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ABSTRACT

SECURING NETWORK PROCESSORS WITH
HARDWARE MONITORS

SEPTEMBER 2015

KEKAI HU

B.Sc., WUHAN UNIVERSITY

M.Sc., WUHAN UNIVERSITY

Directed by: Professor Russell G. Tessier

As an essential part of modern society, the Internet has fundamentally changed

our lives during the last decade. Novel applications and technologies, such as online

shopping, social networking, cloud computing, mobile networking, etc, have sprung

up at an astonishing pace. These technologies not only influence modern life styles but

also impact Internet infrastructure. Numerous new network applications and services

require better programmability and flexibility for network devices, such as routers and

switches. Since traditional fixed function network routers based on application specific

integrated circuits (ASICs) have difficulty keeping pace with the growing demands of

next-generation Internet applications, there is an ongoing shift in the industry toward

implementing network devices using programmable network processors (NPs).

While network processors offer great benefits in terms of flexibility, their repro-

grammable nature exposes potential security risks. Similar to network end-systems,
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such as general-purpose computers, software-based network processors have security

vulnerabilities that can be attacked remotely. Recent research has shown that a new

type of data plane attack is able to modify the functionality of a network proces-

sor and cause a denial-of-service (DoS) attack by sending a single malformed UDP

packet. Since this attack relies solely on data plane access and does not need access

to the control plane, it can be particularly difficult to control.

Hardware security monitors have been introduced to identify and eliminate these

malicious packets before they can propagate and cause devastating effects in the

network. However, previous work on hardware monitors only focus on single core

systems with static (or very slowly changing) workloads. In network processors that

use up to hundreds of parallel processor cores and have processing workloads that

can change dynamically based on the network traffic, the realization of a complete

multicore hardware monitoring system remains a critical challenge. Our research

work in this thesis provides a comprehensive solution to this problem.

Our first contribution is the design and prototype implementation of a Scalable

Hardware Monitoring Grid (SHMG). This scalable architecture balances area cost

and performance overhead by using a clustered approach for multicore NP systems.

In order to adapt to dynamically changing network traffic, a resource reallocation

algorithm is designed to reassign the processing resources in SHMG to different net-

work applications at runtime. An evaluation of the prototype SHMG on an Altera

DE4 board demonstrates low resource and performance overheads. The functional-

ity and performance of a runtime resource reallocation algorithm are tested using a

simulation environment.

A second significant contribution of this work is a network system-level security

solution for multicore network processors with hardware monitors. It addresses two

key problems: (1) how to securely manage and reprogram processor cores and moni-

tors in a deployed router in the network, and (2) how to prevent the large number of
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identical router devices in the network from an attack that can circumvent one specific

monitoring system and lead to Internet-scale failures. A Secure Dynamic Multicore

Hardware Monitoring System (SDMMon) is designed based on cryptographic prin-

ciples and suitable key management to ensure the secure installation of processor

binaries and monitor graphs. We present a Merkle tree based parameterizable high-

performance hash function that can be configured to perform a variety of functions in

different devices via a 32-bit configuration parameter. A prototype system composed

of both the SDMMon and the parameterizable hash is implemented and evaluated on

an Altera DE4 board.

Finally, a fully-functional, comprehensive Multicore NP Security Platform, which

integrates both the SHMG and the SDMMon security features, has been implemented

on an Altera DE5 board.
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CHAPTER 1

INTRODUCTION

1.1 Trends and Security Challenges in Internet Systems

The Internet is a critical infrastructure component in today’s society. The pro-

found impact of the Internet covers almost every aspect of modern life such as personal

communication, business transactions, entertainment, digital government, etc. This

impact is likely to continue to increase in the years ahead.

As the Internet evolves further, the underlying network infrastructure needs funda-

mental advancement to catch up with the growing requirements of the future Internet.

Programmability of network devices such as routers and switches is a critical feature

of the future Internet infrastructure.

In the classic TCP/IP network model (Figure 1.1), a network is divided into

five layers: the application layer, transport layer, network layer, data link layer and

physical layer. Various network protocols have been proposed and deployed in this

hierarchy, and different network devices are implemented in different layers. For

example, network end-systems such as general-purpose computers and workstations

work in the application layer, network routers work in the network layer and network

switches work in data link layer. Traditionally, numerous network protocols and

applications (e.g., File Transfer Protocol (FTP) [73], Hypertext Transfer Protocol

(HTTP) [39], Simple Mail Transfer Protocol (SMTP) [62], etc) are deployed in the

application layer because of its software programmable nature. The network layer, on

the other hand, has less protocol choices and has remained virtually unchanged for

decades [10]. As a result, Internet Protocol (IP) [72], the dominant protocol in the
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Figure 1.1: Layered networking in the Internet [10]

network layer, is implemented with application-specific integrated circuits (ASIC) in

traditional routers [79]. Although the cost of developing ASICs is expensive, ASICs

are able to achieve the necessary performance for multi-Gigabit per second traffic

forwarding. ASIC routers are typically widely distributed in networks once designed.

In recent years, emerging novel network concepts and architectures, such as soft-

ware defined network (SDN) [8,66] and network virtualization [24], have significantly

expanded the protocol choices in the network layer. A large number of new tasks

including security checks [34], data filtering [23], traffic management [18], resource

management [88], etc, are implemented in the network layer to augment the basic

functions of the Internet Protocol [17]. Network routers need to implement packet

processing and data forwarding on a broad scale. However, ASIC-based routers typi-

cally have fixed functions that cannot be easily changed once designed, thus they are

limited in their support of diverse network protocols.
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General purpose network processors (NPs) offer more flexibility to adjust a router’s

functionality after production [36]. These devices have become the computing device

of choice in a large fraction of contemporary network routers. Network processors

often feature multiple software-programmable processor cores which give router man-

ufacturers and network managers the ability to dynamically configure and update

router functionality. A detailed introduction to network processors can be found in

Section 2.1.

A side-effect of shifting from ASIC-based routers to routers with network proces-

sors is that it creates a new class of vulnerabilities and corresponding security issues.

Traditional ASIC-based routers are generally secure since their functionality cannot

be changed after manufacture. In contrast, just as general-purpose workstations and

server processors have software vulnerabilities that can be attacked remotely, net-

work processors have software with potential security vulnerabilities. Such security

vulnerabilities can be exploited to change the behavior of a router. In particular,

prior work has shown that an experimental network processor with a security vulner-

ability in packet processing code can be attacked by sending a single User Datagram

Protocol (UDP) packet [22] (Figure 1.2). The result of the attack was the indefinite

retransmission of the attack packet on the outgoing link at full data rate. This type

of attack is particularly concerning since it can be launched through the data plane

of the network (i.e., no access to the control interface of the router is necessary). Its

effect can be devastating since routers in the network inherently have access to mul-

tiple high-bandwidth links. Thus, this type of attacks can trigger Gigabits of attack

traffic with a single transmission.

While similar vulnerabilities and attacks have not yet been disclosed for current

commercial router systems, there are no fundamental reasons why they cannot be

found. In particular, network processor software complexity continues to grow as

more features are deployed and thus the attack surface continues to increase. It
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Figure 1.2: Attack on unprotected software-based router [21]

is important to note that even a single vulnerability can limit the operation of the

Internet due to the homogeneity of the network equipment ecosystem. Currently,

the network equipment market is dominated by a small number of vendors. If a

vulnerability in deployed network processor code can be exploited, a large number of

systems can be effected simultaneously. The ability to take down a significant fraction

of all network devices in a short time would allow an attacker to drastically affect

critical infrastructure. Such capabilities are particularly concerning in the context of

cyber warfare (e.g., [61]).

Defenses against attacks on network processors need to match the system con-

straints of these devices. In particular, network processors use simple processor cores

that typically do not run full operating systems. Thus, conventional software protec-

tion mechanisms (e.g., anti-malware software) are not suitable for this domain. In

addition, network intrusion detection systems (e.g., Snort [77] or Bro [19]) are often

only active on the ingress side of campus networks and thus do not protect the In-

ternet core. Software based monitors (e.g., IRM [37]) are able to observe software

execution and take remedial action on operations that violate a policy, but they are

developed in high-level programming languages and require operating system sup-
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port. Instead, hardware monitoring techniques have been proposed as an effective

protection mechanism for network processors [16,21,65].

A hardware security monitor (Figure 3.5) is a module of specialized digital hard-

ware that operates in parallel to the embedded network processor cores and keeps

track of the processor behavior during runtime. It takes executed instructions from

a processor core and compares them with a prestored “monitor graph”, which is an

binary that is generated from an offline analysis of the network application in the

processor core to represent all possible valid program execution sequences. If any

deviation from the expected instruction behavior is detected, the processor core can

be reset by the monitor and continue operating without executing attack code. A

comprehensive discussion of hardware monitors is presented in Chapter 3

1.2 Thesis Overview

Hardware monitors for single core network processor systems have been demon-

strated in prior work [22,57]. These solutions, however, do not address many critical

problems that appear in practical network processor systems:

• Multiple cores: Practical network processors use multiple processor cores in

parallel, and all of these cores need to be protected by hardware monitors.

• Multiple processing binaries: Network processors need to perform different

packet processing functions on different types of network traffic. These opera-

tions are represented by different processing binaries on the network processing

system. Thus, cores may need to execute different binaries and need to be

monitored by hardware monitors that match these binaries.

• Dynamically changing workload: Due to changes in network traffic during run-

time, the workload of processor cores may change dynamically [86]. Thus,
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hardware monitors need to adapt to changing processing binaries during run-

time.

• Homogeneity: Due to the large numbers of identical router devices in practical

networks, a successful attack on one device can be applied to all the other

devices, thus leading to a large-scale failure.

The goal of this dissertation work is to design, prototype and evaluate a multicore

network processor security infrastructure that can accommodate all these require-

ments and protect routers based on network processors from data plane attacks.

Since one hardware monitor can only secure one processor core at a time, a mul-

ticore network processor needs a scalable processor-to-monitor interconnection archi-

tecture to balance the area cost and the performance overhead. A major contribution

of our work is the design and prototype implementation of a clustered Scalable Hard-

ware Monitoring Grid (SHMG) for multicore NP systems. In a multicore system that

runs multiple processing binaries, dynamically changing network traffic requires the

system to have the ability to reassign the processor cores to different binaries based

on the network traffic at runtime. A resource reallocation algorithm is designed in

SHMG for this purpose. An analytic analysis together with a simulation have vali-

dated the functionality and performance of this algorithm. A prototype SHMG on

an Altera DE4 board [1] demonstrates low resource and performance overheads.

Although processors and monitors in SHMG design can dynamically switch from

one network application to another, they can only run one application at a time. The

secure installation of processor binaries and monitor graphs is indispensable during

the application switch. A secure installation model based on cryptographic principles

and suitable key management is presented to ensure invulnerability. When the control

processor in the SHMG requests a new application from a remote server, the server

first securely deploys the processor binaries and monitor graphs to a centralized mem-
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ory in the network processor through an Ethernet port. Then the control processor

installs the binaries and graphs to processor cores and monitors, if necessary.

Another problem in the network infrastructure is the homogeneity of routers, as

we described in the early part of this chapter. To diversify the security of the routers,

different hash functions are used with monitors in different NP-based routers. To

support this security diversification, we present a Merkle tree based parameterizable

high-performance hash function that can be configured to perform different functions

in different devices by changing a 32-bit configuration parameter input. These hash

values are then used by the monitor to evaluate network processor core performance

on a cycle-by-cycle basis. A Secure Dynamic Multicore Hardware Monitoring Sys-

tem (SDMMon) that supports both secure installation and a parameterizable hash

function has been prototyped and evaluated on an Altera DE4 board.

Eventually, a fully-functional, multicore network processor system which is pro-

tected by multiple hardware monitors is implemented on an Altera DE5 board. This

system supports 10Gbps high speed Ethernet and has the capability to support all

the security features in both SHMG and SDMMon. It has been evaluated at speed

in a laboratory environment using a remote packet generator.

1.3 Thesis Outline

This thesis is organized into seven chapters:

Chapter 2 provides necessary background materials for this dissertation. We first

describe network processors that are implemented with FPGAs in programmable

network routers. Then, we provide an overview of network attacks and defenses in a

computer network. Finally, FPGA technology is introduced.

Chapter 3 introduces data plane vulnerabilities in network processers, and presents

and evaluates a memory based high performance hardware monitor to protect the

NPs from this type of attack. We first start with an example of a data plane attack
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in a network processor, then two previous hardware security monitoring techniques

are introduced: address-based hardware security monitoring and hardware security

monitoring based on instruction hashing. An enhanced hardware security monitor is

designed and presented by constructing a deterministic finite automata (DFA) from a

nondeterministic finite automata (NFA). The use of a DFA improves the efficiency of

the monitor and reduces the monitor operation time to one clock cycle per instruction

for all cases.

Chapter 4 includes the first major contribution of this thesis: a Scalable Hardware

Monitoring Grid (SHMG) design for multicore network processors. By keeping a good

balance between multicore interconnectivity and resource cost, the SHMG provides

a scalable multicore hardware solution by clustering processor cores and monitors.

Inside each cluster, a scalable processor-to-monitor interconnection is used. A runtime

resource reallocation algorithm is presented to allocate the resources in SHMG, such

as processors and monitors, to different network applications based on network traffic

load. A Java-based simulator is designed to evaluate the performance and effectiveness

of this algorithm. SHMG is prototyped and evaluated using four processor cores and

six hardware monitors in an Altera Stratix IV FPGA on an Altera DE4 board.

Chapter 5 focuses on the system-level security issues in multicore hardware moni-

toring systems. We present a solution to the problem of secure, dynamic installation of

hardware monitoring graphs on the network processors, and then address the problem

of how to overcome the homogeneity of a network with many identical devices, where

a successful attack, albeit possible only with small probability, may have devastating

effects.

Chapter 6 introduces the final result of this research, a complete multicore network

processor security platform on an Altera DE5 board. It consists of four 10Gbps SFP+

Ethernet ports, a four NP core six monitor SHMG cluster, a Nios II control processor

running the µClinux operating system, and a hardware trusted platform module
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(TPM). The platform also includes system software that supports SHMG runtime

reconfiguration, security key management and secure installation of program binaries

and monitoring graphs. Our system is evaluated experimentally by connecting to

another DE5 board that operates as a packet generator and packet collector.

Chapter 7 summarizes this dissertation and provides directions for future work.

Results from the research outlined in this thesis have been published in the fol-

lowing conference proceedings and journals:

1. Tilman Wolf, Kekai Hu, Harikrishnan Chandrikakutty, and Russell Tessier, “Se-

curing Network Processors with High-Performance Hardware Monitors”, IEEE

Transactions on Dependable and Secure Computers, vol. pp, issue 99, Nov

2015. [85]

2. Kekai Hu, Harikrishnan Chandrikakutty, Russell Tessier, and Tilman Wolf,

“Scalable Hardware Monitors to Protect Network Processors from Data Plane

Attacks”, Proc. of First IEEE Conference on Communications and Network

Security (CNS), Oct 2013. Best paper award. [49]

3. Kekai Hu, Thiago Teixeira, Russell Tessier and Tilman Wolf, “System-Level

Security for Network Processors with Hardware Monitors”, Proc. of 51th Design

Automation Conference (DAC), San Francisco, CA, June 2014. [50]

4. Kekai Hu, Harikrishnan Chandrikakutty, Zachary Goodman, Russell Tessier,

and Tilman Wolf, ”Scalable Hardware Monitors to Protect Network Processors

from Data Plane Attacks”, IEEE Transactions on Computers , vol. pp, issue

99, May 2015. [48]

5. Russell Tessier, Tilman Wolf, Kekai Hu, and Harikrishnan Chandrikakutty, ”Re-

configurable Network Router Security”, in Reconfigurable Logic: Architecture,

Tools and Applications, Pierre Gaillardon, ed., CRC Press, 2015 [82]
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CHAPTER 2

BACKGROUND

2.1 Network Processor

Network processors (NPs) are programmable devices that can process network

packets (up to hundreds of millions of them per second) at wire-speeds of multi-

Gbps [42]. In contemporary routers, network processors (NPs) typically contain

simple RISC-based processing cores which can efficiently manipulate data packets.

The functionality of these programmable processors can easily be updated via soft-

ware updates to provide a broad range of router functionality. Some of the typical

applications implemented as software running on network processors include [26]:

• Packet or frame discrimination and forwarding: the basic function of a router

or a switch.

• Quality of service (QoS) enforcement: identify and balance the network traffic of

different types or classes of network packets, manage congestions, reduce error

rate, etc.

• Access control functions: identify the authentication of packets and allow only

the authenticated packets to traverse the router or switch.

• Encryption of data streams: Encrypt the data flow with hardware-based en-

cryption engines in the network processor.

Network processors have been used increasingly widely in all kinds of contempo-

rary network devices: workstation-based routers [54] [51], programmable routers [78],
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Figure 2.1: Network processor implemented in a programmable router

and virtualized router platforms [14] over the past decade. Commercial examples of

network processors include Cisco QuantumFlow [25], Cavium Octeon [20], and EZchip

NP-5 [38] with data rates in hundreds of Gigabits per second. Figure 2.1 shows a

multicore network processor that is implemented in a programmable router.

2.2 Overview of Network Attacks and Defenses

In this age of universal electronic connectivity, the explosive growth in computer

systems and their interconnections via the Internet has increased the dependence

of both organizations and individuals on the information stored and communicated

using these systems. This, in turn, has led to a heightened awareness of computer

and network security [81] [15].

The NIST Computer Security Handbook [45] defines computer security as

The protection afforded to an automated information system in order
to attain the applicable objectives of preserving the integrity, availability,
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and confidentiality of information system resources (includes hardware,
software, firmware, information/data, and telecommunications).

This definition introduces three key concepts that form the fundamental objectives

of computer security:

• Integrity: This term includes two concepts:

Data integrity: Make sure that no unauthorized modifications or destructions

are made to the information and data.

System integrity: Make sure that a system performs its intended function in

an unimpaired manner [81].

• Confidentiality: This term includes two concepts:

Data confidentiality: Make sure that no unauthorized individuals have ac-

cess to the confidential information in the data.

Privacy: Make sure that the information about the individuals who manage

the data won’t be disclosed to unauthorized individuals.

• Availability: Make sure that the systems work properly and the services are

available to the authorized users.

2.2.1 Network Attacks

By the definition of the open systems interconnection (OSI) security architecture

[31], any action that compromises the security of information or makes unauthorized

use of an asset in computer networks can be defined as a network attack. Numerous

network attacks [3, 41,52,68] can be classified as passive attacks or active attacks.

Passive attacks

A passive attack attempts to learn or make use of information from the system

but does not affect system resources. Two types of passive attacks are the release
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of message contents and traffic analysis. By definition, message content attacks are

attacks that eavesdrop and monitor network transmissions to get confidential infor-

mation in the messages. In traffic analysis, the attacker determines the location and

identity of communicating hosts and observes the frequency and length of messages

being exchanged. With this information, the attacker tries to predict the nature of

the communication that is taking place. Passive attacks are very difficult to detect

because they do not involve any data modification. Neither the message sender nor

the receiver is aware that a third party has read the messages because the data is

unaffected. As a result, a typical security solution for passive attacks is not detection,

but prevention, usually by means of encryption [81].

Active attacks

An active attack attempts to alter system resources or affect their operation.

Active attacks involve some manipulation of the data stream or the creation of a ma-

licious stream and can be subdivided into four categories: modification of messages,

masquerade, replay, and denial of service. Modification of messages includes hack-

ers manipulating some part of a legitimate message to produce unauthorized effects.

Masquerade attacks usually happen together with other active attacks, for example,

modification of message attacks. After capturing a message from the sender, a hacker

modifies the message and masquerades as the sender or a different entity, such as

authorized entities, to transmit the malicious message to the receiver. Replay attacks

happen when an attacker passively captures a message, and retransmits this message

to produce an unauthorized effect. Denial of service (DoS) attacks prevent the au-

thorized use or management of network facilities such as websites, servers, or routers.

An attacker takes control of a large number of devices in the network and bombards

a target facility with a large number of messages to overload it, thus disrupting the

normal operation of the target.
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In contrast to passive attacks that are difficult to detect but mostly reasonable

to prevent, active attacks are difficult to prevent because of the variety of potential

network vulnerabilities. Instead, the defense objective of active attacks is to detect

the attacks and recover from any negative effects. These types of attacks are the

focus of this research.

2.2.2 Security Defense Mechanisms

Firewalls and virus scanners are the most common security solutions on network

end-systems [64]. Firewalls [70] [89] are software or hardware-based network security

systems that examine incoming and outgoing packets and filter out malformed pack-

ets. Based on a variety of applied rule sets, firewalls can be implemented at different

network layers including the application, transport and network layers. They are

useful against masquerade attacks and denial of service attacks that originate from

outside the firewalls. Virus scanners (i.e., antivirus) are examples of intrusion detec-

tion systems [40]. These systems detect and remove malicious viruses and all kinds

of malware, such as browser hijackers, backdoors, rootkits, Trojan horses, worms,

fraudtools, adware and spyware to protect host computers from hacking, phishing,

espionage, etc.

Many attackers target the network control plane in applying attacks such as ma-

licious route announcement and DNS cache poisoning. Defenses to these attacks rely

on secure routing (with cryptographic authentication) [53,80] or secure DNS protocols

(DNSSEC) [55] in performing network communication.

In the network data plane, where traditional passive attacks such as sniffing and

snooping take place [84], data encryption is used to protect data confidentiality and

integrity. Encipher algorithms (e.g., Data Encryption Standard (DES) [27] and Ad-

vanced Encryption Standard (AES) [30]) transform data into a scrambled form that is

not readily intelligible. Encryption keys are used during the transformation and sub-
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Figure 2.2: Network attacks and defenses classification

sequent recovery of the data. The encryption algorithms are designed in a way that

attackers cannot recover the data without the keys. Secure network protocols, such

as Internet protocol security (IPSec) [34] and transport layer security (TLS) [32], em-

ploy data encryption as well as well-established handshake processes to prevent data

plane attacks like eavesdropping and man-in-the-middle attacks.

Recently, a new class of attacks has emerged targeting the network data plane.

This type of attack aims to disrupt or modify the operation of routers to achieve

denial of service attacks or to use routers to actively launch denial of service at-

tacks. Unlike the attacks that target the control interface of routers [29] and can be

prevented using standard security mechanisms as for end-systems, this new attack

on general-purpose network processor cores can be launched through the data plane

by simply sending malformed data packets [22] and cannot be easily prevented with

conventional mechanisms. This attack is particularly problematic since it targets the

high-performance forwarding component of critical infrastructure. Our work in this

thesis focuses on preventing this type of attack.
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2.3 Overview of FPGA Technology

Although the multicore network processors we protect with monitoring in this

work are initially targeted to field-programmable gate arrays (FPGAs) for prototyp-

ing, the entire system could eventually be implemented in an ASIC. To assist the

reader in understanding our prototyping technology, we provide a brief discussion

of FPGAs. An FPGA is an integrated circuit that can be reprogrammed by a user

to perform any digital logical function. In contrast to an ASIC that is customized

for a particular use, an FPGA can be used to implement virtually any digital logic

function. The FPGA implementation sacrifices area, delay and power versus an ASIC

implementation to achieve the flexibility [58].

Figure 2.3: FPGA architecture [71]

The most common FPGA architecture consists of an array of configurable logic

blocks (CLBs), configurable interconnections (wires) and input/output banks (IOB).

(Figure 2.3). During FPGA configuration, digital circuits are implemented by cus-

tomizing the CLBs and the routing circuitry using computer-aided design (CAD)
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software (e.g., Quartus [11] for Altera FPGAs and ISE [87] for Xilinx FPGAs). In

addition to millions of CLBs and wires, state-of-art FPGAs also integrate Block

RAMs, digital signal processing blocks (DSPs) and digital clock managers (DCMs).

Hardware description languages (HDL), such as Verilog and VHDL, are used to

specify programs for FPGAs. After a user provides an HDL design to the CAD

tools, the tools translate the hardware description to an optimized technology-mapped

netlist. Mapping to the target FPGA takes place under constraints of resources, area,

clock speed, and power. A typical FPGA development flow is illustrated in Figure

2.4. This physical design process includes placement and routing steps which assign

design CLBs and other resources to physical resources on the chip and interconnect

them using wires with programmable connections. After assignment, a bitstream is
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generated for a target FPGA. Downloading this bitstream to the FPGA configures

the device to its appropriate functionality.

In recent years, CAD tools have greatly simplified FPGA application development.

Compared with the long time period required to design, tape out and verify an ASIC

design, the compilation and verification process of an FPGA design is simple and

fast. The typical compilation time of an FPGA design ranges from a few minutes

to a couple of hours. This feature makes FPGAs attractive for rapid prototyping

applications. Since FPGAs typically lead ASICs in process technology, they are used

extensively to prototype new technologies before fabricating custom ASICs [35,59].
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CHAPTER 3

DATA PLANE ATTACK AND HIGH-PERFORMANCE
HARDWARE MONITOR

This chapter explores the vulnerabilities in network processors and gives an exam-

ple of a potential attack that can lead to network denial of service. Hardware security

monitoring techniques are applied to prevent this type of attack.

Sections 3.1 and 3.2 introduce data plane vulnerabilities identified in previous

research [22] and review two types of existing hardware monitor designs [16, 22].

Section 3.3 introduces a high-performance hardware monitor design from [57]. In

Sections 3.4 and 3.5, we provide a comprehensive evaluation of a high-performance

hardware monitor design using nine NpBench [60] network benchmarks.

3.1 Vulnerabilities in Network Processors

As discussed in Section 2.1, network processors are located at router ports, where

they process traffic that is traversing the router. The typical system architecture and

operation of a network processor is illustrated in Figure 2.1.

Due to the very high data rates at the edge and the core of the network, network

processors typically need to achieve throughput rates on the order of tens to hundreds

of Gigabits per second. To provide the necessary processing power, network processors

are implemented as multi-processor systems-on-chip (MPSoC) with tens to hundreds

of parallel processor cores [25] [20] [38]. Each processor has access to local and

shared memory and is connected through a global interconnect. Depending on the

software configuration of the system, packets are dispatched to a single processor
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Figure 3.1: Attack on network processor

core for processing (run-to-completion processing) or passed between processor cores

for different processing steps (pipelined processing). An on-chip control processor

performs runtime management of processor core operation.

In order to fit such a large number of processor cores onto a single chip, each

processor core can only use a small amount of chip real-estate. Therefore, network

processor cores are typically implemented as very simple reduced instruction set com-

puter (RISC) cores with only a few kilobytes of instruction and data memory. These

cores support a small number of hardware threads, but are not capable of running an
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operating system. Therefore, conventional software defenses used for workstation and

server processors cannot be employed. Nevertheless, these cores are general-purpose

processors and can be attacked just like more advanced processors on end-systems.

An attack scenario for network processors is illustrated in Figure 3.1. The premise

for this attack is that the processing code on the network processor exhibits a vulner-

ability. It was shown in prior work that such a vulnerability can be introduced due

to an uncaught integer overflow in an otherwise benign and fully functional packet

processing function [22].

Here we give an example network application that has a vulnerability in packet

processing code and show that if this vulnerability is matched with a suitable attack

packet (e.g., a malformed UDP packet), an attack on a processor core can be launched.

The attack packet smashes the processor stack and leads to the execution of code that

is carried in the packet payload. The processor ends up re-transmitting the attack

packet at full data rate on all its outgoing ports without recovering until the network

processor is reset.

The vulnerable application (Figure 3.2) is a congestion management (CM) proto-

col application [18] that inserts a custom protocol header in the packet header space

between the IP header and the UDP header.

After inserting the CM header, the application checks the new packet size (len1 +

len2) to make sure it does not exceed the maximum datagram length. Exploiting

an integer overflow vulnerability, the boundary check in the CM code can be cir-

cumvented and the stack can be smashed. The vulnerable code is shown in Figure

3.3.
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Figure 3.3: Integer overflow vulnerable code

The variable sum is defined as unsigned short type. In normal cases, this code

works fine. However, if an attacker sends a carefully malformed UDP packet, an

integer overflow would be triggered. For example, if the len1 is set to a 16 bit value

0xfffe (decimal value 65534) and len2 is 10, the packet size value sum will be 8 instead

of 65544 due to the integer overflow. Thus, the malformed packet can pass the length
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check. However, in the actual memory copy process, the application will copy 65544

bytes of packet data, rather than 8 bytes, to the processor memory.

As a result, the packet payload is copied over the stack. The packet payload of the

attack packet is crafted in such a way that the return address is overwritten (Figure

3.4) to direct the control flow to the IPv4 packet forwarding application (which is

library code on the processor core) and the value of the ip dst low field is 0xff. The

port information gets updated with this value (the boxed instruction in the IPv4

code), forwarding the attack packet to all the outgoing ports at full data rate. Due

to the very high data rates of modern routers, this type of attacks can lead to a DoS

in the network in a very short time.

3.2 Defense Mechanisms Using Hardware Monitoring

Solutions to protect network processors from attacks on vulnerable processing

code are constrained by the limited resources available on these systems. Network
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processors cannot run complex protection software and cannot dedicate lots of chip

real estate to protection mechanisms. One promising approach is to use hardware

monitors, which have been successfully used in resource-constrained embedded sys-

tems [9, 16,43,65,74,75,90].

The operation of a hardware monitor is illustrated in Figure 3.5. The key idea

is that the processing core reports what it is doing as a monitoring stream to the

monitor. The monitor compares the operations of the processor core with what it

thinks the core should be doing. If a discrepancy is detected, the recovery system

is activated to reset the processor core. In order to inform the monitor of what
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processing steps are valid, the processing binary is analyzed offline to extract the

“monitoring graph” that contains all possible valid program execution sequences.

Based on the information which is used to generate the monitoring graph, hard-

ware security monitors can be divided to two types: address-based monitors and

monitors using instruction hashing. Both of them need to meet the following criteria:

1. Correct detection: Correctly identify malicious attacks.

2. Low resource overhead: Due to the limited resource availability in the network

processors, the hardware monitors need to be designed with low resource over-

head.

3. Fast detection: Since the network processor cores work in high speed, hardware

monitors should be able to detect malicious behavior within one or a small num-

ber of clock cycles to avoid large performance overhead. The less performance

overhead the better.

3.2.1 Address-based Hardware Security Monitor

An address-based hardware security monitor [21] uses instruction address informa-

tion in the processor application binary to monitor processor behavior. Instructions

are grouped into different basic blocks based on their positions to the branch instruc-

tions. All the instructions before the next branch instruction are classified to the

same basic block.

As we can see in Figure 3.6, since the fifth instruction is a conditional jump

instruction, all instructions from memory locations 1 to 5 are grouped as basic block

zero. Similarly, instructions from memory locations 6 to 8 are grouped as basic block

one because instruction eight is an unconditional jump instruction.

The high level architecture of the address-based hardware security monitor system

is illustrated in Figure 3.7 [21]. It is a four stage pipeline architecture where each

pipeline stage takes one clock cycle to complete.
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• Stage 1: Index a block RAM (BRAM) with the instruction address of the

currently executed instruction. The BRAM contains the basic block number of

the instruction and the next-hop address.

• Stage 2: Store the basic block number in a FIFO block and forward it to stage

3.

• Stage 3: Compare the current basic block number input from the second stage

with the block information of the just completed instruction from the FIFO

block. If they are the same, this instruction belongs to the same basic block

and the current instruction is valid. If not, check if the instruction belongs to

the next basic block or the jump target basic block. If one of them matches

with current instruction, it is a valid jump.

• Stage 4: The next-hop address for the just completed instruction is used to

once again index the basic block memory. If the basic block for this target
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is the same as the basic block of the currently-executed instruction, a valid

instruction sequence is determined. Otherwise, an error signal is generated to

stop processor operation.

A problem of the basic block monitoring strategy is that if the attack instruction

belongs to the same basic block as the expected instruction, it can be undetectable.

As we can observe from Figure 3.8, if the attacker injects malicious instructions (2

and 3) in the middle of a basic block (block 0), the monitor cannot detect these

attack instructions. Moreover, keeping track of the basic block information and next-

hop address information for all instructions in the basic block memory increases the

on-chip memory overhead.
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3.2.2 Hardware Security Monitor Using Instruction Hashing

To improve the limitations of address-based hardware monitors, instruction hashes

are used in place of basic blocks to validate processor operation at runtime. A new
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hardware monitoring strategy that can verify individual instructions is designed in

[57].

The monitoring graph used by the hardware monitor is a state machine, where each

state represents a specific processor instruction. The state machine is derived from

the packet processing code as illustrated in Figure 3.9. Each processor instruction

corresponds to a state. The edges between states are labeled with information relating

to the next valid instruction that can be executed after the current instruction. In

case of control flow operations, there may be multiple outgoing edges from each

state (each being a valid transition). In this system, a 32-bit processor (i.e., open

source embedded Plasma processor based on the MIPS instruction set) is used. The

monitoring system uses a 4-bit hash of the next instruction to label edges in the

monitoring graph (as has been recommended in [65]). A hash (instead of the full

32-bit instruction) is used to reduce the size of the monitoring graph and thus to
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reduce the implementation overhead of the hardware monitor while still allowing

instruction-by-instruction monitoring.
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Figure 3.9: State machine generation from processing binary

Whenever the processor runs an instruction, it inputs this 32 bit instruction to

a hash function that generates a hash value (can be any length, 3, 4, and 5 bits are

evaluated in our work) for this instruction. Then, the possible hash values for this

instruction are fetched from the monitoring graph and compared with the input hash

value. It is possible that there are more than one hash value for this instruction due

to the jump or branch instructions that have more than one target instructions. If

the input hash value does not match any of the possible hash values, an error signal

is generated indicating that an incorrect instruction has been executed.

The key improvements of the instruction hashing monitor over the address-based

monitor are:

• An instruction hashing monitor checks processor behavior using instruction in-

formation, rather than address information, thus eliminating the undetectable

attacks in address-based monitors.

• Next instruction information for conditional instructions are determined in the

jump logic, reducing memory resource utilization.

The use of a hash (or any other method that uses a many-to-one mapping), how-

ever, leads to two fundamental problems:
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• Attack detection ambiguity: The many-to-one mapping that occurs in a hash

function of the monitor may make it possible for an attacker to remain unde-

tected. This would require that the attack performs operations that lead to a

sequence of hash values that matches the monitoring information of valid code.

Mao et al. have shown that this probability decreases geometrically with the

length of the attack code and thus is unlikely to lead to practical attacks [65]

(in particular when the hash function is not known to the attacker). We do not

consider this issue further in this work.

• Nondeterminism during monitoring: The many-to-one mapping also leads to

nondeterminism in the monitoring graph. There may be a control flow instruc-

tion where each of the next instructions has the same hash value. As a result,

the corresponding node in the monitoring graph has two outgoing edges with

the same hash value (as illustrated in Figure 3.10). Since this nondeterminism

can continue for multiple such control flow operations, it can lead to complex

implementations [22], potentially slowing monitor performance.

In the following section, we show how we can address the latter problem by con-

verting the nondeterministic monitoring graph into a deterministic monitoring graph,

which is easier to use in high-performance implementations.

3.3 High Performance Hardware Security Monitor

To realize a deterministic instruction-level monitor, the NFA monitoring graph

described in the previous section is converted to a DFA monitoring graph. This sec-

tion describes how to implement a monitoring system that uses this DFA graph [57].

Note that significant portions of the work in this section were developed by Harikr-

ishnan Chandrikakutty as part of [57]. This work was extended through additional
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experimental results, as described starting in Section 3.4, for this dissertation. This

section is provided for completeness.

3.3.1 Construction of Deterministic Monitoring Graph

Tracking nondeterministic finite automate is difficult to implement in practice

since the automaton can have multiple active states. This leads to high bandwidth

requirements between the monitoring logic and the memory that maintains the NFA

since next-state information for all active states has to be fetched in each iteration.

When using a DFA, in contrast, only one state is active and implementation becomes

much easier.

To convert an NFA to a DFA, a standard powerset construction algorithm can be

used [47]. This algorithm computes all possible state sets in which the automaton can

be situated (i.e., the powerset). Based on the powerset, a DFA is then constructed.

Figure 3.11 shows the DFA that corresponds to the NFA shown in Figure 3.10. Note

that state {3,5} represents the sets of states to where state 2 can branch when hash

value c is observed.

1 2 3 4 5
b c d e f

c
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a

Figure 3.10: Nondeterministic monitoring graph.
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Figure 3.11: Deterministic monitoring graph after NFA-to-DFA conversion.
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One potential problem with NFA-to-DFA conversions is that the number of states

in the DFA can grow exponentially over the number of states in the NFA. However,

the monitoring NFAs constructed from binary code do not exhibit this pathological

behavior. Experiments indicate that this increase is small and does not lead to

drastically larger state machines (see Section 3.5). Thus, this approach is effective

for creating deterministic hardware monitors.

3.3.2 Implementation of Monitoring System

A key challenge in the implementation of this hardware monitoring system is how

to represent the monitoring DFA in memory. The comparison logic needs to be able

to retrieve the information about next state transitions for every instruction that

it tracks. Thus, state transitions need to be implemented with no more than one

memory access per instruction (to keep up with the network processor core) and be

as compact as possible (to minimize the implementation overhead of the monitor).

The information that needs to be stored in the monitoring memory is illustrated

on the left side of Figure 3.12. Each state represents an instruction and an outgoing

transition edge from this state represents the hash value of the next expected instruc-

tion in the execution sequence. For example, state c has two next states, d and e,

with hash values 11 and 3, respectively.

A näıve way to store the state machine in RAM would be to store each state and

all its possible edge transitions. This would require 2h entries per state for an h-bit
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hash. Since most states have only one or two outgoing edges, a large number of edge

transitions would never be used, leading to inefficient memory use. Assuming that

only two outgoing transitions exist for each state is also not feasible due to the cases

where powerset construction creates states with up to 2h outgoing edges. Finally,

for performance reasons there should only be one memory access per state transition,

which precludes a design where states with more than two outgoing edges are handled

as special cases.

The main idea to compactly represent DFA states with varying numbers of out-

going edges is to encode all the necessary information in a single table entry and to

group states by the number of outgoing edges. The main challenge in achieving com-

pactness is to allocate exactly the amount of memory that is needed for each state

to store next state information while still being able to index this memory without

degrading to linear search. In the representation, states are grouped together if they

have the same previous state. A state belongs to group g if the previous state has g

outgoing edges. For a monitor with a 4-bit hash value, there are 16 possible groups.

For example, in Figure 3.12 on the right side, groups are shown with different colors.

Note that a state can belong to multiple groups (e.g., state f belongs to group 2

(because a has two outgoing edges, one to b and one to f) and to group 3 (because

e has three outgoing edges)).

The memory layout and basic operation of the DFA monitor system is shown in

Figure 3.13. The memory contains tuples of {number of next states, offset in state

group, valid hash values on outgoing edges} and is logically divided into groups. The

base addresses for each group are stored in a register file with 16 entries. Within

a group, the sets of states that share the previous state are grouped together (e.g.,

b and f are together and d and e are together). Within a set, states are ordered

by the hash value on their incoming edge (e.g., e before d because hash value 3 is

smaller than hash value 11). The hash comparison block performs two functions: it

33



2

number of 
next states

0

offset in 
state group

0000 0000 1000 0100

valid hash values on 
outgoing edges 

2 1 0000 1000 0000 1000

1 1 0000 0000 1000 0000

1 0 0000 0010 0000 0000

3 0 0000 0000 0010 0101

... ... ...

1 0 0000 0010 0000 0000

... ... ...

... ... ...

a

c

b

f

e

d

f

h

g

group 1

group 2

group 3

0x0000

0x0002

0x0006

...

group 1

group 2

group 3

group 16

...

group base 
address

-1

mult

add

...

k
(position of 

matching hash 
among valid 
hash values)

one-hot 
encoding

...

hash 
compari-

son

...

4-bit hash 
function

processor 
instruction

reset/
recovery

32 32

4

4

16

16

4

4
16

1

state machine memory

Figure 3.13: Memory based high performance security monitor architecture

determines if the one-hot coded hash bit is set in the 16-bit value read from memory

and it determines k, which is the position of the matching hash value among the valid

hash values read from memory.

To illustrate the operation of the monitor, an example transition is shown. Assume

the monitor is in state a and the processor reports an instruction that leads to a hash

value of 7. To perform the transition, the memory row labeled a is read. The tuple in

this row indicates that there are two outgoing edges. The valid hash values of these

two edges are stored in the 16-bit vector. To verify that the transition is valid, the

hash comparison unit checks if bit 7 is set in the bit vector (which it is). If this bit is

not set, then an invalid transition takes place, indicating an attack, and the processor

is reset. After the check, the next state (i.e., state f) in the DFA needs to be found in

memory. To determine the address of that state, the base address of the group of the

next state is looked up in the register file (i.e., 0x0002 since the next state belongs

to group 2). To this base address, the product of the set size (i.e., group number)

and the offset in the state group is added (to index the correct set within the group).
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Finally, k is added, which is the position of the matching hash in the bit vector (in

this case 1 since 2 is the first matching hash (i.e., k=0) and 7 is the second matching

hash (i.e., k=1)). Thus the memory location of state f is 0x0002 + 2×0 + 1 = 0x003.

Note that any state transition takes only one memory read from state machine

memory and a lookup into a fixed-size register file. The DFA is represented compactly

without wasting any memory slots (states shown with dots in Figure 3.13 point to

other states not shown in this example). Thus, this representation lends itself to a

high-performance implementation.

3.4 Prototype System Implementation

Although an end-system would likely be implemented in fixed logic, we have proto-

typed the described network processor and hardware monitoring system on a Stratix

IV GX230 FPGA located on an Altera DE4 board. The router infrastructure sur-

rounding the NP core is taken from the NetFPGA reference router [63], which has

been migrated to the Stratix IV family. The DE4 board has four 1 Gbps Ethernet

interfaces for packet input/output. In our prototype implementation, the single-core

network processor is implemented as a soft core and the monitor is implemented

in FPGA logic (using Quartus for synthesis, place and route). Only the memory

initialization files need to be reconfigured on a per-application basis.

The automated offline analysis tool for security monitor generation is illustrated in

Figure 3.14. To run networking code on the processor plus monitor system, the code

is first passed through a standard MIPS-GCC compiler flow to generate assembly-

level instructions. The output of the compiler allows for the identification of branch

instructions and their target addresses. In our current implementation, all possible

branch targets and return instructions are analyzed at compile time. The moni-

tor can handle an arbitrary number of indirect branches to statically known targets

(e.g., return addresses) since the NFA representation allows any number of outgoing
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Figure 3.14: Offline analysis to create state machine memory file

branches. (Our monitor cannot handle indirect branches to statically unknown tar-

gets that are resolved at run time, but such programming constructs did not appear

in any of 11 benchmark applications that we looked at). The DFA-to-NFA conversion

starts with a non-deterministic NFA representation obtained from the compiler in-

formation. Through powerset construction, a DFA is constructed. This DFA is then

converted into a monitoring state machine memory file using the process described in

Section 3.3.1 and is loaded into the monitor when the processing binary is installed

in the processor.

To evaluate our system, nine benchmarks from the NpBench suite [60] were pro-

cessed with this flow. NpBench is a benchmark suite targeting modern network pro-

cessor applications. The benchmark applications are categorized into three specific
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Table 3.1: Statistics for NpBench benchmark applications

Netw. Cate- No. No. No. Max
appli- gory of branch branches branch
cation instr. instr. >2 targ. targ.
crc PPG 276 17 0 2
frag PPG 573 70 3 3
red TQG 802 88 1 2
md5 SMG 3147 211 24 8
ssld TQG 828 91 1 5
wfq TQG 905 112 2 2
mtc SMG 2427 252 2 3
mpls- TQG 1603 322 9 10
upstream
mpls- TQG 1574 276 5 12
downstream

Altera DE4

NetFPGA PktGen

Altera DE4

NetFPGA PktCap

Altera DE4 with 

Proc + Monitor

1 Gbps 1 Gbps

Figure 3.15: Network topology used for experimentation

functional groups - traffic management and quality of service group (TQG), security

and media processing group (SMG) and packet processing group (PPG). A listing

of the benchmarks and their application categories appears in Table 3.1. Since the

presence of instruction branches has a direct impact on NFA-to-DFA conversion and

monitoring state machine memory size, the number of branch instructions for each

benchmark is included in the table. Return instructions at the end of subroutines

often contain numerous targets since a subroutine can be called from numerous other

functions. The number of these jump register instructions with more than two pos-

sible return addresses are listed in the table. Additionally, the maximum number of

target addresses for any branch in each application is also included.
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Table 3.2: Evaluation of monitoring approaches for the DFA approach and a previous
NFA-only approach. The maximum number of memory accesses for the DFA approach
is 1 for all benchmarks.

Chasaki [22] DFA approach
Netw. No. NFA Max. DFA Mem. Mem.
appli- of states mem. states entries over-
cation instr. access head
crc 276 276 2 276 282 2.2%
frag 573 573 3 592 622 8.6%
red 802 802 2 805 847 5.6%
md5 3147 3147 8 3173 3228 2.6%
ssld 828 828 5 829 854 3.1%
wfq 905 905 2 914 953 5.3%
mtc 2427 2427 3 2460 2572 6.0%
mpls- 1603 1603 10 1621 1753 9.4%
up
stream
mpls- 1574 1574 12 1582 1706 8.4%
down
stream

The test topology that was used to verify the performance of our monitoring

system is shown in Figure 3.15. For hardware experiments, packets were generated

and transmitted to the DE4 with the network processor and the monitor at a 1 Gbps

line rate by a separate DE4 card serving as a packet generator. This same card was

used to receive the processed packets from the card with the NP. The packet generator

tool allows for customizing the size and the throughput rate for the test packets.

3.5 Experimental Results

3.5.1 Monitoring Graphs

The results of generating instruction-level monitoring graphs for both our ap-

proach and a previous approach [22] are illustrated in Table 3.2. The number of

entries in the state machine memory (Figure 3.13) for each benchmark are shown
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in the Mem. entries column. A clear benefit of the new approach is speed. In all

cases, only one access to the monitor memory is required for any benchmark (includ-

ing the four shown here). The previous NFA-based approach requires up to twelve

memory accesses for the benchmarks tested and potentially up to sixteen for other

benchmarks. The conversion from an NFA to a DFA does incur a memory overhead

of 5.7% on average for the benchmarks. The hash function used to convert a 32-bit

instruction to a 4-bit hash value involved the summing of all eight 4-bit instruction

nibbles. The result of the summation is the 4-bit hash value.

3.5.2 Evaluation of Hash Functions

As shown in Figure 3.13, each 32-bit instruction is converted to a hash value con-

taining a small number of bits (e.g. h = 4). In Section 3.3.1 it is noted that an

important aspect of the NFA-to-DFA conversion is limiting the number of cases in

which the hash values for multiple edges leaving a state are the same (e.g. Figure

3.10). Limiting these cases avoids the creation of powerset state sets, and the corre-

sponding increase in memory entries in state machine memory. To limit branch hash

value collisions, it is desirable for the instruction hashes to be as evenly distributed

across the range of possible instructions hashes as possible. Additionally, the 32-bit

instruction to h-bit hash value conversion must be simple enough to be performed in

one clock cycle.

Four hash functions were considered for this work.

1. Sum of all ones in the 32-bit instruction (bit-sum) - All binary digits are

summed and the result is used to determine the h-bit hash value. For sums

exceeding h-bits, only the bottom h bits are used as the hash value.

2. Sum of all nibbles in the 32-bit instruction (nibble-sum) - All 4-bit nibbles

are summed and the result is used to determine the h-bit hash value. For sums

exceeding h-bits, only the bottom h bits are used as the hash value.

39



0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value

O
cc
u
ra
n
ce
s

ones‐
sum
nibble‐
sum
XOR

OR/XOR

 

Figure 3.16: Distribution of occurances of each hash value for four hash functions.
The results were generated for the mpls-downstream benchmark.

3. XOR of h-bit chunks in the 32-bit instruction (XOR) - The 32-bit in-

struction is broken into h-bit chunks which are then XORed together to generate

an h-bit result.

4. OR/XOR of h-bit chunks in the 32-bit instruction (OR/XOR) - the 32-

bit instruction is broken into h-bit chunks. Half the chunks are ORed together

while the other half (including the final operation) are XORed.

An example of the distribution of 4-bit hash values for all instructions (except

NOPs) for the mpls-downstream benchmark is shown in Figure 3.16. Plots for other

benchmarks are similar. The nibble-sum approach to generating hash values is most

effective in distributing hash values, although some variation from an even distribution

is apparent. This result is likely due to the randomness caused by bit carries in

generating the final hash values for nibble-sum. Note that the results for hash value
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Table 3.3: Comparison of DFA states and state machine memory entries for different
hash functions for a 4-bit hash

nibble-sum bit-sum XOR OR/XOR

Network DFA Mem DFA Mem %Mem DFA Mem. %Mem DFA Mem %Mem

application states entries states entries incr. states entries incr states entries incr.

crc 276 282 276 285 1.06 276 282 0.00 279 287 1.77

frag 592 622 592 627 0.80 592 620 -0.32 592 622 0.00

red 805 847 808 857 1.18 806 850 0.35 807 851 0.47

md5 3173 3228 3208 3277 1.52 3181 3248 0.62 3190 3261 1.02

ssld 829 854 836 878 2.81 831 860 0.70 836 875 2.46

wfq 914 953 921 977 2.52 916 955 0.21 918 960 0.73

mtc 2460 2572 2460 2584 0.47 2459 2567 -0.19 2460 2571 -0.04

mpls-

upstream 1621 1753 1625 1758 0.29 1622 1744 -0.51 1627 1757 0.23

mpls-

downstream 1582 1706 1589 1732 1.52 1579 1694 -0.70 1584 1712 0.35

average 1.35 0.02 0.78

0 in Figure 3.16 do not include the large number of NOP instructions (instruction

0x00000000) in branch delay slots following branch instructions. These instructions

are not used as targets for branches and can be omitted from the analysis.

The use of different hash functions directly impacts the required size of the mon-

itoring state machine memory. Table 3.3 shows that the use of the nibble-sum hash

approach reduces the number of required state memory entries for a range between

0.02% and 1.35% on average. The remainder of the results presented in this section

were generated using the nibble-sum hash function.

The number of bits used in the hash values also affects the amount of memory

required in state machine memory. Although each additional bit added to the hash

value decreases the possibility that an attacker could craft a code sequence that has

the same hash values as the expected code, the bit effectively doubles the size of

the “valid hash values on outgoing edges” field in the memory shown in Figure 3.13.

Table 3.4 illustrates the memory overheads for different hash value bit widths using

the nibble-sum hash approach. The memory size for each hash bit-width is com-
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Table 3.4: Comparison of DFA states and state machine memory entries and memory
bits for different hash value sizes using the nibble-sum hash

Chasaki [22] 3-bit 4-bit 5-bit

Network Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem

application bits entries bits Overhead entries bits Overhead entries bits Overhead

crc 8280 288 6048 -27.0% 282 8460 2.2% 282 13254 60.1%

frag 17190 620 13020 -24.3% 622 18660 8.6% 623 29281 70.3%

red 24060 853 17913 -25.5% 847 25410 5.6% 845 39715 65.1%

md5 94410 3255 68355 -27.6% 3228 96840 2.6% 3227 151669 60.6%

ssld 24840 855 17955 -27.7% 854 25620 3.1% 855 40185 61.8%

wfq 27150 957 20097 -26.0% 953 28590 5.3% 951 44697 64.6%

mtc 72810 2590 54390 -25.3% 2572 77160 6.0% 2567 120649 65.7%

mpls-

upstream 48090 1783 37443 -22.1% 1753 52590 9.4% 1738 81686 69.9%

mpls-

downstream 47220 1727 36267 -23.2% 1706 51180 8.4% 1695 79665 68.7%

pared against the per-application required memory for the earlier Chasaki hardware

monitoring approach.

3.5.3 Monitoring Speed and Effectiveness

Our network processor and monitoring system were successfully implemented on

the DE4 platform. The lookup table (LUT), flip flop (FF), and memory resources

required for the network processor core, monitor, and other interface circuitry for

the router (e.g. buffers, input arbiter, queuing control, etc) are shown in Table

3.5. The NP memory includes space for up to 4096 monitor memory entries. All

circuitry operated at 125 MHz, the same clock speed for the system without the

monitor. Experiments in simulation and in the lab on FPGA hardware showed that

the processor is able to forward packets ranging in size from 64 to 1500 bytes per

packet at the same rate under monitoring as without monitoring (e.g. no slowdown

for monitoring).

We tested the ability of the monitor-based system to detect and recover from

an attack. The vulnerable application code shown in Figure 3.3 was implemented
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Table 3.5: Memory based high performance hardware monitor resource utilization

Resources Secure Network DE4 Available
monitor proc. interface in FPGA

LUTs 140 3,792 37,803 182,400
FFs 26 2,120 38,444 182,400
Mem. bits 131,072 201,216 2,550,800 14,625,792
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6.2. Experimental results 

6.2.1. Attack Detection 

This section explains the experiments performed to test the ability of our proposed 

security monitoring system to detect and recover from an attack. We observed the security 

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware 

using an Altera Signal-tap logic generator [56]. 

6.2.1.1. Network processor without security monitor 

We initially tested the single-core network processor operation without the security 

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the 

simulation results for the behavior of the processor system. The attack packet was received 

through MAC port Rx0, and then forwarded to the network processor. The processor then 

forwards the attack packet to all the outgoing ports of the router and then crashes the router. 

This behavior was also verified in hardware. 

Figure 34: Simulation waveform showing attack packet propagation in the network 
processor system.   

6.2.1.2. Network processor with security monitor 

We then repeated the previous experiment after including the security monitor as 

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the 

network processor system when an attack packet and normal packet are sent simultaneously. 

Figure 3.17: Simulation waveforms showing an attack and subsequent forwarding of
the packet to all output ports. This behavior was confirmed using hardware.

and used with the NP to send copies of a packet to all ports of the router and then

crash the router. We confirmed this behavior for a system without a monitor both

in simulation and in hardware. A series of waveforms that demonstrate this behavior

appear in Figure 3.17. As shown in Figure 3.18, after the monitor was added to

the system, the attack packet was successfully identified, the NP was reset, and

subsequent regular packets were routed successfully. This behavior was verified using

our DE4 hardware setup.

In a final experiment, we evaluated the throughput and latency performance of

our network processor system when attack packets are continuously sent intermingled

with regular packets. Both regular packets and attack packets were generated at fixed

rates from the packet generator system. The forwarded packets were received back

at the packet generator and the throughput and latency were measured. Figure
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Figure 3.18: Simulation waveforms showing the identification of an attack packet
and the successful forwarding of the subsequent packet. This behavior was confirmed
using hardware.

3.19 shows the throughput performance of the network processor system for 256-

byte packet sizes for varying ratios of regular packets to attack packets. When no

attack packets are sent, the throughput of the network processor system increases

and reaches a maximum. When attack packets are included the throughput reaches

a maximum, and then decreases slightly before settling down. The average latency

for 256-byte packets of regular traffic was measured at 104 us.

3.6 Summary and Conclusions

The effective use of the Internet depends on reliable network routers that are

impervious to attack. In this chapter, we have explored a new class of data plane

attacks in network processors and described a high-performance monitor for these

attacks that requires only a single memory lookup per network processor instruction.

This single memory lookup is maintained regardless of the complexity of the NP

program using an NFA-to-DFA translation of the monitoring graph. This monitor,

which tracks individual NP instructions, has been verified in hardware using an NP

with a Harvard architecture. The presence of monitoring does not slow down NP

operation since it is performed outside of the operational paths of the NP. Some of
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Figure 3.19: NP core throughput performance with security monitor under attack
packets.

this material was developed by Harikrishnan Chandrikakutty and originally appeared

in [57].
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CHAPTER 4

SCALABLE HARDWARE MONITORING FOR
MULTICORE NETWORK PROCESSORS

Until now, all the hardware monitor designs have focused on processors with a

single processor core executing a single program or a program that changes very

infrequently. Network processors, however, use dozens or hundreds of parallel proces-

sor cores and have processing workloads that can change dynamically based on the

network traffic [86]. Thus, the problem of how to realize an entire multicore hard-

ware monitoring system is critical for developing effective protection mechanisms for

network processors. This chapter presents the architecture and in-circuit hardware

evaluation of a Scalable Hardware Monitoring Grid (SHMG) that provides a solution

to this problem. A lightweight interconnection network between processor cores and

monitors is dynamically configured to form monitoring connections in response to

packet processing needs. In some cases multiple processor cores can share a single

monitor, reducing memory overhead. Results developed using both analytical anal-

ysis and simulation indicate that our monitoring approach is scalable for network

processors containing hundreds of processing cores.

The specific contributions of this work are:

• The design of a scalable architecture for hardware monitors that can be used in

a practical network processor system with a large number of processor cores.

• An algorithm which can dynamically allocate monitors to processor cores as

application packet workloads change.
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• A simulation and analytical analysis of performance of the proposed design

at runtime that considers the effects of dynamically assigning processors to

monitors and the resulting resource contention.

• A prototype system implementation of a hardware monitoring system on an

field programmable gate array (FPGA) platform that illustrates the feasibility

of our design and provides detailed resource requirement numbers.

The results indicate that our Scalable Hardware Monitoring Grid and associated

allocation algorithm provide a low-overhead and scalable solution for network proces-

sor protection against data plane attacks, thus securing Internet infrastructure.

4.1 Scalable Hardware Monitoring Grid

4.1.1 Design Challenges

The development of a scalable monitoring system for multicore network processors

has several challenges. The use of monitoring should not impact the throughput or

latency of the network processor. For monitors that track individual instructions, each

per-instruction monitoring operation must be completed in real time (i.e., during the

execution of the instruction), so that deviations from expected program behavior

are identified immediately. Additionally, the amount of hardware resources used

for monitoring should be limited to the minimum necessary to reduce chip area and

power consumption. Since network processor programs may change frequently, it must

be possible to modify monitoring tasks for each NP core to accommodate changing

workloads.

These challenges necessitate the design of a customized solution for multicore mon-

itoring. Perhaps the most straightforward monitoring approach would be simply to

attach a dedicated monitor to each individual NP core, following previous approaches

to single-core monitoring, as shown in Figure 4.1. Although this approach minimizes

47



core

monitor

core

monitor

core

monitor

core

monitor...

...

Figure 4.1: One-to-one configuration.

core core core

monitor monitor monitor monitor

...

...

Figure 4.2: Full interconnect configura-
tion.

core core

monitor monitor monitor

...

core core

monitor monitor monitor

...

...

...

...

Figure 4.3: Cluster configuration.

the amount of interconnect hardware needed to connect an NP core to a monitor, it

suffers from the need to reload monitoring information each time the attached NP

core’s program is changed. Alternatively, allowing an NP core to dynamically ac-

cess any monitor among a pool of monitors as shown in Figure 4.2, while flexible, is

expensive and incurs a high processor-to-monitor communication cost. In the next

section, we describe a scalable monitoring grid system that balances these two con-

cerns of area and performance overhead by using the clustered approach illustrated

in Figure 4.3.
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Figure 4.4: Overview of Scalable Hardware Monitoring Grid with network processor
cores organized into clusters.

4.1.2 Architecture of Scalable Hardware Monitoring Grid

Our model of the multicore NP system including monitoring is shown in Figure 4.4.

The architecture includes a control processor that coordinates overall NP operation

by assigning arriving packets to individual NP cores. Each core executes a program

using instructions from its local memory. External memory, which can be used to

buffer packets and instructions for currently unused programs, is located off-chip.

An on-chip interconnect is used to connect cores to external memory and outside

interfaces. In this architecture, processors are grouped into clusters of n processors.

Any of the processors in a cluster can be connected to any of m monitors.

The management of loading application-specific monitoring graphs into monitors

and configuring specific processor-to-monitor connections is performed by the same

control processor used to assign packets to NP cores. Copies of monitoring graphs

for programs that are currently being executed or are likely to be executed in the
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near future are stored on-chip in a centralized monitor memory. Monitoring graph

information is encrypted when it is transferred onto the network processor via an

external interface. An AES core is used by the control processor to decrypt the

graphs and store them in the centralized memory. The amount of time needed to load

a monitor with a graph from the centralized monitor memory is significant enough

(e.g. tens of clock cycles) that reloading should be minimized. It is desirable to have a

program monitor used by different cores at different times during packet processing,

necessitating a flexible interconnection between NP cores and monitors. In cases

where m > n, a total of m−n monitors are unused at a given point in time, although

they can be quickly activated in a few clock cycles by the control processor, if needed.

4.1.3 Multi-Ported Hardware Monitor Design

To support scalability, we have optimized the structure of single-processor moni-

tors, which are capable of tracking NP core execution on an instruction-by-instruction

basis. The monitoring graph for this class of monitor typically represents each pro-
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gram instruction as a state in a state diagram [57]. Expected program execution can

be modeled as transitions between known states. To evaluate correct processor oper-

ation for an instruction, the progression between states is tracked using instruction

hash values. If the hash value of the instruction from the processor does not match the

value stored in the monitoring graph for the instruction, a deviation from expected

execution flow is detected and the processor is reset. For network processors, this

action typically involves a stack reset and a packet drop. The monitoring graph for a

program can be determined by analyzing the instruction flow of the program binary.

For control flow instructions, multiple next states may be possible in the monitoring

graph, requiring matching against several possible hash values.

The architecture of two monitors that perform this type of instruction-by-instruction

monitoring is shown in Figure 4.5. The monitoring graph, which is stored in a mem-

ory block, includes one entry for each state in the execution state diagram. A k-bit

pointer indicates the entry in the graph that corresponds to the currently executed

instruction. As an instruction is executed, a four-bit hash value of the instruction

is generated, which is then converted to a one-hot encoding. This encoding is then

compared against the expected hash values that are stored in the graph entry. The

next entry (memory row) in the monitoring graph is determined using next state in-

formation stored in the current entry and the matched hash value. The implemented

monitor requires only one memory lookup per instruction, limiting the time overhead

of monitoring.

Although separate hash comparison and next state select information is needed for

each monitor, multiple monitoring graphs can be packed into the same memory block

if the block is multi-ported (Figure 4.5). In the example, the monitoring graph for the

monitor on the left is located in the top half of the memory block while the graph for

the monitor on the right is located in the bottom half. For each monitor, the selection

of which monitoring graph (top or bottom) is used by the monitor is set by a single
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graph select bit which forms the top address bit into the block memory. A benefit of

this shared memory block approach is the possibility of both monitors accessing the

same monitoring graph at the same time without having to reload monitor memory

(e.g. both associated NPs execute the same program and require the same monitor).

In this case, the second graph in the memory block would be unused.

4.1.4 Scalable Processor-to-Monitor Interconnection

The detailed interconnection network between a cluster of n processors and m

monitors is shown in Figure 4.6. In this architecture, any processor can be connected

to any monitor via a series of n-to-1 (processor-to-monitor) and m-to-1 (monitor-to-

processor) multiplexers. The four-bit hash values shown in Figure 4.5 are generated

from instructions close to the processor, reducing processor-to-monitor interconnect.

One of n four-bit values from the processors is selected for a specific monitor us-

ing multiplexer dlog ne select bits. During monitoring, a monitor generates a single

reset/recover bit, which is returned to the monitored processor to indicate if an at-

tack has occurred. In our implementation, this signal is sent to the target processor
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via a multiplexer with m single-bit inputs. The monitor and processor select bits

are generated by the control processor and sent to the appropriate multiplexers via

decoders.

4.2 Runtime Analysis of SHMG

Although the SHMG runtime adaptation can adjust the processing resource distri-

bution at runtime to maximize the system throughput, due to variations in workload,

there may be a situation where more processors need to execute a particular program

than monitors are available. In this case, some processors temporarily block (until a

monitor becomes available, at which point they continue processing). We provide a

brief analysis of the blocking probability of the system and the resulting throughput

for different cluster configurations.

4.2.1 Monitor Configuration

In the n processors, m monitors SHMG system we defined in Section 4.1.2, for

each program i (1 ≤ i ≤ p), we assume that ti represents the average processing time

and qi represents the proportion of traffic that requires this program. We assume∑p
i=1 qi = 1, which implies that each packet is processed only by one program. (The

analysis can be extended to consider more complex workload configurations.) The

total amount of “work,” wi, that the network processor needs to do for each program

i is the product of the traffic share and the processing time:

wi = qi · ti. (4.1)

In order to make the assignment of monitors to programs match the operation of

the network processors, we need to determine how many of the n processors are exe-

cuting program i at any given time. We assume that processors randomly draw from

available packets (and thus the associated programs) when they are available. Thus,
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the probability of a processor being busy with processing program i, bi, is proportional

to the amount of work, wi, that is incurred by the program (see Equation 4.1):

bi =
n · wi∑p
j=1wj

. (4.2)

That is, more processors are busy with program i if program i is either used by

more traffic or has a longer average processing time.

Monitors should be configured to match the proportions of bi for each program.

The fraction of monitors, ai, that should be assigned to monitor program i is

ai = max
(m
n
· bi, 1

)
. (4.3)

Since each program needs to have at least one monitor assigned to it, the lower bound

for ai is 1.

In practice, the number of monitors per program needs to be an integer. We

denote the integer allocation of monitors with Ai. One way to translate from ai to

Ai is to use a max-min fair allocation process.

4.2.2 Blocking Probability and Throughput

Given a monitoring system where Ai monitors are allocated to program i, we need

to figure out what the probability is that the number of processors executing program

i exceeds Ai (leading to blocking). The number of processors executing program i,

Bi, is given by a binomial probability distribution

Pr(Bi = k) =

(
n

k

)(
bi
n

)k (
1− bi

n

)n−k

. (4.4)

The expected number of processors, Ri, that are blocked because of program i not

having enough assigned monitors is
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Figure 4.7: Throughput depending on overprovisioning of monitors for different num-
bers of processors (n).

Ri =
n∑

j=Ai+1

(j − Ai)Pr(Bi = j). (4.5)

The total number of blocked processors, R, across all programs is

R =

p∑
i=1

Ri. (4.6)

Note that in this case, the probabilities in Ri are not independent since
∑p

i=1Bi =

n.

The fraction of blocked processors is then R
n

and the throughput, t, of the system

is

t = 1− R

n
. (4.7)
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4.2.3 System Comparison

To illustrate the effect of blocking due to the unavailability of monitoring re-

sources, we present several results based on the above analysis. For simplicity, we

assume p = 2 programs with w1 = w2. Figure 4.7 shows the throughput as a function

of how many more monitors than processors are in the system. We call this “mon-

itor overprovisioning” (i.e., m/n). In the figure, the overprovisioning factor ranges

from 1 (equal number of monitors and processors) to 2 (twice as many monitors as

processors). The figure shows that only for very small configurations (e.g., n = 2

processors), there is a significant decrease in throughput. For larger configurations,

there is only a slight decrease for low overprovisioning factors. For our prototype

implementation, we choose a configuration of n = 4 processors and m = 6 monitors

(i.e., m/n = 1.5), which achieves a throughput of over 96%.

The effect of clustering is shown in Figure 4.8. Since we need to cluster monitors

to achieve scalability in the system implementation, a key question is how much
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worse a clustered system performs compared to a system with no clustering (i.e.,

full interconnect between all processors and monitors). We denote the number of

clusters with c. The figure shows the throughput for configurations with the same

total number of processors and a monitor overprovisioning factor of 1.5. The full

interconnect (c = 1) always achieves full throughput. As the number of clusters

increases, small systems degrade in throughput slightly. However, if the number

of processors per cluster does not drop below 8, throughput of over 99% can be

achieved. These results indicate that using a clustered monitoring system instead of

a full interconnect can achieve nearly full performance, while being much less costly

to implement.

4.3 SHMG Runtime Resource Reallocation

While the previous section provides an analytical evaluation of dynamic resource

allocation, system throughput based on varying workloads can also be evaluated

through experimentation. In the Scalable Hardware Monitoring Grid design, the

control processor (Figure 4.4) assigns programs to processors and monitors. As the

traffic workload changes, the optimal assignment of cores and monitors should reflect

the processing workload. In order to achieve this goal, a resource allocation algo-

rithm is needed to dynamically reconfigure the SHMG at runtime based on network

workload changes.

4.3.1 Reallocation Algorithm

The control processor periodically monitors network workload to assess the current

allocation of processing resources. As network packets enter the network processor,

they are buffered in the external memory in a series of packet queues. Each queue

stores a different type of network packet. The control processor assigns packets to

queues based on processing requirements and the number of packets in the queue
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defines the queue length. Similar, stable queue lengths for each packet type reflects

packet processing balance in terms of number of assigned processors and router pro-

cessing speed. If the queue length increases significantly beyond the average length,

the network traffic is too heavy compared to the current processing speed and more

compute resources are needed for this program.

We assume the total input network traffic is fully utilized, i.e., when the workload

increases for one packet type, the workloads of other packet types will be reduced. As

mentioned in Section 4.1.2, a processor/monitor cluster consists of n processors and

m monitors. The workload of the system consists of p different programs that each

monitor may execute (one program per packet type). For practicality, we assume

m ≥ n and m ≥ p. A fully utilized system where no processor is idle is considered.

For each program i (1 ≤ i ≤ p), ai is the number of processors assigned to the

program and qli(t) is the queue length at time t. If queue length qli increases and

exceeds threshold θ, the required packet processing exceeds the current processing

power and more processing resources need to be allocated to this program. Our algo-

rithm performs this process in two steps: First, the algorithm examines all p queues

to locate a program j which can release resources to program i; second, the algorithm

determines which monitoring resources to allocate to the reassigned program (and

thus which cluster is used). Each step is explained in detail in the following.

4.3.1.1 Identification of Program for Reallocation

In order to find the most suitable program j, the following criteria are applied

during the search:

1. If a queue is empty, select this program to release one processor. If there is

more than one empty queue, select the program that has had an empty queue

for the longest time. For this purpose, an empty time marker tek is used for each

empty queue k to record the time the queue drained. The algorithm maintains
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a priority queue for the empty queue that allows easy identification of the queue

that has been empty longest (i.e., with minimum tek).

2. If no queue is empty, select the program with the shortest queue length that

has at least two processors allocated. (Each program is guaranteed at least one

active processor in the system if it has a non-zero queue length, so deallocating

resources from a program with a single processor is not allowed.)

This queue monitoring algorithm is shown in Algorithm 1. A program that needs

an additional core is i and the program that releases a core is j. When a new packet

is assigned to queue i, the algorithm assesses the queue length qli. If qli passes the

threshold θ, an additional processor is assigned to program i. The algorithm examines

the length of all queues to find program j based on the above criteria.

Algorithm 1 Queue Monitoring

1: when qli(t) + 1 . When a new packet comes
2: if qli(t) ≥ ε then . If queue passes threshold
3: Proga ← i
4: Progb ← 0
5: temax ← 0
6: for j = 0 to p do . Evaluate all queues
7: if qlj(t) = 0 then . If queue empty
8: if tej ≥ temax then . And max empty time
9: Progb ← j
10: temax ← tej
11: qlmin ← 0
12: end if
13: else if qlj(t) ≤ qlmin then
14: if Bj ≥ 2 then . find the shortest queue with more than 1 processors
15: Progb ← j
16: qlmin ← qlj
17: end if
18: end if
19: end for
20: end if
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4.3.1.2 Identification of Monitor for Reallocation

After i and j have been determined, the next step is to select a specific system

processor to switch from program j to program i. To minimize monitor reloading

during the switching process, the selection is made as follows:

1. Identify all unused monitors in the system.

2. If there is an unused monitor that has a preloaded graph of program i, identify

all the processors in the same cluster as this monitor. If there is a processor

running program j in the same cluster, switch it to program i, disconnect the

program j monitor and connect the processor to the program i monitor.

3. If there is no processor running program j in the same cluster, try to find

another unused monitor with program i in a different cluster.

4. If there is no unused monitor that has preloaded program i, switch one processer

j to program i and reload the least recently used monitor to program i in the

same cluster of the switched processor.

After switching resources, several packets must be processed before the effect of the

new configuration reflects on the queue lengths. To prevent additional programs from

passing the threshold soon after resource switching and taking processing resources

from the same program j, a mandatory delay δ is introduced. After one adaptation,

new switching requests will be blocked until δ packets are processed.

4.3.1.3 Reallocation Algorithm Complexity

Overall, the runtime resource reallocation algorithm (RRRA) has two traversal

operations:

• Evaluate all p queues to find j when the threshold θ is exceeded by a program

i. This action which requires O(p) time.
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• Evaluate all monitors in the clusters that include program j to find a monitor

and processor core to use or switch functionality, which requires O(m+n) time.

In total, RRRA has an asymptotic complexity of O(p+m+ n), which is linear in

the number of programs, monitors, and cores in the system.

4.3.2 System Simulation

A Java-based simulator was built to verify RRRA and evaluate runtime through-

put results in comparison to the values determined with the analytical model in

Section 4.2.3. The simulator can generate quantities of network packets in different

ratios, and vary the ratios with time. With this time-changing input network traf-

fic, the simulator assesses the behavior of RRRA and measures the runtime resource

allocation and system throughput.

Figure 4.9 shows balanced network traffic (e.g. the total number of packets during

a fixed time period is the same) for three different kinds of packets. The packet

proportions change from 1: 1 : 1 to 8: 1 : 1, then to 1: 1 : 8, and finally back to 1: 1 : 1

and then decrease to 0. With this input network traffic, for simplicity, we assume

the packet processing time for different packets are equal t1 = t2 = t3. Figure 4.10

shows the number of processors running each program during the runtime in an

experimental system with 16 processors and 24 monitors. The fact that the ratios of

the processors assigned to each program follows the ratios of each packet types in the

network traffic validates the effectiveness of the RRRA. In Figure 4.11, the system

throughput is a maximum shortly after system processing starts, then it has three

obvious transitions corresponding to the three network traffic allocation changes. The

biggest drop happens when the network traffic changes dramatically from 8: 1 : 1 to

1: 1 : 8. With the RRRA, the system can adapt its resource allocation every time the

traffic changes and the throughput quickly returns to a maximum value.
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Figure 4.9: Input network traffic used during simulation.
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Figure 4.10: Processor distribution for different packet types as traffic allocation
changes.
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Figure 4.11: Throughput changes is relation to traffic changes.
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Figure 4.12: Simulation throughput depending on overprovisioning of monitors for
different numbers of processors (n) with two different packets.

To verify the monitor overprovisioning analysis, two experiments were conducted

in simulation. The first experiment considered the simplest case that p = 2 with w1 =

w2, total processor number n = 4, 8, 16, 32, and the overprovisioning factor ranges

from 1 to 2. The results shown in Figure 4.12 match with the previous analysis results

in Figure 4.7. The second experiment kept the assumption of evenly distributed

workload, but extended the program number to three and the overprovisioning factor

range from 1 to 3. Results shown in Figure 4.13 indicate the same throughput trend

as the two programs experiment. Although the upper bound of the overprovisioning

range increases to 3, the throughput is still more than 95% after m/n = 1.5.

The effect of number of clusters on throughput was also measured in simulation.

The experiment was setup with 1.5 monitor overprovisioning, the same as the previous

analysis, and the measured total number of processors were 32, 64, 128 and 256.

Compared to the analysis results in Figure 4.8, results from this experiment shown

in Figure 4.14 demonstrate good consistency.
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Figure 4.13: Simulation throughput depending on overprovisioning of monitors for
different numbers of processors (n) with three different packets.

0.8	
  

0.82	
  

0.84	
  

0.86	
  

0.88	
  

0.9	
  

0.92	
  

0.94	
  

0.96	
  

0.98	
  

1	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
  

Th
ro
ug
hp

ut
 

Number	
  of	
  clusters 

c*n=32	
  

c*n=64	
  

c*n=128	
  

c*n=256	
  

Figure 4.14: Simulation throughput depending on number of clusters for different
numbers of processors (n) with two different packets.

64



4.4 Prototype Implementation and Evaluation

To demonstrate the effectiveness of our Scalable Hardware Monitoring Grid in a

real system, we have implemented a prototype system.

4.4.1 Experimental Setup

We have implemented a prototype network processor in an Altera Stratix IV

FPGA on an Altera DE4 board. This board contains four 1 Gbps Ethernet ports

to receive and send network traffic. We implemented one SHMG cluster in the

FPGA, consisting of four processor cores (soft processors created using a synthe-

sizable PLASMA processor [76]) and six hardware monitors (i.e., n = 4 and m = 6).

The flexible, multiplexer-based interconnect shown in Figure 4.6 is used to allow any

processor to connect to any monitor within our cluster.

To evaluate the functionality and performance of the monitoring system, we trans-

mit traffic through the prototype system. Packets are received on two of the Ethernet

ports and transmitted on the other two. For each packet, a simple flow classifier de-

termines the appropriate NP program for processing. After the packet is processed

by a core, it is sent to the appropriate output queue for subsequent transmission.

We use two types of packets, which need different types of processing and thus

different monitors: (1) IPv4 packets and (2) IPv4/UDP packets that require conges-

tion management (CM) for processing. The processing code for IPv4 does not exhibit

vulnerabilities, but the IPv4+CM processing code exhibits the integer overflow vul-

nerability described in Section 3.1. We introduce 1% of attack packets, which can

trigger a stack smashing attack in the IPv4+CM processing code.

To generate the monitoring graph, the program is first passed through the stan-

dard MIPS-GCC compiler flow to generate assembly-level instructions. The compiler

output allows the identification of branch instructions and their branch target ad-

dresses. The instructions and branch information are then processed to generate the
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data structure used inside the hardware monitor. This data structure is then loaded

into the SHMG system.

4.4.2 Experimental Results

Our system was verified through a series of experiments that were run on the

FPGA in real time.

4.4.2.1 Correct Operation

To illustrate the operation of our SHMG, we have assigned two cores to process

IPv4 and two cores to process IPv4+CM. Of the available six monitors, two are

configured to monitor IPv4 and four are configured to monitor IPv4+CM (since the

latter is more processing-intensive). All four NP cores execute program code from

internal FPGA memory. The initial configuration of the monitors, program code,

and the processor-to-monitor interconnect is set when the design is compiled to the

FPGA and the bitstream is loaded into the design on system powerup.

Figure 4.15 shows the operation of a processor core and its corresponding monitor

on the IPv4 program. (Waveform figures are generated through simulation in order to

obtain signals; however, the same functionality has been verified in real-time operation

of the system on network traffic.) Similarly, Figure 4.16 shows the operation of a

core on the IPv4+CM program. In this case, the packet is benign and no attack

occurs. Figure 4.17 shows the processing of an attack packet in IPv4+CM. The

monitor identifies the attack since the stack gets smashed and the control flow is

redirected to code that differs from what the program analysis has determined as

valid. The processor core is then reset and continues processing the next packet.

The reset operation completes in two cycles and thus does not affect the throughput

performance of the system (and cannot be used as a target for denial of service

attacks). Other processor cores continue processing without being affected.
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Figure 4.15: Simulation waveforms showing correct forwarding of an IPv4 packet.

Figure 4.16: Simulation waveforms showing forwarding of an IPv4+CM packet.

Figure 4.17: Simulation waveforms showing identification of and recovery from an
IPv4+CM attack packet.
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A key functionality of SHMG is the dynamic assignment of processors to hardware

monitors. In our prototype system, we can trigger the reassignment of processors to

monitors on-demand. In our experimental setup, we switch one of the processor cores

from IPv4 (Figure 4.15) to IPv4+CM (Figure 4.16).

The processor-to-monitor interconnect for the core that was previously processing

IPv4 packets is switched to connect the core to an unused IPv4+CM monitor. The

affected NP core and newly connected monitor are then reset, and processing by the

core commences. After this run-time reconfiguration, three NP cores process packets

for IPv4+CM, while one core processes IPv4.

Thus, we are able to show dynamic reassignment of processors to monitors at

runtime as well as the correct detection of and recovery from attacks.

4.4.2.2 Resource Requirements

The resource requirements for the FPGA in our prototype system are shown in

Table 4.1. The lookup table (LUT), flip flop (FF), and memory resources (Bits)

required for the network processor cores, monitors, switches and other circuitry are

illustrated shown in Table 4.1. A LUT is a n-input, 1-output logic element that

can perform any logic function of n inputs. Each monitoring graph can hold up to

4096 separate entries. The FPGA in the system is able to operate at 125 MHz. For

this relatively small cluster size, the amount of logic needed for processor-to-monitor

interconnection is less than 1% of the total logic needed for the monitors, cores, and

processor-to-monitor interconnect since only hash value, reset, and control signals are

communicated.

To assess the generality of our area results across different FPGA generations, we

resynthesized the network processor cores, monitors, and interconnect to an Altera

Stratix II device. The resulting LUT counts of 14,912, 774, and 92 for the processor

cores, monitors, and interconnect, respectively are similar to the Stratix IV numbers.
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Table 4.1: Resource utilization and dynamic power consumption in the prototype
system

Available DE4 Network SHMG
in FPGA interface processors monitors intrcon.

LUTs 182,400 33,427 15,025 816 96
- 67.8% 30.4% 1.7% 0.1%

FFs 182,400 36,467 8,367 147 0
Bits 14,625,792 2,263,888 2,097,134 786,432 0

- 44.0% 40.7% 15.3% 0%
Pwr
(mW) - 1490.83 388.6 41.76 5.30

For a Stratix II device, an LUT can range in size from 2-input to 7-input depending

on the desired logic function. The distribution of input counts for LUTs across this

input spectrum was similar for both architectures.

The dynamic power consumption of the components, shown in Table 4.1, was

determined using the Altera PowerPlay power analyzer. The monitors and associated

interconnect consumed 12% of the dynamic power of the processors. The network

and PCI interfaces on the board consumed 3.4× more dynamic power than these

components combined. Based on board level experimentation, average time to process

one hundred 256 byte packets is 6 ms. As a result, the dynamic energy to process

100 256-byte packets at 125 MHz is 6 ms × 1926.49 mW = 11.56 mJ.

The throughput of our system including monitoring when processing normal 256-

byte packets and an occasional attack packet is shown in Figure 4.18. The through-

out of the system is limited by the processing capability of the processor cores, not

monitoring. The throughput for normal packets is the same both with and with-

out monitoring. A small throughput reduction is observed in the presence of attack

packets due to the amount of time needed to flush the packet buffer.
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Figure 4.18: Throughput results when processing normal IPv4 with congestion man-
agement packets and when processing IPv4 with congestion management packets if
one out of 100 packets is an attack packet.

4.4.2.3 Monitoring Graph Swap Time Overhead

To better illustrate the benefits of overprovisioning the monitors relative to pro-

cessor count (m > n), we assess the average time required to swap monitors during

a processor allocation for the case when m/n = 1.5 versus the case when a moni-

toring graph must be reloaded from centralized monitor memory for every processor

reallocation. The steps required to perform each task of monitor swapping includes:

identification of a new program i for allocation, identification of a program to swap

out (j), identification of a target processor core and monitor for the new program,

and monitor reload from centralized monitor memory (if needed). The reallocation

operations needed to perform the first three steps in the list were discussed in Section

4.3. The following analysis is performed for a two cluster system with n = 6 proces-

sor cores and m = 9 monitors in each cluster. The control processor operates at 125

MHz, the clock speed for our prototype hardware implementation. Since processor

throughput is one clock cycle, we equate an instruction execution to a clock cycle.

The instructions for the programs are stored in each processor core’s local memory.

The initial allocation and deallocation steps require examination of packet queues

to identify a program i for allocation to a processor and the reduction of one processor
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for a program j (Section 4.3.1.1). Our experimentation using system simulation shows

that 28 control processor instructions are needed on average to identify a program i

which requires an additional processor. An additional 28 control processor instruc-

tions are required to identify a program j that should have a processor deallocated.

Combined, these actions require 0.45 µs.

The tasks needed to identify a monitor for reallocation are detailed in Section

4.3.1.2. This stage attempts to identify a spare monitor which has been previously

loaded with the monitoring graph for program i and a processor core which is cur-

rently tasked with program j. This core is subsequently switched to program i and

the processor core/monitor interconnect is configured for the new connection. The

process of identifying a processor core, swapping its program, and locating a suitable

preloaded monitor requires 197 instructions (clock cycles) on average, based on our

simulation. The configuration of the interconnect between the monitor and processor

core in the cluster requires 3 clock cycles. In total, these actions require 1.60 µs.

In some cases, if a spare monitor with the appropriate graph cannot be found,

a graph must be loaded into monitor memory. To evaluate the average monitoring

graph reloading cost from centralized monitor memory to the dual-ported memory

in a monitor, nine benchmarks from the NpBench suite [60] were processed with an

offline analysis flow. NpBench is a benchmark suite targeting modern network pro-

cessor applications. The benchmark applications are categorized into three specific

functional groups: traffic management and quality of service group (TQG), security

and media processing group (SMG) and packet processing group (PPG). In our eval-

uation, monitor graph sizes generated with a 4-bit nibble-sum hash function were

calculated and the graph read/write times to an on-chip memory were estimated for

each of the benchmarks. The reloading time estimation was based on on-chip SRAM

which is a 200 MHz SSRAM with a 16-bit data bus. Table 4.2 shows the evaluation

results. The average reload time is found to be 13.34 µs.
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Table 4.2: NpBench monitor graph reload cost

Network Memory graph Graph reload Graph reload
benchmark size (bits) time (cycles) time (ms)
crc 8460 529 2.64
frag 18660 1166 5.83
red 25410 1588 7.94
md5 96840 6052 30.26
ssld 25620 1601 8.01
wfq 28590 1787 8.93
mtc 77160 4822 24.11
mpls 52590 3287 16.43
upstream
mpls 51180 3199 15.99
downstream

Based on our simulation, we determined that it was necessary to reload a monitor

from centralized monitor memory 16% of the time during a reallocation for m/n =

1.5. During the remaining cases, a spare monitor with program i was available in a

cluster and could be connected to the newly-allocated processor core. As a result,

the average amount of time needed to reallocate a processor core can be calculated as

program allocation time + monitor/processor identification time + %reload × graph

reload time. In total, this analysis results in an average reallocation time of 0.45 µs

+ 1.60 µs + 0.16 × 13.34 µs = 4.18 µs. In contrast, the amount of time needed if a

processor is dedicated to a monitor is program reallocation time + graph reload time.

In total, for the m = n case, this analysis results in an average 0.45 µs + 13.34 µs =

13.79 µs delay.

4.5 Summary and Conclusions

To provide practical protection for network processors, which are multi-core sys-

tems with highly dynamic workloads, we have presented our design of a Scalable

72



Hardware Monitoring Grid in this chapter. This monitoring system groups multiple

processors and monitors into clusters and provides an interconnect to dynamically

assign processor cores to monitors based on their current workload. We present the

hardware design of an efficient interconnect for these clusters and show through anal-

ysis that even small configurations can achieve throughput performance. We also

present the results from an FPGA prototype implementation that shows the correct

operation of our system and the ability to perform dynamic assignment of proces-

sor cores to monitors. We show that the system can correctly identify attacks and

recover the attack core so that it can continue processing. The system overhead for

our monitoring system is less than 6% compared to the processor system. Thus, our

Scalable Hardware Monitoring Grid provides an effective and efficient mechanism for

defending network infrastructure from a new class of attacks.
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CHAPTER 5

SYSTEM-LEVEL SECURITY FOR NETWORK
PROCESSORS WITH HARDWARE MONITORS

While the design and operation of network processor cores with hardware moni-

tors running one or a small number of preconfigured applications is well-understood,

there is also a need to look at the system-level perspective of the problem. There are

two key challenges for a practical hardware monitoring system for network proces-

sors: (1) Dynamics: multiple processor cores and their monitors need to be managed

and reprogrammed at runtime as network traffic and network functionality change.

(2) Homogeneity: To simplify management, practical networks use large numbers of

identical router devices, which can lead to Internet-scale failures in case an attack can

be developed circumventing one specific monitoring system. This chapter addresses

these system-level issues and presents the design of a monitoring system that can

securely install binaries and monitors on network processors and parameterize these

configurations such that potentially successful attacks cannot propagate.

The specific contributions of this work are:

• Design of a Secure Dynamic Multicore Hardware Monitoring System (SDM-

Mon), which enables secure installation of binaries and monitors on network

processor systems based on cryptographic principles and suitable key manage-

ment.

• Design of a novel, high-performance, parameterizable hash function for use in

hardware monitors enabling the deployment of diverse monitoring systems that

are not susceptible to the same potential attack.
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• Evaluation of a prototype system implementation showing SDMMon function-

ality and performance.

In this chapter, we first discuss our security model. Then we present the design

of our system-level architecture followed by results from our prototype and related

work.

5.1 Security Model

One key requirement for the security of the hardware monitoring system is that

an attacker cannot modify the hardware monitoring graph. If the attacker could

modify the monitoring graphs, an attack could be hidden by substituting the correct

monitoring graph with one that would accept the attack as valid code. Prior and

related work have not suitably addressed the question of how the monitoring graph

is installed in a hardware monitoring system. For embedded systems that execute

a single, unchanging binary (as was assumed in prior and related work), a one-time

installation of the monitoring graph through a dedicated interface can be assumed.

However, for network processors systems that need to dynamically download new

processing code, there is no existing suitable solution.

In the following, we focus on how to achieve the secure installation of valid hard-

ware monitoring graphs. We do not consider security issues relating to the hardware

monitor itself since these issues have been addressed in prior chapters. Instead, the

focus is on the security issues relating to dynamically installing monitoring graphs

onto network processor systems while considering that attackers may tamper with

this process to be able to launch attacks that accept malicious code as valid.

To make the security model realistic in the context of practical network operation,

we consider three entities that are part of the system environment:

• Network processor manufacturer: The manufacturer produces network proces-

sors and router systems and sells them to the network operator. In some cases,
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the network processor is manufactured by a different party and then integrated

on the router system by the router manufacturer. For simplicity, we assume

here that the same entity produces the router and the network processor on it.

• Network operator: The operator purchases the router system with network

processors from the manufacturer and programs its operation for the network

where it is used.

• Network processor device: The network processor device is programmed by the

network operator. That is, the network processor needs to obtain processing

binaries and monitoring graphs from the network operator.

5.1.1 Security Requirements

The specific system-level security requirements for a network processor system

with hardware monitors are:

SR1 Only valid binaries and matching hardware monitor graphs should be installed

on the network processor. Validity implies that the binary and monitor have

been authenticated as being sourced from the network processor’s network op-

erator.

SR2 Hardware monitoring mechanisms should be sufficiently diverse – despite the

operation of identical binaries – to avoid catastrophic failures in a highly ho-

mogeneous network environment in case of a successful attack.

SR3 Binaries, monitoring graphs, and hash parameters should be confidential to

prevent an attacker from obtaining a hash parameter and from “stealing” the

intellectual property of a binary.

SR4 Binaries and monitor graphs should only be identified as valid on one specific

network processor system. This security requirement helps in preventing an

attacker from injecting an binary from a different device.
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5.1.2 Attacker Capabilities

We assume that attackers can do the following:

AC1 An attacker can observe any traffic and inject any type of traffic. To limit the

scope of this work, we do not consider a case where an attacker can block all

traffic on a link. This problem can be addressed through other techniques (e.g.,

multipath transmissions).

AC2 An attacker can generate a monitoring graph that matches a binary that is

attacked with an attack chosen by the attacker.

To enable us to find a solution to this security problem, we also need to constrain

the abilities of the attacker. Specifically, we assume the following limitations:

AC3 An attacker cannot obtain cryptographic keys stored by any of the three entities.

AC4 An attacker cannot break standard symmetric and asymmetric cryptographic

algorithms.

These limitations also imply that we do not consider physical or side-channel

attacks. While such attacks may exist, there is ongoing research to develop suitable

protection mechanisms.

5.2 System-Level Architecture

The system architecture for SDMMon is shown in Figure 5.1. The main difference

versus conventional hardware monitoring approaches, such as shown in Figure 3.5, is

the use of signed binaries, monitoring graphs, and hash function parameters. This

approach protects the system from attacks, as we discuss below.

A critical aspect for security and operational functionality is the set up of keys

and cryptographic operations. Figure 5.2 shows the three entities that we consider for

our work, the router manufacturer, the network operator, and the network processor
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Figure 5.1: Hardware monitor with system-level security. Application binaries and
monitoring graphs are signed to ensure authenticity and integrity. In addition, the
hash function for each network processor core is parameterized differently to achieve
heterogeneity.

device. In the following, we explain the interactions between these entities and how

they achieve the required security properties.

5.2.1 Operation and Key Management

The following operations describe the interactions between the entities:

• At manufacturing time: During initial setup of the network processor, the man-

ufacturer configures the device with a public key/private key pair (denoted as

K+
R and K−

R ). The manufacturer also installs the manufacturer’s public key

(K+
M) into the device so that a root of trust can be established. The keys can

be stored in hardware logic or a trusted platform module.
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• At installation time: When the network processor is installed in a network

operator’s network, the manufacturer provides a certificate that contains (at

least) the network operator’s public key signed with the manufacturer’s private

key. Using this certificate, the network processor can establish a chain of trust

to the network operator. This certificate may be sent to the network processor

once at boot time or with every reprogramming step.

• At programming time: To program the network processor, the network oper-

ator generates a monitoring graph obtained from the processing binary. The

monitoring graph is then parameterized with a randomly chosen 32-bit hash

parameter. The binary, the monitoring graph, and the hash parameter are then

signed with the network operator’s private key. In addition, the binary, moni-

toring graph, and hash parameter are encrypted with a random symmetric key

(Ksym). The symmetric key is encrypted with the router’s public key to ensure

only the router can decrypt this information. The encrypted binary, monitoring

graph, and hash parameter, the signature, the encrypted key, and the certificate

are then transmitted over the network to the network processor. The network

processor decrypts the data with the provided symmetric key (after applying

the router’s private key) and verifies the authenticity and integrity of the data

with the public key of the network operator.

• At runtime: When the network processor performs packet processing opera-

tions, the processor reports its 32-bit operation to the parameterizable hash

function. The 4-bit hashed operation is then reported to the hardware monitor

that compares it to the monitoring graph.

5.2.2 Parameterizable Hashing

As we discussed in the previous chapters, the hash function used in our system

takes the instruction word executed by the processor core and maps it to a smaller
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Figure 5.2: Security operations in SDMMon.

(e.g., 4-bit) hash value. Monitor graphs with small hash values can be represented

very compactly and processed with a single memory access.

The drawback of using a hashed representation of the executed instruction word

is that hash needs to be computed every processor clock cycle and that hashing is

a many-to-one mapping. The latter can be exploited by a potential attacker by

creating an attack that hijacks the processor with an instruction sequence that is

identical to the hash values expected by the monitor. To provide security from such

an attack, our SDMMon uses different hash function parameters on each router and

these parameters are communicated securely between network operator and router.

Thus, an attacker cannot know what hash function to expect and the only viable

attack would be a brute force enumeration of different hash sequences. The use of

different hash parameters on different routers also ensures that a potentially successful

brute force attack on one system cannot be exploited on other systems.
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Figure 5.3: Parameterizable hash function based on Merkle tree.

The design challenge for the hash function used in our hardware monitoring sys-

tem is to provide good hash characteristics while allowing a high-performance imple-

mentation. Cryptographic hash functions would be a great choice since they can be

parameterized with a cryptographic key and achieve strong collision resistance, but

they require too much processing complexity. Instead, we aim for a hash function

with weak collision resistance that can be implemented efficiently in hardware.

We base our hash function design on a Merkle tree [67], as shown in Figure 5.3.

The tree structure can be efficiently implemented in hardware and requires only a

logarithmic number of dependent operations based on the instruction and parameter

length. Each tree node computes an 8-to-4 bit compression function as part of the

overall hash calculation. Leaf nodes take 4 bits from the hash function parameter

and 4 bits from the processor instruction.

Without knowledge of the parameter used in the calculation, an attacker cannot

guess the mapping of a potential 32-bit attack instruction to its 4-bit hash. As
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discussed above, brute force probing is possible, but difficult to implement for longer

attacks.

5.2.3 Security Properties

Based on our system-level design of secure transmission of binaries and monitoring

graphs, as well as the use of a hash function with different parameters for different

router systems, we can now illustrate how our security requirements can be achieved.

1. Security requirement SR1 (only valid binaries installed) is achieved because the

packages of binaries and monitoring graphs are signed by the network operator.

Because the attacker cannot obtain the network operator’s private key (AC3

and AC4) and because only valid network operators receive certificates from

the manufacturer, the packages have to be authentic.

2. Security requirement SR2 (hardware monitor diversity) is achieved because each

monitor instance uses a different, randomly chosen, hash parameter. The at-

tacker can try to generate an attack that matches (AC2), but would need to do

that using a very inefficient brute-force approach.

3. Security requirement SR3 (confidentiality) is achieved because the components

of the package are encrypted with a symmetric key that is only available to the

network operator and the router (because of AC3 and AC4). The attacker can

observe the package (AC1), but cannot interpret the content.

4. Security requirement SR4 (binaries and monitor graphs specific to single system)

is achieved because the symmetric encryption key is encrypted with the router’s

public key. Therefore, only the router for which a package is intended can

correctly decrypt the information in it (again because of AC3 and AC4).

Because we can ensure that our security requirements are maintained, we claim

to achieve system-level security for network processors with hardware monitors.
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Table 5.1: System-level security prototype resource use on DE4 FPGA

Available Nios II NP core with
on FPGA contr. proc. hw monitor

LUTs 182,400 13,477 41,735
FFs 182,400 16,899 40,590
Memory bits 14,625,792 497,976 2,883,088

5.3 Prototype System Implementation

To illustrate how a secure system for network processors with hardware monitors

can be implemented in practice, we present results from a prototype implementation.

5.3.1 System Setup

We have implemented a prototype SDMMon (Figure 5.4) in an Altera Stratix IV

FPGA on an Altera DE4 board. A reconfigurable network processor was implemented

with a PLASMA processor and a reconfigurable hardware monitor was connected

to this NP. For the security and dynamic control purpose, a Nios II soft processor

was implemented as the control processor. The board contains four 1Gbps Ethernet

ports, through which the control processor can reach the network operator’s server.

The system can download, decrypt, and verify the binaries and monitor graphs, load

the binaries and graphs to the shared memory, and reconfigure the network processor

and hardware monitor. We have installed a µClinux operating system in the Nios II

core to provide essential service support such as TCP/IP, FTP, SSH, and OpenSSL.

The relative size of the control processor compared to a network processor core

with hardware monitor is shown in Table 5.1. The control processor, which performs

all the security operations, is only about one third the size of a network processor core

with hardware monitor. In addition to the resources shown in the table, the control

processor also requires 2895kB of memory for the operating system image.
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Figure 5.4: Prototype network processor system with system-level security manage-
ment configuration

5.3.2 Binary and Monitoring Graph Installation

We have implemented the decryption and verification steps on the embedded

control processor of the network processor system. All cryptographic operations use

the commercial-grade OpenSSL toolkit (version 1.01e).

We generate public/private key pairs for all three entities – network processor

manufacturer, network operator, and network processor device – using the RSA al-

gorithm with key length of 2048 bits. We sign the operator’s public key with the

manufacturer’s private key to create a certificate to establish a chain of trust.

The package of binary (for IPv4+CM), monitoring graph, and hash parameter

is signed with the operator’s private key. Since the package size exceeds the RSA

algorithm’s capacity to encrypt it, we encrypted the package using a randomly chosen
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Table 5.2: Processing of security functions on Nios II

Step Time (s)

Download data from FTP server 1.90
Check manufacturer certificate of
network operator’s public key K+

O

3.33

Decrypt AES key Ksym using
router’s private key K−

R

8.74

Decrypt package with AES key
Ksym

7.73

Verify packet signature with net-
work operator’s public key K+

O

3.92

Total 25.62
Total (no networking or certificate
check)

20.39

AES symmetric key. That symmetric key is then encrypted with the router’s public

key to allow secure exchange.

At the network processor device, we verify the certificate to make sure the operator

is indeed the operator and not an attacker. We also decrypt the AES key using the

router’s private key, making it able to access the package upon decryption of the AES

algorithm. We can then verify the signature using the operator’s public key. Finally,

we unpack the package and obtain the binary, monitoring graph, and hash parameter.

These files are then installed in the memory network processor device.

The running times of the various steps taken on the control processor are shown

in Table 5.2. The total time is about 25 seconds, which is acceptable since new

processing applications for network processors are created at slower time scales. (Note

that switching between applications already installed on the network processor can

be done quickly to accommodate dynamic changes in workload by keeping multiple

binaries and graphs in memory.) When skipping the certificate check (which has to

be done only once) and ignoring network delay (which can be decreased based on

server location), then the verification time is around 20 seconds.

85



Table 5.3: Implementation cost of hash functions

Bitcount hash Merkle tree hash
LUTs 103 95
FFs 61 61
Memory bits 0 32

Figure 5.5: Distribution of hash values using our Merkle-tree-based hashing.

5.3.3 Hash Function Evaluation

We have also implemented the parameterizable hash function on the prototype

system. As compression function f , we use the 4-bit arithmetic sum of both 4-bit

inputs. The resource consumption of the implementation of the hash function is

shown in Table 5.3. For comparison, the resources for a typical conventional hash

function (counting set bits in the word to hash) are also shown. It can be seen that

the resource requirements are comparable. Our Merkle tree hash requires less logic,

but requires memory to store the parameter, whereas the bitcount hash does not

require memory. Both hash functions are fast enough to compute the hash within the

available cycle time on our system.

To show that the parameterizable hash function based on Merkle trees is effective

for our goal, i.e., providing diversity across systems (security requirement SR2), we

evaluate the distribution of generated hash values. We do this by randomly creating

32-bit value pairs (i.e., two different processor instructions) and comparing their 4-bit

hashed value pair. As a comparison metric, we use the Hamming distance between

each pair, which is an indication on the number of bits that is different between
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the values in the pair. Figure 5.5 shows the distribution of Hamming distances for

hashed values for each possible Hamming distance of the original pair. The Hamming

distance between 4-bit hashed value pairs can take on values 0 . . . 4 and thus each

distribution consists of five bars. Ideally, the hash function creates an approximation

of a Gaussian distribution for all pairs with Hamming distance other than zero. For

a Hamming distance of zero (i.e., elements are identical), the Hamming distance of

the hashed values also needs to be zero to guarantee consistent hashing of the same

value. In the figure, we can see that for all but the most extreme Hamming distance

of input pairs, the ideal distribution is achieved. Since the hash function is symmetric

for hashed value and parameter value, the same distribution properties hold true for

different parameter values. Thus, an attacker cannot determine the hash values of a

code sequence without knowing the hashing parameter. Also, diversity of monitoring

across routers is achieved since different parameter values lead to different hash values

in the monitoring graph.

5.4 Summary and Conclusions

We have presented a system-level security design that ensures that hardware mon-

itors on network processors can be programmed dynamically, while ensuring that

attackers cannot tamper with the monitoring system. Our design is based on the

use of cryptographic principles to securely transfer all the necessary data to the net-

work processor. We have also designed a parameterizable hash function that allows

monitoring graphs to be customized to each individual router system in order to pro-

tect from a cascading attack. We have demonstrated the operation of our system in

hardware on an FPGA-based platform. We believe that this work provides an impor-

tant contribution toward moving from device-level security to system-level security

in embedded hardware monitoring.
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CHAPTER 6

COMPLETE SYSTEM IMPLEMENTATION OF
MULTICORE NETWORK PROCESSOR SECURITY

PLATFORM

In earlier chapters, we have described techniques to protect network processors

from data plane attacks by introducing security system components including a hard-

ware security monitor, scalable hardware monitor grid, parameterized hashing, and

monitor graph download management. In this chapter, we introduce the design of a

comprehensive multicore NP security platform that includes these components. The

system implementation on an Altera DE5 development board [2] will be described in

detail.

6.1 Design Challenges

To provide a complete integration of our ideas, additional challenges must be

met. These challenges include addressing increased Internet speeds, FPGA device size

limits, and user interfaces. In this chapter we integrate our work on an Altera DE5

board which includes a 10 Gbps Ethernet interface. Additional extensions include:

1. A Linux operating system [33] is used to support network and cryptographic

services such as TCP/IP [72], FTP [73] and OpenSSL [6]. To promote security,

the communication between the OS and the hardware is carefully designed.

Physical addresses are remapped to virtual addresses by a memory management

unit (MMU) and device drivers are used by the OS to recognize customized

hardware modules.
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Figure 6.1: System architecture of the multicore network processor security platform

2. As described in Section 5.2.1, security keys must be installed in the NP system at

both manufacturing and installation time. To prevent attackers from stealing

these keys using software based attacks, a Trusted Platform Module (TPM)

must be used to securely store these keys.

3. In order to verify the functionality of the multicore NP security platform sys-

tem, a network packet generator, which can send and capture network packets

through 10G SFP+ ports, is designed for the DE5 board so that multiple DE5

boards can be connected for experiments.

6.2 Multicore NP Security Platform System Architecture

The system architecture of our complete platform is illustrated in Figure 6.1. The

platform consists of four 10G SFP+ high speed Ethernet ports, a DDR3 SDRAM main

memory, a Nios II control processor, a customized TPM module, and the Scalable

Hardware Monitoring Grid (SHMG) logic. As the fundamental hardware component

in the system, the SHMG includes input and output arbiters that interface to the

10G Ethernet ports, queues and queue management logic that buffer input network

packets, and a multi-core multi-monitor cluster. The system hardware gets network

packets from the 10G network port, identifies the packet types and distributes the
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packets to NP cores, monitors the packet processing in the NP cores, and forwards

the packets to corresponding output network ports after processing them.

To achieve the system level security features described in Chapter 5, a µClinux OS

is installed in the Nios II control processor to support the network and cryptographic

services. Linux based device drivers and C software are designed to implement the

following key functions:

1. Communicate with a remote server through an Ethernet interface and securely

download encrypted processor binaries and monitor graphs from the server when

necessary.

2. Communicate with the TPM module to get security keys, decrypt the processor

binaries and monitor graphs and put them into processor memory and monitor

memory.

3. Monitor the queue lengths in the hardware. When a queue length passes a

pre-configured threshold, partially reconfigure the processors and monitors and

the interconnection between the processors and monitors in SHMG without

affecting the work of other processors and monitors.

We introduce the details of the hardware and software implementations and present

system evaluation experimental results in the remainder of this chapter.

6.3 System Hardware Implementation

Compared with the Altera DE4 board used for experiments in previous chapters,

the DE5 has significantly more FPGA and memory resources and supports 10G rather

than 1G Ethernet interfaces.
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Table 6.1: Key features of DE4 vs DE5.

DE4 DE5
FPGA EP4SGX230C2 5SGXEA7N2F45C2
Logic elements 228,000 622,000
On-chip memory 17,133Kb 50Mb
DRAM DDR2 SO-DIMM DDR3 SO-DIMM
Ethernet interface Gigabit Ethernet (GigE) 10G SFP+

6.3.1 Altera DE5 FPGA Board

The Altera DE5 development and education board features a Stratix V GX FPGA

and integrates transceivers that transfer data at a maximum of 12.5 Gbps, allowing

low-latency, straight connections to four external 10G SFP+ modules. Table 6.1

compares the DE5 key features with those in the DE4.

6.3.2 10 Gbps Ethernet

The DE5 board has four independent 10G SFP+ connectors that use one transceiver

channel each from the Stratix V GX FPGA device. These modules take in serial data

from the Stratix V GX FPGA device and transform them to optical signals [2]. Al-

tera provides 10 Gbps Ethernet (10GbE) Media Access Controller (MAC) [12] and

10GBASE-R PHY [13] IP components to handle the SFI interface with a optical

SFP+ running at 10.3125 Gbps. A complete 10 Gbps Ethernet solution (shown in

Figure 6.2) must include both the 10G Ethernet MAC and the 10GBASE-R PHY.

The 10Gbps Ethernet MAC IP core is a configurable component that implements

the IEEE 802.3-2008 specification. It uses the Avalon streaming (Avalon-ST) interface

on the client side to talk with the user defined hardware module and the single data

rate (SDR) XGMII on the network side to talk with the 10GBASE-R PHY.

The Altera 10GBASE-R PHY IP core implements the functionality described in

IEEE Standard 802.3 Clause 45 [4]. It delivers serialized data to an optical module
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Figure 6.2: 10 Gbps Ethernet Solution.

that drives optical fiber at a line rate of 10.3125Gbps. In our system, since there are

four connectors, we use a 4-channel implementation of 10GBASE-R, each channel of

the 10GBASE-R PHY IP core operates independently.

6.3.3 Scalable Hardware Monitoring Grid Implementation

We have implemented a four NP core, six monitor SHMG cluster (Figure 4.6) in

our system. The NP cores are 32-bit MIPS soft processors created using a synthe-

sizable PLASMA processor [76]. Two different network applications (IPv4 and IPv4

with congestion management) are cross compiled to the processor cores and monitor

graphs are generated as described in Section 3.3.1. Both the processor cores and the

monitors are modified to support runtime application switches.

When a network packet arrives from the 10GbE MAC, it goes through an input

arbiter that identifies its packet types and distributes it to an appropriate queue.

Whenever a NP core is available, it fetches a packet from its corresponding queue. At

runtime, if one queue passes the predefined threshold, the queue management unit

generates a “reconfiguration required” message to software in the µClinux OS. The

software reads all queue lengths from hardware to determine which processor and

monitor will be reallocated.
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6.3.4 Trusted Platform Module

A Trusted Platform Module (TPM) is a dedicated microprocessor or circuit that

stores keys, passwords and digital certificates. The Trusted Computing Group (TCG)

[7] was chartered to create the TPM specification. Typically, a TPM is affixed to the

motherboard of a PC to ensure the security of the information stored there from

external software attack and physical theft.

In our design, we have implemented a hardware TPM as a system module instead

of using a separate TPM chip. It communicates with the Nios II control processor

and the SHMG through an Avalon MM bus. In this TPM module, a unique 2048-bit

RSA public key/private key pair is stored as the router’s keys: K+
R and K−

R . They can

be used to verify the authentication of the hardware device, as described in Section

5.2.1. The 2048-bit RSA public key of the manufacturer K+
M and the manufacturer

provided certificate that contains the network operator’s public key K+
O signed with

the manufacturer’s private key K−
M are also stored in the TPM. Using these keys

and certificate, the network processor can establish a chain of trust from the network

manufacturer to the network operator. In our implementation, we use Secure Hash

Algorithm (SHA-1) [69] to generate the certificate. SHA-1 is the most widely used

SHA function, and it is employed in several widely used applications and protocols.

We wrote a device driver for this TPM in µClinux OS so that user space software

is able to read the keys from the hardware. During program update, the keys are read

by the control processor and used to verify and decrypt the binary and monitoring

graph package following the steps in Section 5.3.2. Any software modification to the

keys in the TPM is not allowed. Device driver development is described in Appendix

A.
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6.4 DE5-Based Packet Generator

In order to test and evaluate our NP security platform, we need to send network

packets through the 10G SFP+ interfaces and measure output performance. Thus, a

circuit that performs packet generation and network packet capture through the 10G

SFP+ connectors is an essential part of the system design. For this purpose, we have

designed and implemented a network packet generator for the Altera DE5.

The DE5 packet generator implements two major functions: (1) it generates and

sends network traffic to the 10Gbps Ethernet ports with customized packet size,

packet type, number of packets, and throughput rate and (2) it captures network

packets from 10Gbps Ethernet ports and measures the number of packets of different

types and the throughput of the network.

The system architecture of the packet generator is shown in Figure 6.3. The DE5

FPGA board connects to a host PC through the PCI Express bus. Users of the packet

generator use the DE5 packet generator configuration utility software to read pcap

format network packets and select a customized packet size, number and throughput

rate. The software configures the hardware packet composer with these user selected

parameters through the PCIe interface and the hardware packet composer generates

the network traffic. Incoming network packets from any of the four 10GbE ports is

captured by the packet capturer and traffic statistics are logged and sent to the PC

software through the PCIe interface. Software records these statistics.

We used Microsoft Visual Studio 2010 to develop the PC software and 32-bit Jungo

Win Driver [5] to establish communication between the host PC and the Altera DE5

board. Win Driver exposes two APIs (OnRCSlaveWrite and OnRCSlaveRead) for

applications to read and write using the PCI Express bus.

This DE5 network packet generator together with a DE5 reference router has

been published online as an open source project at http://www.ecs.umass.edu/

ece/tessier/rcg/netfpga-de5/index.html. An online tutorial is available which
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Figure 6.3: System Architecture of the DE5 Packet Generator

describes the steps needed to download the DE5 NetFPGA packet generator design,

compile the design using Altera Quartus II software, and use the packet generator.

6.5 Experiments and Results

6.5.1 Evaluation Metrics

Three evaluation metrics are used to verify the DE5 Multicore NP Security Plat-

form system:

1. Correctness of functionality: The system is able to process network packets,

detect and recover from the attack packets, correctly read security keys from

the TPM and decrypt binary and monitor graph package, and dynamically

reconfigure the SHMG at run time.
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2. Resource utilization: The lookup table (LUT), flip flop (FF), and memory re-

sources (bits) utilization of the system are assessed.

3. Throughput: The system throughput performance is measured and compared

with the throughput results in Chapter 4.

Details of these experiments are provided below.

6.5.2 Functionality Validation

The following experiments are performed to validate the functionality of our sys-

tem:

1. Correct network packet processing: The system is connected to a packet gener-

ator as shown in Figure 6.4. IPv4 and IPv4+CM packets are sent through one

10GbpE port to the system and captured on another port. 500 IPv4 packets

and 500 IPv4+CM packets were sent in 10 experiments (100 packets are sent

each time). All packets were correctly received.

Figure 6.4: Multicore NP security platform test scenario
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2. Attack detection: Normal packets combined with attack packets are sent. We

verify that the normal packets are processed appropriately and the attack pack-

ets are detected and discarded. In our experiment, we used one port to send

normal packets (MAC 2), one port to send attack packets (MAC 0) and one

port to receive packets (MAC 3). 100 normal packets were sent with 1 attack

packet and the results showed that the normal packets were forwarded and the

attack packets were discarded.

3. Dynamic resource reallocation: Since it is not possible to measure the intermedi-

ate status of the processor cores nor the runtime throughput changes before the

packet generator receives all the packets, it is not possible to directly keep track

of the runtime resource reallocation in the hardware. However, this experiment

is designed to show that the control processor has the ability to reconfigure the

SHMG at runtime.

The processor cores are configured to perform different actions: half of the cores

(2 total) forward packets to MAC 3 and half of them (2 total) forward packets

to MAC 1. For each 100 packets sent to the system through MAC 2, 50 packets

are output via MAC 1 and 50 packets are output via MAC 3. Subsequently, one

processor core is reconfigured to forward packets to MAC 1 instead of MAC 3.

For each 100 packets sent to the system, 75 packets come from MAC 1 and 25

packets come from MAC 3. This experiment shows that the system is capable

of reconfiguring the SHMG at runtime.

4. TPM driver test: We store a 32-bit number (0x12344321 in the experiment) in

the TPM hardware and use sample user code to read and print it on the µClinux

console. The result is shown in Figure 6.5. In the key management operations,

two 2048-bit RSA keys K+
M , K−

R and the certificate of K+
O are provided to

µClinux for package decryption.
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Figure 6.5: TPM test result

5. Secure binary and monitoring graph installation: We have performed experi-

ments similar to those in Section 5.3.2 to evaluate the processing time of the

security functions in our system. The experimental results are listed in Table

6.2. Note that there are two modifications in this experiment compared to the

previous one:

(a) Although FTP service is supported in our system, since there is no re-

mote FTP host that supports the 10Gbps SFP+ interface, we did not

perform downloading measurements in the experiment. The data package

was preloaded into the system.

(b) Since the security keys are stored in the hardware TPM, not in the OS

file system, one extra step is needed to read the keys from the hardware

before the decryption operations.

Most of the security functions run faster in this system than in the DE4 system

(Table 6.2) because the Nios II in this system runs at higher clock frequency

(156.25 MHz vs 125 MHz). The time cost of decrypting the AES key using the

router’s private key takes a longer time because we use a different OpenSSL

utility to do the decryption in this experiment.

6.5.3 Resource Utilization

The resource utilization of our system is shown in Table 6.3. The lookup table

(LUT), flip flop (FF), and memory resources (bits) are listed for different components:
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Table 6.2: Processing time of security functions on DE5

Step Time (s)

Load keys from hardware TPM 1.15
Check manufacturer certificate of
network operator’s public key K+

O

1.77

Decrypt AES key Ksym using
router’s private key K−

R

15.98

Decrypt package with AES key
Ksym

3.13

Verify packet signature with net-
work operator’s public key K+

O

2.08

Total 24.11
Total (no certificate check) 22.34

Table 6.3: Multicore NP Security Platform Resource Utilization on DE5 FPGA

Resources Secure Network Nios II DE5 Available
monitors proc. contr. proc. interface in FPGA

LUTs 552 16,051 2,168 30,036 234,720
1.1% 32.9% 4.5% 61.5% -

FFs 114 8,452 2,532 40,483 234,72
0.2% 16.4% 4.9% 78.5% -

Mem. bits 786,432 1,179,648 70,336 8,060,856 52,428,800
7.8% 11.7% 0.7% 79.8% -

the four network processor cores, six hardware monitors, Nios II control processor and

other circuitry. In addition, the µClinux kernel image needs 5078 Kb in the SDRAM.

6.5.4 System Throughput

The throughput of our system is measured with two network packet sizes: 64-byte

and 256-byte (Figure 6.6). The maximum system throughput is similar to the one

shown in Figure 4.18. This shows that the throughout of the system is limited by the

processing capability of the processor cores, not the network port speed. An increase
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Figure 6.6: Throughput results when processing 64-byte and 256-byte IPv4+CM
packets.

in the total number of cores increases the system throughput. The average latency

for 256-byte packets of regular traffic was measured at 92 us.

6.6 Summary and Conclusions

This chapter presents an integration of various components of the dissertation

research. A multicore network processor security platform has been implemented on

a DE5 development board. The system hardware and software implementations are

described in detail and system results demonstrate its effectiveness.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we focus on security issues in network processor systems with

hardware monitors. A detailed, multicore monitoring approach has been developed.

This system is scalable and allows for fast run-time changes to system function. We

are able to download new monitoring graphs to the system from external sources

using a secure protocol.

7.1 Summary of Contributions

For our first contribution, we have demonstrated a Scalable Hardware Monitoring

Grid (SHMG) design that solves three critical problems in practical network proces-

sor systems: multiple cores, multiple processing binaries and dynamically changing

workload. SHMG provides a scalable processor-to-monitor interconnection architec-

ture to balance the area cost and the performance overhead. A resource reallocation

algorithm is proposed for reconfiguring the processor cores and hardware monitors to

adapt to the dynamically changing network traffic at runtime. Our evaluation vali-

dates the functionality of the algorithm and demonstrates that the system overhead

for our monitoring system is less than 6% compared to the processor system.

Second, we developed a Secure Dynamic Multicore Hardware Monitoring System

(SDMMon) model for secure installation of processor binaries and monitor graphs in a

system level implementation. A Merkle tree based parameterizable high-performance

hash function is presented to prevent attackers from applying a successful attack on

one network device to other devices. We have demonstrated the operation of our
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system in hardware on an FPGA-based platform. This work provides an important

contribution toward moving from device-level security to system level security in

embedded hardware monitoring.

To conclude this dissertation research, a Multicore Network Processor Security

Platform system has been implemented on an Altera DE5 board. It integrates all the

security features of SHMG and SDMMon. A hardware TPM is included in this system

to assist the key operations during processor binary and monitor graph updates. Our

evaluation shows the correctness of the system and provides for evaluation of resource

cost and performance. The resource overhead of our sytem is around 5% compared

to the multicore processor system and the maximum throughput of a four-core, six-

monitor system is 140 Mbps. Network attacks are detected within one to two clock

cycles.

7.2 Future Work

Hardware-assisted monitoring is a lightweight and efficient technique for detecting

a wide variety of attacks in embedded systems. It provides many new dimensions that

are worth exploring in future work.

Unknown indirect branches: Since the monitor graphs of the current hard-

ware monitor design are generated at compile time, a monitor can only handle indirect

branches to statically known targets (e.g., return addresses). It cannot handle indirect

branches to statically unknown targets that are resolved at run time. Although net-

work applications usually do not have such programming constructs (all 11 NpBench

benchmarks have known compile-time known targets), unknown indirect branches

exist in general purpose programs. A hardware monitor design that is able to handle

these indirect branches is desirable to make hardware monitors more applicable to

generalized systems.
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Dynamically resizable monitor: Considering that the code sizes of applica-

tions may vary greatly, a static monitor memory size which is determined by the

largest application size causes resource waste for other, smaller applications. Dy-

namic reconfiguration of the monitor memory structure could eliminate this memory

overhead. The monitoring memory could be made dynamically resizable depending

on the number of instructions or monitoring graph states in the target application.

Multiple FSMs in one monitor: A monitoring approach could be developed

which uses multiple small finite state machines rather than a single FSM in a hard-

ware monitor. This approach could potentially reduce the size of monitor graphs by

removing redundant information. In such a design, monitoring information is dis-

tributed into several small FSMs and the monitor uses these small FSMs together to

establish correct functional operation.

OS security: The hardware monitor architecture we presented in this dissertation

protects a user application from its vulnerabilities. However, it does not account for

the operating system and its vulnerability. Modern operating systems are deployed

in a large variety of embedded systems. It is desirable to apply hardware monitoring

to these OS-based systems. Some work has been done in this direction, for example,

MTHM [83] introduces a fine-grained monitoring architecture that supports multiple

contexts under the control of an operating system. However, this design does not

address the problem of OS code vulnerability.

Portable monitor: Although dedicated hardware monitors are an efficient se-

curity solution for network processors, it may not be feasible to deploy monitors

in all network routers since it requires a modification to current router architecture

that may be costly. An alternative solution that involves minimum router hard-

ware changes could be a portable monitor which is a separate device that can be

plugged into existing processor interfaces. In this way, the network processors and

the hardware monitors are independent, and the processors only need an interface to
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communicate with the monitors. In general purpose embedded processors, a portable

monitor could be a USB device or a special unit that connects to the motherboard

through PCIe. Note that this type of approach is still vulnerable to simple physical

attacks.
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APPENDIX A

SYSTEM SOFTWARE IMPLEMENTATION

In this section, we introduce the installation and configuration of µClinux [33] and

a memory management unit (MMU) on the DE5 board and the µClinux device driver

development flow. A sample kernel driver code for the TPM module is provided in

Appendix B.

A.1 Installation and Configuration of µClinux on DE5

The original µClinux was a fork of the Linux 2.0 kernel for microcontrollers in

embedded systems without a memory management unit (MMU). Today’s embedded

µClinux operating system includes Linux kernel releases for 2.0 2.4 and 2.6, as well

as a collection of user applications, libraries and tool chains. It has been widely used

in embedded systems and forms the basis of many products, such as network routers,

security cameras, DVD and MP3 players, VoIP phone and gateways, scanners, and

card readers. In our system, we use µClinux that targets 2.6 series Linux kernels.

A.1.1 Setup the Development Environment

To be able to build µClinux, a Linux based PC is required. In our case, we

used a VMware based virtual machine that installs Fedora 18 64-bit version as the

compilation environment. In the virtual machine, we downloaded the latest µClinux

distribution and precompiled NIOS II to the Linux cross complier toolchain1 2.

1http://sopc.et.ntust.edu.tw/

2ftp://ftp.altera.com/outgoing/nios2-linux/20120802
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The virtual machine for this project was obtained from http://sdrv.ms/11cMAUy

[46]. There are 43 rar files in the distribution and the total size is 22 GB. After down-

loading and unzipping these files, the virtual machine is opened with VMware, and

the development environment including the µClinux distribution and the precompiled

toolchain can then be used.

A.1.2 DeviceTree

DeviceTree is a way of describing hardware in an embedded system [44]. This

information is needed during µClinux kernel compilation so that the kernel knows

the hardware architecture of the target system. Altera Qsys doesn’t directly provide

a DeviceTree file (.dts file), it only provides a .sopcinfo file which has to be converted

to a .dts file. We use a Java program (sopc2dts) to generate device-tree sources (.dts

files) from a Qsys .sopcinfo file. JDK 1.5 or above is required to compile this tool.

To recreate our virtual machine environment, go to the directory ~/uClinux/

tools/sopc2dts, the sopc2dts tool has already been compiled and generated. Type

the following command will open the GUI of sopc2dts tool shown in Figure A.1.

$ java −j a r sopc2dts . j a r −−gui

Choose the .sopcinfo file describing your system in the “Input” tab. Look over

(and adjust) the various bits in the “Boardinfo” tab, select cpu : nios2 qsys 0 as the

master. Press apply after you’ve made a change. Check the “Output” tab to see the

effect on your generated device tree. After finishing all the changes, choose a filename

in the “Boardinfo” tab and press save. The tool would generate a .dts file based on

the input .sopcinfo file.

Since we have customized hardware components in our system (e.g. TPM module),

the description of these modules has to be encoded in the device tree. In order for

the sopc2dts software to recognize these modules, we need to modify the hw.tcl files

of these modules. A hw.tcl is a file that describes the properties and behaviors of
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Figure A.1: GUI of sopc2dts tool

an Altera Qsys component, it allows for arbitrary name/value pairs to be assigned

to modules and to interfaces with the hw.tcl statements. At design generation time,

these assignments are put in the resulting sopcinfo file. Sopc2dts looks for these

interface and module assignments to the namespace, embeddedsw.dts., when creating

device trees. In our TPM example, we need to specify the vendor, name and group

of the TPM module using the following lines in TPM hw.tcl.

s e t module ass ignment embeddeddsw . dts . vendor ”ALTR”

set module ass ignment embeddeddsw . dts . name ”TPM”

set module ass ignment embeddeddsw . dts . group ”TPM”

A.1.3 Configure and Build µClinux

After generating a DeviceTree for the hardware system, we can use it to build a

µClinux kernel. Go to the µClinux distribution directory and set the PATH envi-

ronment variable for the toolchain.

$ export PATH=$PATH: / path/ to / n io s2 / t o o l c h a i n / bin

107



Some configuration in the µClinux kernel is needed.

• Set the vendor and products.

• Set MMU support.

• Set the SDRAM memory base address.

• Set the path to the device tree source file.

• Configure the kernel features.

• Enable the Altera JTAG UART console support

• Enable the network services and cryptographic support.

These changes can be made in a GUI configuration interface with command “make

menuconfig”. Figure A.2 shows the main menu of this GUI. Go into “Vendor/Product

Selection”, select Altera as vendor and Nios II as product. Then go to “Kernel/Li-

brary/Defaults Selection”, make sure kernel is Linux-2.6.x and Libc is none. Select

“Customize Kernel Settings” and “Customize Application/Library Settings”. Save

the changes and exit.

If “Customize Kernel Settings” is selected, another GUI interface (Figure A.3)

will be open after exiting the main menu. In this kernel configuration menu, we need

to set all the kernel related configurations.

• In “Kernel features”, set the timer frequency to 1000Hz, set the memory model

to flat memory and set the low address space to 4096.

• In “Platform options”, set the SDRAM base address to 0x0, note that this base

address must match with the SDRAM base address in the Qsys project. Enable

“Compile and link device tree into kernel image” and specify the path to the

device tree source file.
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Figure A.2: µClinux GUI configuration main menu

• In “Device drivers”, go to “Character devices” and enable Altera JTAG UART

support in “Serial drivers”, set the baudrate to 115200.

If “Customize Application/Library Settings” is selected, the Application/Library

configuration GUI (Figure A.4) will be open after the kernel setting. In this GUI, we

select applications such as ftp, openssl and telnet in “Network Applications”. Note

that we need to download and compile the source files for the selected applications,

the absence of source code or errors in the source code would cause the failure of

kernel compilation.

After configuring the µClinux kernel, type make in the command line to start

building the kernel image. If the kernel image is built successfully without any com-

pilation errors, you will see a message saying:

Kernel : arch / n io s2 / boot /zImage i s ready

The kernel image is stored in uClinux-dist\linux-2.6.x/arch/nios2/boot/.
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Figure A.3: µClinux GUI kernel configuration menu

Figure A.4: µClinux GUI application configuration menu
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A.1.4 Loading µClinux onto DE5

Turn on the DE5 board and connect it with the host PC through the USB-Blaster

cable. In Quartus II, download the .sof file to the FPGA.

We use JTAG UART as a serial console to boot µClinux from memory. First, we

copy the µClinux kernel image file zImage from the virtual machine to the Windows

host machine and save it under the path_to_DE5_project/sw directory. Then we

open the Altera Nios2 command shell from the Tools tab in Qsys, and change the

command shell path to path_to_DE5_project/sw. Next, we download the kernel

image into the memory on the board with this command:

$ nios2−download −c 1 −g zImage

After downloading the kernel, we use nios2-terminal to see the output from the

µClinux boot up. Note that cygwin must be installed in your machine to support the

Nios2 command shell.

$ nios2−t e rmina l

If the kernel boots up successfully, you should see messages similar to Figure A.5.

A.2 µClinux Device Driver Development

Now that we have a functioning µClinux system up and running, the next im-

portant step is to write device drivers for the kernel to support the custom hardware

that we added in Qsys. We use our TPM driver as a sample design to illustrate the

driver development process.

A.2.1 Introduction of Linux Device Driver

In compute systems, a device driver is a computer program that provides a soft-

ware interface for the operating systems and other computer programs to interact

with a hardware device without needing to know details of the hardware. This in-
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Figure A.5: µClinux boot up messages

terface is designed so that drivers can be built separately from the rest of the kernel

and plugged in at runtime when needed [28].

The Linux way of looking at device drivers distinguishes between three fundamen-

tal device types: char device, block device, and network device.

• Character devices: A character (char) device is one that can be accessed as a

stream of bytes. It is the most common type of device driver. There are several

fundamental system calls that need to be implemented in a char type device

driver including open, close, read and write. User applications treat the char

driver like reading and writing to a file. The text console and the serial ports

are common examples of char devices.

• Block devices: A block device is a device that can host a filesystem, it handles

I/O operations that transfer one or more whole blocks (512 byte or a larger

power of two). A typical example of block device is a disk.
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• Network devices: A network driver handles the packet sends and receives from a

network interface with other hosts. It is only used for hardware that is involved

with data transfer using TCP/IP protocol.

The device driver we developed is a character driver.

A.2.2 User Space and Kernel Space

System memory in Linux can be divided into two distinct regions: kernel space

and user space. Kernel space is where the core of the operating system stores and

executes, while user space is a set of locations where normal user processes run.

The kernel has full access to all memory and machine hardware, whereas processes

running under user space have access only to a limited part of memory. User space

processes can only access a small part of the kernel via system calls. If a user space

process performs a system call, a software interrupt is sent to the kernel. The kernel

dispatches an appropriate interrupt handler to take care of this system call.

A Linux device driver runs in kernel space. It implements system calls such

as open, close, read and write. A user space program uses these system calls to

communicate with the driver and the driver is in charge of accessing the hardware.

Figure A.6 shows the relationship between user space, kernel space and hardware.

User Space
( Applications )

Kernel Space
( Modules or 

Drivers )
Hardware

System
calls

Figure A.6: User space, Kernel space and Hardware
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A.2.3 Implementation of the driver

This section describes how to write a complete char device driver. The first step

of driver writing is defining the capabilities the driver will offer to user programs. In

our TPM sample design, our driver will open a hardware device and read keys from

it, writing to the hardware is not needed. As a result, the driver needs to support

open, close and read file operations.

Table A.1 lists all the device events that our driver needs to support and their

associated user space and kernel space functions. User functions are implemented as

statements that the user application can use in the C or C++ programs or Linux

shell commands. The users interact with the kernel through these functions. Ker-

nel functions are implemented in the device driver. They interact directly with the

hardware and send feedback to the user functions.

Table A.1: Device events and their associated interfacing functions

Event User Function (User Program) Kernel Function (Driver)
Load Module insmod module init()
Open Device fopen file operation: open
Read Device fread file operation: read
Close Device fclose file operation: release

Remove Module rmmod module exit()

The module initiate functionmodule init() and the module exit functionmodule exit()

are the two most essential functions in a driver. Any char device driver has to at least

implement these two functions. They register the driver in the kernel and release the

driver from the kernel system.

In module init(), the classic way to register a char device driver is to use API

function register chrdev.

int r e g i s t e r c h r d e v (unsigned int major , const char ∗name ,

struct f i l e o p e r a t i o n s ∗ f ops ) ;
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Here, major is the unique major number that is either assigned by the driver

developer or assigned by the kernel automatically for each driver, name is the name

of the driver, and fops is the default file operations defined in the driver. The file

operation is a struct code that contain pointers to all functions in the driver. The

driver uses these pointers to forward user application requests to the correct handlers.

In module exit(), the driver uses unregister chrdev to remove the driver from the

kernel system and release all memory that has been allocated to the driver.

The Linux command insmod and rmmod are used to load and remove loadable

modules to the kernel system in the Linux console.

As shown in Table A.1, the driver has open and release functions to handle user

space requests from fopen and fclose. The content of these function is based on the

hardware specification. If the driver needs initialization before the read or write to

the hardware, it can be initialized in the open function. If the driver needs clean up

after the read or write, the release function can be used.

The read function in the driver must read a whole segment of data from the

hardware and copy it to the user space. These capabilities are offered by the following

kernel functions:

unsigned inb (unsigned port ) ;

unsigned inw (unsigned port ) ;

unsigned i n l (unsigned port ) ;

unsigned long copy to u s e r ( void u s e r ∗ to , const void ∗ from ,

unsigned long n ) ;

The first three functions are inline functions defined in the Linux kernel headers

(<asm/io.h>) to access hardware I/O ports. They are used to read from hardware

ports in 1 byte, 2 bytes or 4 bytes increments. After a value is read from the hardware,

the copy to user function is used to copy this value to the user program. In this
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function, to is the destination address in user space, from is the source address in

kernel space, and n is the number of bytes to copy.

After we have implemented all five kernel functions in the driver, the driver code

is ready. The driver can be added into the µClinux kernel image.

• Copy the driver source code to linux-2.6.x\source\drivers\misc.

• Add an option to Kconfig in linux-2.6.x\source\drivers\misc. This action

adds an entry in the GUI configuration tool for users to select this driver.

c o n f i g TPM

t r i s t a t e ”Example TPM d r i v e r module”

he lp

Enable example TPM module .

• Add object file to Makefile in linux-2.6.x\source\drivers\misc.

obj−$ (CONFIG TPM) += TPM. o

• Add this device to the file system by adding the following line to vendors\

Altera\nios2\device_table.txt.

/dev/TPM c 666 0 0 240 0 − − −

• Type command “make menuconfig”. In the GUI interface, go to “Device Drivers

→ Misc devices” and select the TPM driver module as shown in Figure A.7.

• Type command “make”. This action rebuilds the µClinux kernel, and the new

kernel image includes our TPM driver module.
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Figure A.7: Select the TPM driver in the configuration GUI

A.2.4 User space program

When the TPM driver is compiled in the kernel, a user space program can access

it as a file using normal file operations such as fopen, fclose, fread and fwrite.

For example, the following code will open the TPM driver for reading and return a

pointer to a FILE object that is used to identify the stream on all further operations.

If the open fails, a null pointer is returned.

FILE ∗ opntest ;

Opntest = fopen ( ”/dev/TPM” , ” r ” ) ;

A simple user space program is provided in Appendix C as an example to show

how a user space program access the driver. It reads a 32-bit value from the hardware

TPM module and prints it out. It is necessary to cross-compile user-space programs

for the NIOS II on a host machine. We use a nios2-linux-gnu-gcc cross-complier to

compile a C source code.

nios2−l inux−gnu−gcc source . c −o output b in

Copy the output bin to /romfs/bin/ and recompile the kernel to create a new

zImage that includes the user program.
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APPENDIX B

TPM SAMPLE COMPONENT KERNEL DRIVER C
CODE

#include <l i nux / i n i t . h>

#include <l i nux / ke rne l . h> /∗ p r i n t k ( ) ∗/

#include <l i nux /module . h>

#include <l i nux /mm. h>

#include <l i nux / f s . h>

#include <asm/ uacce s s . h>

#include <asm/ i o . h>

#include <asm/asm−o f f s e t s . h>

/∗ major numbers f o r i d e n t i f y i n g the d e v i c e f i l e s ∗/

#define DATA MAJOR 240

/∗ r e g i s t e r a d d r e s s e s ∗/

#define DATA REGISTER 0x08002000

MODULEAUTHOR( ”Kekai Hu” ) ;

MODULE LICENSE( ”GPL” ) ;

MODULE DESCRIPTION( ”Module which c r e a t e s dev i ce handler f o r /dev/TPM” ) ;

MODULE SUPPORTED DEVICE( ”none” ) ;
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/∗ d e v i c e f i l e s open? ∗/

int d a t i s o p e n = 0 ;

/∗ c a l l e d when data d e v i c e f i l e i s opened ∗/

stat ic int dat open ( struct inode ∗ inode , struct f i l e ∗ f i l e )

{

i f ( d a t i s o p e n++)

return −EBUSY;

t ry module get (THIS MODULE) ;

return 0 ;

}

stat ic int d a t r e l e a s e ( struct inode ∗ inode , struct f i l e ∗ f i l e )

{

−−d a t i s o p e n ;

module put (THIS MODULE) ;

return 0 ;

}

/∗ c a l l e d when a proces s reads from data f i l e ∗/

stat ic s s i z e t dat read ( struct f i l e ∗ f i l p , char ∗ bu f f e r ,

s i z e t length , l o f f t ∗ o f f s e t )

{

/∗ us ing i n l to read from hardware ,

note t h a t we have to use ioremap to map

the p h y s i c a l address to v i r t u a l address f i r s t
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b e f o r e us ing i n l to read ∗/

unsigned int data buf ;

p r in tk ( ”Reading . . . \ n” ) ;

int iomem∗ membase ;

membase = ioremap (DATA REGISTER, 4 ) ;

data buf = i n l (membase + o f f s e t ) ;

c opy to u s e r ( bu f f e r , &data buf , 4 ) ;

return 1 ;

}

/∗ d e f i n i t i o n s , which f u n c t i o n s are c a l l e d f o r / dev /TPM ∗/

stat ic struct f i l e o p e r a t i o n s f op s da t =

{

. read= dat read ,

. open= dat open ,

. r e l e a s e= d a t r e l e a s e

} ;

/∗ i n i t i a l i z e the module ∗/

stat ic int i n i t mod in i t ( void )

{

i f ( r e g i s t e r c h r d e v (DATA MAJOR, ”TPM” , &fop s da t ) )

{

pr in tk ( ” r e g i s t e r c h r d e v o f h e l l o f a i l e d !\n” ) ;

return −EIO ;

}
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pr in tk ( ”TPM d r i v e r Module i s a c t i v e \n” ) ;

return 0 ;

}

/∗ e x i t the module ∗/

stat ic void e x i t mod exit ( void )

{

u n r e g i s t e r c h r d e v (DATA MAJOR, ”TPM” ) ;

pr in tk ( ”Module i s r e l e a s e d \n” ) ;

}

/∗ what are the module i n i t / e x i t f u n c t i o n s ∗/

modu l e in i t ( mod in i t ) ;

module ex i t ( mod exit ) ;
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APPENDIX C

SAMPLE USER SPACE C CODE

#include <s t d i o . h>

#include <uni s td . h>

int main ( )

{

FILE ∗ opntest ;

opntest = fopen ( ”/dev/TPM” , ” r ” ) ;

unsigned int temp = 0 ;

f r ead (&temp , 4 , 1 , opntest ) ;

f c l o s e ( opntest ) ;

p r i n t f ( ” Input va lue from hardware i s : %x\n” , temp ) ;

return 0 ;

}
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