15 research outputs found

    A Unifying Approach to Decide Relations for Timed Automata and their Game Characterization

    Full text link
    In this paper we present a unifying approach for deciding various bisimulations, simulation equivalences and preorders between two timed automata states. We propose a zone based method for deciding these relations in which we eliminate an explicit product construction of the region graphs or the zone graphs as in the classical methods. Our method is also generic and can be used to decide several timed relations. We also present a game characterization for these timed relations and show that the game hierarchy reflects the hierarchy of the timed relations. One can obtain an infinite game hierarchy and thus the game characterization further indicates the possibility of defining new timed relations which have not been studied yet. The game characterization also helps us to come up with a formula which encodes the separation between two states that are not timed bisimilar. Such distinguishing formulae can also be generated for many relations other than timed bisimilarity.Comment: In Proceedings EXPRESS/SOS 2013, arXiv:1307.690

    Better abstractions for timed automata

    Full text link
    We consider the reachability problem for timed automata. A standard solution to this problem involves computing a search tree whose nodes are abstractions of zones. These abstractions preserve underlying simulation relations on the state space of the automaton. For both effectiveness and efficiency reasons, they are parametrized by the maximal lower and upper bounds (LU-bounds) occurring in the guards of the automaton. We consider the aLU abstraction defined by Behrmann et al. Since this abstraction can potentially yield non-convex sets, it has not been used in implementations. We prove that aLU abstraction is the biggest abstraction with respect to LU-bounds that is sound and complete for reachability. We also provide an efficient technique to use the aLU abstraction to solve the reachability problem.Comment: Extended version of LICS 2012 paper (conference paper till v6). in Information and Computation, available online 27 July 201

    TCTL model checking of Time Petri Nets

    Get PDF
    International audienceIn this paper, we consider \emph{subscript} TCTL for Time Petri Nets (TPN-TCTL) for which temporal operators are extended with a time interval, specifying a time constraint on the firing sequences. We prove that the model-checking of a TPN-TCTL formula on a bounded TPN is decidable and is a PSPACE-complete problem. We propose a zone based state space abstraction that preserves marking reachability and traces of the TPN. As for Timed Automata (TA), the abstraction may use an over-approximation operator on zones to enforce the termination. A coarser (and efficient) abstraction is then provided and proved exact w.r.t. marking reachability and traces (LTL properties). Finally, we consider a subset of TPN-TCTL properties for which it is possible to propose efficient on-the-fly model-checking algorithms. Our approach consists in computing and exploring the zone based state space abstractio

    Model Checking of Time Petri Nets

    Get PDF

    Timed Automata May Cause Some Troubles

    Get PDF
    Timed automata are a widely studied model. Its decidability has been proved using the so-called region automaton construction. This construction provides a correct abstraction for the behaviours of timed automata, but it does not support a natural implementation and, in practice, algorithms based on the notion of zones are implemented using adapted data structures like DBMs. When we focus on forward analysis algorithms, the exact computation of all the successors of the initial configurations does not always terminate. Thus, some abstractions are often used to ensure termination, among which, a widening operator on zones. In this paper, we study in details this widening operator and the forward analysis algorithm that uses it. This algorithm is most used and implemented in tools like Kronos and Uppaal. One of our main results is that it is hopeless to find a forward analysis algorithm, that uses such a widening operator, and which is correct. This goes really against what one could think. We then study in details this algorithm in the more general framework of updatable timed automata, a model which has been introduced as a natural syntactic extension of classical timed automata. We describe subclasses of this model for which a correct widening operator can be found

    Automata with Timers

    Full text link
    In this work, we study properties of deterministic finite-state automata with timers, a subclass of timed automata proposed by Vaandrager et al. as a candidate for an efficiently learnable timed model. We first study the complexity of the configuration reachability problem for such automata and establish that it is PSPACE-complete. Then, as simultaneous timeouts (we call these, races) can occur in timed runs of such automata, we study the problem of determining whether it is possible to modify the delays between the actions in a run, in a way to avoid such races. The absence of races is important for modelling purposes and to streamline learning of automata with timers. We provide an effective characterization of when an automaton is race-avoiding and establish that the related decision problem is in 3EXP and PSPACE-hard.Comment: 35 pages, 9 figure

    Supervisory controller synthesis for timed automata

    Get PDF
    corecore