602 research outputs found

    Best chirplet chain: near-optimal detection of gravitational wave chirps

    Full text link
    The list of putative sources of gravitational waves possibly detected by the ongoing worldwide network of large scale interferometers has been continuously growing in the last years. For some of them, the detection is made difficult by the lack of a complete information about the expected signal. We concentrate on the case where the expected GW is a quasi-periodic frequency modulated signal i.e., a chirp. In this article, we address the question of detecting an a priori unknown GW chirp. We introduce a general chirp model and claim that it includes all physically realistic GW chirps. We produce a finite grid of template waveforms which samples the resulting set of possible chirps. If we follow the classical approach (used for the detection of inspiralling binary chirps, for instance), we would build a bank of quadrature matched filters comparing the data to each of the templates of this grid. The detection would then be achieved by thresholding the output, the maximum giving the individual which best fits the data. In the present case, this exhaustive search is not tractable because of the very large number of templates in the grid. We show that the exhaustive search can be reformulated (using approximations) as a pattern search in the time-frequency plane. This motivates an approximate but feasible alternative solution which is clearly linked to the optimal one. [abridged version of the abstract]Comment: 23 pages, 9 figures. Accepted for publication in Phys. Rev D Some typos corrected and changes made according to referee's comment

    The Berk-Breizman Model as a Paradigm for Energetic Particle-driven Alfven Eigenmodes

    Get PDF
    The achievement of sustained nuclear fusion in magnetically confined plasma relies on efficient confinement of high-energy ions produced by the fusion reaction. Such particles can excite Alfven Eigenmodes (AEs), which significantly degrade their confinement and threatens the vacuum vessel of future reactors. To develop diagnostics and control schemes, a better understanding of linear and nonlinear features of resonant interactions between plasma waves and high-energy particles, is required. In the case of an isolated single resonance, the problem is homothetic to the so-called Berk-Breizman (BB) problem, which is an extension of the classic bump-on-tail electrostatic problem, including external damping to a thermal plasma, and collisions. A semi-Lagrangian simulation code, COBBLES, is developed to solve the initial-value BB problem. The nonlinear behavior of instabilities in experimentally-relevant conditions is categorized into steady-state, periodic, chaotic, and frequency-sweeping (chirping) regimes. The chaotic regime is shown to extend into a linearly stable region, and a mechanism for such subcritical instabilities is proposed. Analytic and semi-empirical laws for nonlinear chirping characteristics, such as sweeping-rate, lifetime, and asymmetry, are developed and validated. Long-time simulations demonstrate the existence of a quasi-periodic chirping regime. Collisional drag and diffusion are shown to be essential to reproduce the alternation between major chirping events and quiescent phases, which is observed in experiments. Based on these findings, a fitting procedure between COBBLES simulations and chirping AE experiments is developped. This procedure, which yields local linear drive and external damping rate, is applied to Toroidicity-induced AEs (TAEs) on JT-60U and MAST tokamaks. This suggests the existence of TAEs relatively far from marginal stability

    Image-based deep learning for classification of noise transients in gravitational wave detectors

    Full text link
    The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.Comment: 25 pages, 8 figures, accepted for publication in Classical and Quantum Gravit

    Optically Multiplexed Systems: Wavelength Division Multiplexing

    Get PDF
    Optical multiplexing is the art of combining multiple optical signals into one to make full use of the immense bandwidth potential of an optical channel. It can perform additional roles like providing redundancy, supporting advanced topologies, reducing hardware and cost, etc. The idea is to divide the huge bandwidth of optical fiber into individual channels of lower bandwidth, so that multiple access with lower-speed electronics is achieved. This chapter focuses on one of the most common and important optical multiplexing techniques, wavelength division multiplexing (WDM). The chapter begins with a quick historical account of the origin of optical communication and its exponential growth following the invention of erbium-doped fiber amplifier (EDFA) leading to the widespread adoption of WDM. Alternate multiplexing schemes are also briefly discussed, including time-division multiplexing (TDM), space-division multiplexing (SDM), etc. A typical WDM link and its components are then discussed with special focus on WDM Mux/demultiplexer (DeMux). Further, certain challenges in this field are addressed along with some potential solutions. The chapter concludes by highlighting some features and limitations of optically multiplexed WDM systems
    • …
    corecore