3,049 research outputs found

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast

    User behaviour monitoring using mobile phones to improve 5G services and performance

    No full text
    Abstract 4G has been widely commercialised, and 5G is currently under development. The expected data bandwidth for 5G is 100 times faster than 4G and 500 times faster than 3G; however, the evolution of telecommunication technologies involves both a boost in speed and the enhancement of user experience. The key word used to describe 5G is ‘user-centric’, rather than ‘service-centric’ for 4G, and thus user behaviours of mobile data usage should be further investigated. On the other hand, the testing equipment currently being used for base stations is limited to hardware devices, such as spectrum analysers and power meters. These testing methods do not include the considerable potential variations in data demands due to changes in user behaviours, which could be resolved by presuming that all data resources could be dynamically allocated by real-time events. A complete system has been designed and implemented in this study to investigate current user behaviours regarding mobile data usage. The system consists of three individual parts, including a user iOS application, a web server and an administrative iOS application. Ten devices were tested within the two-month data collection period. Although the sample size was too small to produce any statistical results, it was found that data usage behaviours differ from user to user, with the exception of using more than 10 times the Wi-Fi over WWAN data at all times. The data also proved that some of the usage case families, which are described in the NGMN 5G white paper, do have strong demands, which could not be fulfilled using current telecommunication technologies due to technological gaps. This paper shows that the system proposed is a feasible method to investigate user behaviours of mobile data usage. If the sample size of users involved could be increased in the future, it would be possible to develop a model for real-time simulations of mobile users in specific areas so that limited connection resources could be dynamically allocated. Moreover, the basic communication infra-structures, such as base stations, should be well-planned and developed in advance to fulfill the potential 5G demand.</jats:p

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A Hybrid (Active-Passive) VANET Clustering Technique

    Get PDF
    Clustering serves a vital role in the operation of Vehicular Ad hoc Networks (VANETs) by continually grouping highly mobile vehicles into logical hierarchical structures. These moving clusters support Intelligent Transport Systems (ITS) applications and message routing by establishing a more stable global topology. Clustering increases scalability of the VANET by eliminating broadcast storms caused by packet flooding and facilitate multi-channel operation. Clustering techniques are partitioned in research into two categories: active and passive. Active techniques rely on periodic beacon messages from all vehicles containing location, velocity, and direction information. However, in areas of high vehicle density, congestion may occur on the long-range channel used for beacon messages limiting the scale of the VANET. Passive techniques use embedded information in the packet headers of existing traffic to perform clustering. In this method, vehicles not transmitting traffic may cause cluster heads to contain stale and malformed clusters. This dissertation presents a hybrid active/passive clustering technique, where the passive technique is used as a congestion control strategy for areas where congestion is detected in the network. In this case, cluster members halt their periodic beacon messages and utilize embedded position information in the header to update the cluster head of their position. This work demonstrated through simulation that the hybrid technique reduced/eliminated the delays caused by congestion in the modified Distributed Coordination Function (DCF) process, thus increasing the scalability of VANETs in urban environments. Packet loss and delays caused by the hidden terminal problem was limited to distant, non-clustered vehicles. This dissertation report presents a literature review, methodology, results, analysis, and conclusion
    • 

    corecore