2,218 research outputs found

    Aggregating and Deploying Network Access Control Policies

    Full text link
    The existence of errors or inconsistencies in the configuration of security components, such as filtering routers and/or firewalls, may lead to weak access control policies -- potentially easy to be evaded by unauthorized parties. We present in this paper a proposal to create, manage, and deploy consistent policies in those components in an efficient way. To do so, we combine two main approaches. The first approach is the use of an aggregation mechanism that yields consistent configurations or signals inconsistencies. Through this mechanism we can fold existing policies of a given system and create a consistent and global set of access control rules -- easy to maintain and manage by using a single syntax. The second approach is the use of a refinement mechanism that guarantees the proper deployment of such a global set of rules into the system, yet free of inconsistencies.Comment: 9 page

    Handling Stateful Firewall Anomalies

    No full text
    Part 4: Access ControlInternational audienceA security policy consists of a set of rules designed to protect an information system. To ensure this protection, the rules must be deployed on security components in a consistent and non-redundant manner. Unfortunately, an empirical approach is often adopted by network administrators, to the detriment of theoretical validation. While the literature on the analysis of configurations of first generation (stateless) firewalls is now rich, this is not the case for second and third generation firewalls, also known as stateful firewalls. In this paper, we address this limitation, and provide solutions to analyze and handle stateful firewall anomalies and misconfiguration

    Access monitoring system for distributed firewall policies

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 69-70)Text in English; Abstract: Turkish and Englishx, 70 leavesInternet has provided several benefits in terms of information sharing. However, Internet is an insecure environment that can cause threats to private networks. As a result, network security becomes a critical issue. One of the important tools used in network security is firewall. Firewalls protect a private network from external threats by restricting network traffic according to predefined security rules. Basically, firewalls apply these rules to each packet that passes over them. Distributed firewalls are a new approach to firewall to overcome some drawbacks of traditional firewalls. Distributed firewall design is based on the idea of enforcing the policy rules at the endpoints rather than a single entry point to network. Management of policy rules is a critical issue in both traditional and distributed firewalls. We propose a monitoring application for distributed firewall policies to keep track of actions (create, read. update, delete) performed on policy rule set. The resulting data produced by the monitoring application will be very helpful in policy management process

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    Modeling the Abnormality: Machine Learning-based Anomaly and Intrusion Detection in Software-defined Networks

    Get PDF
    Modern software-defined networks (SDN) provide additional control and optimal functionality over large-scale computer networks. Due to the rise in networking applications, cyber attacks have also increased progressively. Modern cyber attacks wreak havoc on large-scale SDNs, many of which are part of critical national infrastructures. Artifacts of these attacks may present as network anomalies within the core network or edge anomalies in the SDN edge. As protection, intrusion and anomaly detection must be implemented in both the edge and core. In this dissertation, we investigate and create novel network intrusion and anomaly detection techniques that can handle the next generation of network attacks. We collect and use new network metrics and statistics to perform network intrusion detection. We demonstrated that machine learning models like Random Forest classifiers effectively use network port statistics to differentiate between normal and attack traffic with up to 98% accuracy. These collected metrics are augmented to create a new open-sourced dataset that improves upon class imbalance. The developed dataset outperforms other contemporary datasets with an FÎŒ score of 94% and a minimum F score of 86%. We also propose SDN intrusion detection approaches that provide high confidence scores and explainability to provide additional insights and be implemented in a real-time environment. Through this, we observed that network byte and packet transmissions and their robust statistics can be significant indicators for the prevalence of any attack. Additionally, we propose an anomaly detection technique for time-series SDN edge devices. We observe precision and recall scores inversely correlate as Δ increases, and Δ = 6.0 yielded the best F score. Results also highlight that the best performance was achieved from data that had been moderately smoothed (0.8 ≀ α ≀ 0.4), compared to intensely smoothed or non-smoothed data. In addition, we investigated and analyzed the impact that adversarial attacks can have on machine learning-based network intrusion detection systems for SDN. Results show that the proposed attacks provide substantial deterioration of classifier performance in single SDNs, and some classifiers deteriorate up to ≈60. Finally, we proposed an adversarial attack detection framework for multi-controller SDN setups that uses inherent network architecture features to make decisions. Results indicate efficient detection performance achieved by the framework in determining and localizing the presence of adversarial attacks. However, the performance begins to deteriorate when more than 30% of the SDN controllers have become compromised. The work performed in this dissertation has provided multiple contributions to the network security research community like providing equitable open-sourced SDN datasets, promoting the usage of core network statistics for intrusion detection, proposing robust anomaly detection techniques for time-series data, and analyzing how adversarial attacks can compromise the machine learning algorithms that protect our SDNs. The results of this dissertation can catalyze future developments in network security

    Dynamic deployment of context-aware access control policies for constrained security devices

    Get PDF
    Securing the access to a server, guaranteeing a certain level of protection over an encrypted communication channel, executing particular counter measures when attacks are detected are examples of security requirements. Such requirements are identi ed based on organizational purposes and expectations in terms of resource access and availability and also on system vulnerabilities and threats. All these requirements belong to the so-called security policy. Deploying the policy means enforcing, i.e., con guring, those security components and mechanisms so that the system behavior be nally the one speci ed by the policy. The deployment issue becomes more di cult as the growing organizational requirements and expectations generally leave behind the integration of new security functionalities in the information system: the information system will not always embed the necessary security functionalities for the proper deployment of contextual security requirements. To overcome this issue, our solution is based on a central entity approach which takes in charge unmanaged contextual requirements and dynamically redeploys the policy when context changes are detected by this central entity. We also present an improvement over the OrBAC (Organization-Based Access Control) model. Up to now, a controller based on a contextual OrBAC policy is passive, in the sense that it assumes policy evaluation triggered by access requests. Therefore, it does not allow reasoning about policy state evolution when actions occur. The modi cations introduced by our work overcome this limitation and provide a proactive version of the model by integrating concepts from action speci cation languages

    Binary Signaling under Subjective Priors and Costs as a Game

    Full text link
    Many decentralized and networked control problems involve decision makers which have either misaligned criteria or subjective priors. In the context of such a setup, in this paper we consider binary signaling problems in which the decision makers (the transmitter and the receiver) have subjective priors and/or misaligned objective functions. Depending on the commitment nature of the transmitter to his policies, we formulate the binary signaling problem as a Bayesian game under either Nash or Stackelberg equilibrium concepts and establish equilibrium solutions and their properties. In addition, the effects of subjective priors and costs on Nash and Stackelberg equilibria are analyzed. It is shown that there can be informative or non-informative equilibria in the binary signaling game under the Stackelberg assumption, but there always exists an equilibrium. However, apart from the informative and non-informative equilibria cases, under certain conditions, there does not exist a Nash equilibrium when the receiver is restricted to use deterministic policies. For the corresponding team setup, however, an equilibrium typically always exists and is always informative. Furthermore, we investigate the effects of small perturbations in priors and costs on equilibrium values around the team setup (with identical costs and priors), and show that the Stackelberg equilibrium behavior is not robust to small perturbations whereas the Nash equilibrium is.Comment: to appear in CDC 2018 : Proceedings of the 57th IEEE Conference on Decision and Control, Miami Beach, FL, USA, December 17-19, 201
    • 

    corecore