35,087 research outputs found

    Analysing landslides in the Three Gorges Region (China) using frequently acquired SAR images

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) sensors obtain regular and frequent radar images from which ground motion can be precisely detected using a variety of different techniques. The ability to remotely measure slope displacements over large regions has many uses and advantages, although the limitations of an increasingly common technique, Differential SAR Interferometry (D-InSAR), must be considered to avoid the misinterpretation of results. Areas of low coherence and the geometrical effects of mountainous terrain in SAR imagery are known to hinder the exploitation of D-InSAR results. A further major limitation for landslide studies is the assumption that variable rates of movement over a given distance cannot exceed a threshold value, dependent upon the SAR image pixel spacing, the radar sensor wavelength and satellite revisit frequency. This study evaluates the use of three SAR image modes from TerraSAR-X and ENVISAT satellites for monitoring slow-moving landslides in the densely vegetated Three Gorges region, China. Low coherence and episodically fast movements are shown to exceed the measureable limit for regular D-InSAR analysis even for the highest resolution, 11-day interferograms. Subsequently, sub-pixel offset time-series techniques applied to corner reflectors and natural targets are developed as a robust method of resolving time-variable displacements. Verifiable offsets are generated with the TerraSAR-X imagery and the precise movement history of landslides is obtained over a period of up to four years. The capability to derive two-dimensional movements from sub-pixel offsets is used to infer a rotational failure mechanism for the most active landslide detected, and a greater understanding of the landslide behaviour is achieved through comparisons with likely triggering factors and 2D limit equilibrium slope stability analysis

    Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    Get PDF
    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Range-Point Migration-Based Image Expansion Method Exploiting Fully Polarimetric Data for UWB Short-Range Radar

    Get PDF
    Ultrawideband radar with high-range resolution is a promising technology for use in short-range 3-D imaging applications, in which optical cameras are not applicable. One of the most efficient 3-D imaging methods is the range-point migration (RPM) method, which has a definite advantage for the synthetic aperture radar approach in terms of computational burden, high accuracy, and high spatial resolution. However, if an insufficient aperture size or angle is provided, these kinds of methods cannot reconstruct the whole target structure due to the absence of reflection signals from large part of target surface. To expand the 3-D image obtained by RPM, this paper proposes an image expansion method by incorporating the RPM feature and fully polarimetric data-based machine learning approach. Following ellipsoid-based scattering analysis and learning with a neural network, this method expresses the target image as an aggregation of parts of ellipsoids, which significantly expands the original image by the RPM method without sacrificing the reconstruction accuracy. The results of numerical simulation based on 3-D finite-difference time-domain analysis verify the effectiveness of our proposed method, in terms of image-expansion criteria
    • …
    corecore