig 2.3 Single Channel Filtered-X LMS adaptive controller 
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2.4 THE FILTERED-S LEAST MEAN SQUARE ALGORITHM 

 

Filtered-X least mean square (FXLMS) algorithm is most popular for Active Noise Control 

applications because of its simplicity. However, in the case of nonlinear noise processes, 

the FXLMS algorithm shows poor performance. It has been established that the 

performance of the controller can be considerably improved by using nonlinear control 

structures. Recently, two nonlinear adaptive algorithms, namely, filtered-S LMS (FSLMS) 

algorithm and Volterra filtered-X LMS (VFXLMS) algorithm have been proposed and the 

authors have shown that these algorithms can be used where FXLMS algorithm fails to 

perform. However, as each element of the nonlinear expansion has to be filtered through an 

estimated secondary path transfer function, these algorithms are more computationally 

intensive than the linear FXLMS algorithm. 

 

The filter-bank implementation of the FSLMS algorithm is shown in Fig. 2.4. We can think 

of this adaptive filter as a bank of linear filters with the inputs modulated by sinusoidal 

nonlinear functions. In such a scheme, the acoustic path from the input microphone to the 

canceling loudspeaker is a primary path/plant which can be linear or nonlinear. d(n) is the 

primary noise at the canceling point and e(n) is the residual error sensed by the error 

microphone, which can be expressed by 

e(n) = d(n) - h(n) * y(n) 

Here, h(n) represents the impulse response of the secondary path transfer function and 

y(n) is the output of the adaptive filter, which is computed as 

 

���� � � �-�n�
./0 

-� 
 

where          yi(n) = si
T(n)wi(n) 

and wi(n) = [wi;0(n) wi;1(n) . . .wi;N-1(n)]T , i = 1; . . . ; 2P +1, is an N-point coefficient vector of 

the controller at time n. Here, N represents the memory size, P is the order of the functional 

expansion and si(n) = [si(n) si(n-1) . . . si(n-N +1)]T contains N recent samples of the 

functionally expanded reference input x(n). Here, si(n) is defined as follows: 

  si(n) =   x(n),    if i = 1; 

               sin(lπx(n)),   if i is even and l  = 1, 2, ......., P 

  cos(lπx(n)),   if i is even and l  = 1, 2, ......., P 



 

The weight update equations at time 

 

w

where fi(n) = [fi(n) fi(n - 1) . . . fi

reference signal and fi(n) is computed a

where ši(n) = [si(n) si(n - 1) . . . s

of the transfer function of the secondary path and L is the length of the secondary path 

filter. 

 

 

 
Fig 2.
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The weight update equations at time n - 1 and n, respectively, can be written as

wi(n) = wi(n - 1) +µe(n - 1)fi(n - 1) 

wi(n+ 1) = wi(n) + µe(n)fi(n) 

fi(n - N + 1)]T is the vector of filtered, functionally expanded 

) is computed as 

fi(n) = ši
T(n)h 

si(n - L + 1)]T and h = [h0 h1 . . . hL-1]T is the coefficient vector 

of the transfer function of the secondary path and L is the length of the secondary path 

Fig 2.4 Block diagram of FSLMS algorithm 

 

1 and n, respectively, can be written as 

is the vector of filtered, functionally expanded 

is the coefficient vector 

of the transfer function of the secondary path and L is the length of the secondary path 

 



14 

 

2.5 THE VOLTERRA FILTERED-X LEAST MEAN SQUARE ALGORITHM 

 

The block diagram of the second-order Volterra filtered-X LMS (VFXLMS) algorithm for 

active noise control application is depicted in Fig 2.5. Here, e(n) is the residual noise, and 

can be expressed as  

 

e(n) = d(n) - h(n)*y(n) 

 

In the structure shown in Fig. 5.3, y(n) can be computed as 

 

���� � ��1�n�
2

1��
 

 

where          yk(n) = uk
T(n)wk(n) 

 

where the weight vectors are defined as follows: 

 

wk(n)    = [wk;0(n); wk;1(n); . . . ; wk;(N-1)(n)] T ; for k = 0 

 = [ wk;0(n);wk;1(n); . . . ; wk;(N-k)(n)] T ; for k = 1; ...... ;N 

 

By this definition, w0(n) and w1(n) are of length N and w2(n); w3(n); . . . ; wN(n) are of length 

N - 1; N - 2; . . . ; 1, respectively. Hence, the total number of filter coefficients of the ANC 

structure = N(N + 3)/2. The input vector is defined as  

 

uk(n)  = [uk(n); uk(n - 1); . . . ; uk(n-N + 1)]T ; for k = 0 

            = [uk(n); uk(n - 1); . . . ; uk(n - N + k)]T ; for k = 1; ........ ;N 

 

where 

     uk(n) =   x(n),    for k = 0; 

                  x(n)x(n - l),   for k > 0 and l = 0,1, ...... N-1; 

 

and x(n) is the reference noise signal. 



 

Figure 2.5
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Figure 2.5 Block diagram of the second order VXLMS algorithm

 

Block diagram of the second order VXLMS algorithm 
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THE HEARING AID FEEDBACK 

CANCELLATION MODEL 
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THE HEARING AID FEEDBACK CANCELLATION MODEL 

 

Acoustic feedback that causes a hearing aid to oscillate is one of the most common 

complaints of hearing aid users. In order to reduce this, the external feedback path can be 

cancelled by an internal feedback path having the same characteristics as the external path. 

Fig. 3.1 shows a model of the external feedback path cancellation scheme using an adaptive 

FIR filter. y(t) is the input signal to the hearing aid (output of the AD converter). t denotes 

discrete time. u(t) is the output of the hearing aid (input to the DA-converter). K(q) is the 

signal processing in the forward path of the hearing aid used to adjust the input signal of 

the hearing aid to the impaired ear. q is the time delay operator: q-1(t) = u(t-1). 

 

v(t) is the input signal to the hearing aid without any feedback. Thus, v(t) is the desired 

input to K(q). GO(q,t) is the external feedback path from the input of the DA to the output of 

the AD that is to be estimated. The DA-converter, the hearing aid receiver (speaker), the 

acoustic feedback path, other  possible feedback paths, the microphone and the AD-

converter give the characteristics of GO(q,t). It is assumed that GO(q,t) is linear. Therefore it 

can be useful to use some kind of nonlinearity in K(q) to limit the level of u(t), which 

otherwise could cause saturation of the receiver and a nonlinear GO(q,t). GO(q,t) is the 

estimate of GO(q,t) that is generated by the FXLMS algorithm and is used to predict the 

feedback signal. 

 

GO(q,θ) consists of a fixed filter P(q) in series with an adjustable FIR-filter GFIR(q,θ(t)) are 

the parameters of the adjustable FIR-Filter and are the parameters used at time t. The two 

filters denoted L(q) are prefilters used to modify the signals used to update the parameters, 

and thereby modify the criteria of the adaptive filter. It is assumed that K(q) or both 

GO(q,θ(t)) and GO(q,t) has an initial delay. The system would otherwise not be computable. 

s(t) is the input signal with estimated feedback subtracted and is thus an estimate of the 

desired input v(t). r(t) is some probe signal uncorrelated to v(t) added to the output of the 

hearing aid. r(t) is  not  required  in  the  system,  but  can  be  used  to  reduce  the bias in 

the limiting estimate that the adaptive filter converges. 
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Fig. 3.1 Hearing aid with an internal feedback path used to cancel the acoustic feedback. The estimate of the 

external feedback path is achieved with FXLMS applied to filtered output and input signals. 
 

The transfer function of the digital signal processing in the hearing aid from y(t) to u(t) 

will, with a linear K(q), be 

 

K(ejω)/(1+K(ejωG(ejω,θ(t))) 

 

where ω is frequency expressed in rad/s. The transfer function of the entire system from 

v(t) to u(t) is then 

K(ejω)/(1+K(ejω )G~(ejω,θ(t))) 

 

where G~(ejω,θ(t)) = GO(ejω) – G(ejω, θ(t)) 

The system given by can be compared with the desired function K(ejω). The system will be 

stable if |K(ejω )G~(ejω,θ(t))|<1 at all frequencies and we would like to minimize this 

quantity to minimize the deviation from K(q). 
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3.1 IDENTIFICATION OF THE EXTERNAL FEEDBACK PATH 

 

The input of the hearing aid is a mix between the desired input signal v(t) and the feedback  

y(t) = GO(q,t)u(t) + v(t) 

 

It is GO(q,t) that we want to find an estimate of, which then is used to cancel the feedback. 

u(t) is a known signal as it is the output signal of the hearing aid. v(t) is unknown as is thus 

considered as a noise in the identification process. 

 

The model of the system used in the identification uses a parameterized model of the 

feedback and a fixed model of the generator of the noise. 

y(t) = GO(q,t)u(t) + H(q)e(t) 

 

G(q,θ) is the model of the feedback implemented by the fixed filter P(q) and a FIR filter 

GFIR(q,θ) with adjustable parameters θ. P(q) defines fixed poles and zeros of G(q,θ) that is 

not altered as θ is modified. The length of the impulse response of GFIR(q,θ) and the number 

of coefficients in θ is d. The noise in the model is generated by filtering a white noise e(t) 

through a monic and inversely stable filter H(q). The used model is given by 

 

 G(q,θ) = P(q) GFIR(q,θ) 

             = P(q)[q-1,q-2,q-3,….. q-d ]θ 

          θ = [b1,b2,b3 ….. bd]T  

    H(q) = 1 

 

The optimal one step ahead predictor of y(t) of a system given by G(q,θ) and H(q) is 

y’(t) = H-1(q) G(q,θ)u(t) + [1 – H-1(q)]y(t) 

 

The one step ahead prediction with model structure used is thus  

 y’(t) = φ(t)Tθ 

 φ(t) = P(q)[q-1,q-2,q-3,….. q-d ]u(t) 
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and the prediction error is 

Є(t) = y(t) - φ(t)Tθ 

 

The criteria that the adaptive filter tries to minimize is 

  V(θ) = 0.5*E[ЄF(t)2 ] 

 ЄF(t) = L(q) Є(t) 

 

L(q) is a linear predictor used to five a frequency specific weight of the error 

The estimate is updated according to  

θ(t+1) = θ(t) + γ(t)L(q) φ(t)L(q) Є(t) 

where the adaptation gain γ (t) is a positive scalar that controls the step size. 

 

The identification method can be classified as FXLMS with prefiltering of data. The signal 

processing of the hearing aid can be summarized by 

 

φ(t) = P(q)[q-1,q-2,q-3,….. q-d ]u(t) (a) 

φL(t) – L(q) φ(t) (b) 

s(t) = Є(t) = y(t) - φ(t)θ(t) (c) 

ЄL(t) = L(q) Є(t) (d) 

θ(t+1) = θ(t) + γ(t) φL(t) ЄL(t) (e) 

u(t) = K(q)s(t) + r(t) (f) 

 

The steps (a) – (e) are the steps used to estimate and cancel the feedback while (f) is the 

forward path of the hearing aid. 
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3.2 SIMULATION EXAMPLE 

 

The signal processing in the forward path is  

K(q) = -1 

 

The feedback cancellation was defined by  

 L(q) = 1 – 2.01q-1 + q-2 

 P(q) = q-61 – 1.8q-62 + 0.81q-63 

 r(t) = 0 

 γ(t) = 2*10-5 

 d = 32 

 

The probe signal added to the output r(t) is not used. The used P(q) is a high pass filter and 

is a very rough approximation of the external feedback path. the initial delay of P(q) was 

chosen to get the impulse response of the adaptive filter in approximately the same 

window as the impulse response of the external feedback path. L(q) was a high pass filter 

that can be suitable if the input signal has most energy at low frequencies. 

 

The feedback path of a Behind The Ear (BTE) hearing aid on a human subject identified in 

the normal situation GON(q) is used to generate GO(q) used in simulations. The feedback 

path is identified as FIR filter with an initial delay of 50 samples and the 70 coefficients. A 

sampling frequency of 15.75 KHz was used. The impulse response of the external feedback 

path was close to zero for the 62 first lags. 

 

The input signal to the system v(t) was generated by filtering a white noise with a variance 

one through a filter HO(q) given by  

HO(q)  = (1 + 2q-1 + q-2)/(1 – 1.45q-1 + 0.57q-2) 

 

HO(q) is a second order filter (low pass) with a cutoff frequency of approximately 1 KHz 

and was used as a very rough approximation of normal speech. The L(q) used has a high 

pass characteristics and will to some extent whiten the spectrum of v(t). 
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3.3 SIMULATION OUTPUT 

 

 

 
 

Fig 3.2 Impulse Response of the external feedback path and the adaptive model constituting the internal 

feedback path 
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The hearing aid external feedback cancellation model described in the previous section has 

the drawback that because of the finite impulse response of the adaptive FIR filter the 

characteristics of the internal feedback path does not match entirely with the external path. 

This is clearly evident from the simulation output shown in Fig 3.2. One way to overcome 

this problem is to use an adaptive IIR filter. An adaptive IIR filter consists of  a number of 

poles and zeros which are tuned with the help of a learning or adaptive algorithm. We have 

used two algorithms to tune the parameters of the adaptive IIR filter – 

 

a) The adaptive IIR Least Mean Square Algorithm.  

b) The Particle Swarm Optimization Algorithm. 

 

4.1 THE ADAPTIVE IIR LMS ALGORITHM 

 

Adaptive IIR filters are attractive for the same reasons that IIR filters are attractive: many 

fewer coefficients may be needed to achieve the desired performance in some applications. 

However, it is more difficult to develop stable IIR algorithms, they can converge very 

slowly, and they are susceptible to local minima. Nonetheless, adaptive IIR algorithms are 

used in some applications (such as low frequency noise cancellation) in which the need for 

IIR-type responses is great. In some cases, the exact algorithm used by a company is a 

tightly guarded trade secret. Most adaptive IIR algorithms minimize the prediction error, to 

linearize the estimation problem, as in deterministic or block linear prediction. 
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Thus the coefficient vector and the signal vectors are 

 

            

The error is 

 

An LMS algorithm can be derived using the approximation 
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Now 

 

 

Let 

  

Then  

 

and the IIR LMS algorithm becomes 

 

 where the µ may be different for the different IIR coefficients. Stability and 

convergence rate depends on these choices, of course. 
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4.2 THE PARTCLE SWARM OPTIMIZATION ALGORITHM 

 

Particle swarm optimization is a stochastic, population-based computer algorithm for 

problem solving. It is a kind of swarm intelligence that is based on social-

psychological principles and provides insights into social behavior, as well as contributing 

to engineering applications.  PSO emulates the swarm behavior of insects, animals herding, 

birds flocking and fish schooling where these swarms search for food in a collaborative 

manner. Each member in the swarm adapts its search patterns by learning from its own 

experience and other members’ experience. 

 

The swarm is typically modeled by particles in multidimensional space that have a position 

and a velocity. These particles fly through hyperspace (i.e., ) and have two essential 

reasoning capabilities: their memory of their own best position and knowledge of the 

global or their neighborhood's best. In a minimization optimization problem, problems are 

formulated so that "best" simply means the position with the smallest objective value. 

Members of a swarm communicate good positions to each other and adjust their own 

position and velocity based on these good positions.  

 

So a particle has the following information to make a suitable change in its position and 

velocity: 

 

A global best that is known to all and immediately updated when a new best position is 

found by any particle in the swarm. 

The local best, which is the best solution that the particle has seen. 

 

The particle position and velocity update equations in the simplest form that govern the 

PSO are given by 

Velocity update:  

vi(t+1)= w*vi(t) + c1*rand*(localbest(t) -xi(t)) + c2*rand*(globalbest(t) -xi(t))  

Position update:  

xi(t+1)=xi(t) + vi(t+1) 
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where c1 and c2 are constants; rand is a random number between 0 and 1 and w is the 

inertia weight vector. A large inertia weight (w) facilitates a global search while a small 

inertia weight facilitates a local search. By linearly decreasing the inertia weight from a 

relatively large value to a small value through the course of the PSO run gives the best PSO 

performance compared with fixed inertia weight settings. 

 

As the swarm iterates, the fitness of the global best solution improves (decreases for 

minimization problem). It could happen that all particles being influenced by the global 

best eventually approach the global best, and from there on the fitness never improves 

despite however many runs the PSO is iterated thereafter. The particles also move about in 

the search space in close proximity to the global best and not exploring the rest of search 

space. This phenomenon is called 'convergence'. If the inertial coefficient of the velocity is 

small, all particles could slow down until they approach zero velocity at the global best. The 

selection of coefficients in the velocity update equations affects the convergence and the 

ability of the swarm to find the optimum. One way to come out of the situation is to 

reinitialize the particles positions at intervals or when convergence is detected. 

 

The linearly decreasing inertia weight is given by:  

 

w = wmax – (wmax – wmin)*k/I 

where 

k = search number 

I = total number of iterations 

wmax = maximum value of inertia weight 

wmin = minimum value of inertia weight 
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4.3 THE MODIFIED HEARING AID MODEL 

 

 

Fig 4.1 Hearing aid with an adaptive IIR internal feedback path used to cancel the acoustic feedback. 

 

The model of the hearing aid is similar to that used previously. The only difference is that 

the adaptive filter is now an IIR filter instead of the FIR filter. The adaptive IIR filter 

consists of 20 taps in the feed forward path and 12 taps in the feedback path. The following 

additional parameters were used during simulation 

 

Adaptive IIR LMS algorithm: 

µ1 = step size in the feed forward path = 5*10^(-6) 

µ2 = step size in the feedback path = 1.5*10^(-6) 

 

Particle Swarm Optimization Algorithm: 

Population size = 50 

wmax = 0.9 

wmin = 0.4
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SIMULATION 1: Channel Equalization using LMS algorithm 

 

 Here we have taken the channel as a FIR filter whose impulse response is given by 

h(n) = [0.23, 0.96, 0.23]. During the training period, the input signal applied is a random 

signal which takes on values +1 or -1. White Gaussian noise of SNR 25 db is added to it. The 

values of the delay and step parameter are optimized. The equalizer tries to reduce the 

normalized mean square error of the output signal compared with the delayed sample of 

the original signal. 

 

 After the normalized mean square error has been reduced, the equalizer freezes the 

values of the weights and the detection period begins. In the detection process, we have 

taken a range of SNR values from 0 db to 20 db. The input signal is a random signal of 10^6 

bits which take on values -1 or +1; on which is added White Gaussian noise of desired SNR.  

 

 

 
 

Figure 5.1 Simulation results showing the Learning curve and bit error rate for the LMS equalizer 
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SIMULATION 2: Convergence Graph for Filtered-X LMS Algorithm 

 

 Here we have considered the primary path to be z-5 + 0.3z-6 + 0.2z-7. The secondary 

path is an FIR filter with non minimum phase transfer function H(z) = z-2 + 1.5z-3 + z-4. The 

reference noise is logistic chaotic with the recursive relation x(n + 1) = λx(n)[1 - x(n)], 

normalized to have unit signal power (σ2
 x = 1), where x(0) = 0.9 and λ = 4. The length of the 

adaptive filter N = 10. Fig. 5.2 shows the average learning curves for the FXLMS algorithm 

for µ = 0.001 and µ = 0.0025 respectively. 

 

 

Figure 5.2 Learning Curve for the Filtered-X LMS algorithm with µ = 0.001 and 0.0025 

  



 

SIMULATION 3: Convergence Graph for Filtered

 

 Here we provide the simulation results to prove the convergence characteristics of 

the FSLMS algorithm. For performance analysis, we use the normalized mean

(NMSE), defined as NMSE = 10log

noise at the canceling point. The secondary path is considered to be an FIR filter with non 

minimum phase transfer function H(z) = 

chaotic with the recursive relation 

power (σ2
 x = 1), where x(0) = 0.9 and 

+ 0.2z-7. Fig. 5.2 shows the average learning curves for the FSLMS algorithm for 

and µ = 0.0025 respectively. We consider the first

memory size N = 10. 

 

Figure 5.3 Learning curve for Filtered
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SIMULATION 3: Convergence Graph for Filtered-S LMS Algorithm 

Here we provide the simulation results to prove the convergence characteristics of 

For performance analysis, we use the normalized mean

(NMSE), defined as NMSE = 10log10{E(e2(n)/σ2 d} where, σ2
d is the power of the primary 

noise at the canceling point. The secondary path is considered to be an FIR filter with non 

se transfer function H(z) = z-2 + 1.5z-3 + z-4. The reference noise is logistic 

chaotic with the recursive relation x(n + 1) = λx(n)[1 - x(n)], normalized to have unit signal 

(0) = 0.9 and λ = 4. The primary path is considered to b

. Fig. 5.2 shows the average learning curves for the FSLMS algorithm for 

= 0.0025 respectively. We consider the first-order functional expansion;

Learning curve for Filtered-S LMS algorithm with µ = 0.001 & 0.0025

Here we provide the simulation results to prove the convergence characteristics of 

For performance analysis, we use the normalized mean-square error 

is the power of the primary 

noise at the canceling point. The secondary path is considered to be an FIR filter with non 

. The reference noise is logistic 

)], normalized to have unit signal 

= 4. The primary path is considered to be z-5 + 0.3z-6 

. Fig. 5.2 shows the average learning curves for the FSLMS algorithm for µ = 0.001 

rder functional expansion; P = 1 and 

 

S LMS algorithm with µ = 0.001 & 0.0025 



 

SIMULATION 4: Convergence Graph for Volterra Filtered

 

 In this experiment, we assume that the primary noise at the canceling point is 

generated based on the third-

0.04t3(n - 2), where, t(n) = x(n

function F(z) = z-3 + 0.3z-4 + 0.2

of 500 Hz, with a sampling rate of 8000 samples/s and a Gaussian noise of 40

noise ratio (SNR).We consider the second

The secondary path is considered to be an FIR

function H(z) = z-2 +1.5z-3 + z-4.

 

 

Figure 5.4 Learning Curve for the second order Volterra Filtered
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SIMULATION 4: Convergence Graph for Volterra Filtered-X LMS Algorithm

In this experiment, we assume that the primary noise at the canceling point is 

-order polynomial model, d(n) = t(n - 2) + 0.08

n) * f(n), f(n) denotes the impulse response of the transfer 

+ 0.2z-5. The reference signal x(n) is the sum of a sinusoidal wave 

of 500 Hz, with a sampling rate of 8000 samples/s and a Gaussian noise of 40

noise ratio (SNR).We consider the second-order Volterra filter and memory size N = 10. 

The secondary path is considered to be an FIR filter with non minimum phase transfer 

. Step size parameter µ is taken as 0.0003.  

 
Learning Curve for the second order Volterra Filtered-X LMS algorithm

X LMS Algorithm 

In this experiment, we assume that the primary noise at the canceling point is 

2) + 0.08t2(n - 2) + 

) denotes the impulse response of the transfer 

) is the sum of a sinusoidal wave 

of 500 Hz, with a sampling rate of 8000 samples/s and a Gaussian noise of 40-dB signal-to-

order Volterra filter and memory size N = 10. 

filter with non minimum phase transfer 

 

X LMS algorithm 
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SIMULATION 5: Error Minimization of Feedback Cancellation in Hearing Aid with  

       Filtered-X LMS 

 

 
 

Fig 5.5 Hearing Aid with an internal feedback path to cancel the external acoustic feedback 

 

In this experiment, we show the cancellation of the external feedback by an adaptive filter 

in series with a fixed filter. The adaptive filter used is a 32 tap FIR filter. The adaptation 

algorithm is the Least Mean Square Algorithm. The hearing aid model shown in Fig is 

characterized by the following parameters 

 L(q) = 1 – 2.01q-1 + q-2 

 P(q) = q-61 – 1.8q-62 + 0.81q-63 

 r(t) = 0 

 γ(t) = 2*10-5 

 d = 32 
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The input signal to the system v(t) was generated by filtering a white noise with a variance 

one through a filter HO(q) given by  

 

HO(q)  = (1 + 2q-1 + q-2)/(1 – 1.45q-1 + 0.57q-2) 

 

To determine the static characteristics of the feedback cancellation scheme , the cost 

function used is the normalized mean square error. Fig 5.6 shows the reduction in 

normalized mean square error with increasing number of iterations. 

 

 

 

 
Fig 5.6 Minimization of Normalized Mean Square error for the FXLMS based feedback cancellation scheme 
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SIMULATION 6: Error Minimization of Feedback Cancellation in Hearing Aid with  

       IIR LMS 

 

In this experiment, we use the hearing aid model shown in Fig 5.5. The adaptive filter used 

in this case is an IIR filter and the adaptation algorithm applied is the Least Mean Square 

algorithm for IIR filters. The IIR filter consists of 20 taps in the feed forward path and 12 

taps in the feedback path, thus a total of 32 taps. The step size for each iteration is taken as 

 

µ1 = step size in the feed forward path = 5*10^(-6) 

µ2 = step size in the feedback path = 1.5*10^(-6) 

 

To determine the static characteristics of the feedback cancellation scheme , the cost 

function used is the normalized mean square error. Fig 5.6 shows the reduction in 

normalized mean square error with increasing number of iterations. 

 

 

 
Fig 5.7 Minimization of Normalized Mean Square error for the adaptive IIR LMS based feedback cancellation 

scheme   
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SIMULATION 7: Error Minimization of Feedback Cancellation in Hearing Aid with  

       IIR PSO 

 

In this experiment, we use the hearing aid model shown in Fig 5.5. The adaptive filter used 

in this case is an IIR filter and the adaptation algorithm applied is the Particle Swarm 

Optimization Algorithm. The IIR filter consists of 20 taps in the feed forward path and 12 

taps in the feedback path, thus a total of 32 taps. The population size is take as 50. Here we 

have applied a linearly decreasing inertia weight vector with its maximum and minimum 

values as 0.9 and 0.4 respectively. 

 

To determine the static characteristics of the feedback cancellation scheme , the cost 

function used is the normalized mean square error. Fig 5.7 shows the reduction in 

normalized mean square error with increasing number of iterations. 

 

 
Fig 5.7 Minimization of Normalized Mean Square error for the adaptive IIR PSO based feedback cancellation 

scheme 
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DISCUSSION 
 

 

The above simulations and their output show that the IIR based feedback cancellation 

scheme in hearing aid gives better performance in terms of error minimization as 

compared to the FIR based scheme. The minimum normalized mean square error achieved 

in the FIR Filtered-X LMS based scheme is around -20 db whereas that for the IIR LMS 

based scheme is around -25db and for the IIR PSO based scheme it is around -27db. These 

figures clearly suggest that the IIR filters provide a better matching of the characteristics of 

the external feedback path and thus ensures a better feedback cancellation.  
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The various techniques that can be applied for acoustic noise cancellation have been 

introduced. Moreover, three models for the cancellation of external acoustic feedback in 

hearing aid have been discussed. These are - the adaptive FIR Filtered-X LMS, the adaptive 

IIR LMS and the adaptive IIR PSO models for external feedback cancellation. The results 

show that adaptive IIR based schemes provides a better feedback cancellation as compared 

to the adaptive FIR based schemes. However certain issues have to be taken into 

consideration while selecting the appropriate model for the purpose.  

 

Although the IIR PSO and IIR LMS algorithms give better error minimization as compared 

to FIR LMS, the algorithms involve increased computational complexity. Also parameter 

selection for IIR LMS and PSO algorithms are less well defined than for FIR LMS.  
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