
University of Nevada, Reno

Modeling the Abnormality: Machine Learning-based Anomaly and
Intrusion Detection in Software-defined Networks

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Tapadhir Das

Dr. Shamik Sengupta - Dissertation Advisor
May, 2023



Copyright by Tapadhir Das 2023
All Rights Reserved



THE GRADUATE SCHOOL

We recommend that the
prepared under our supervision by

ntitled

be accepted in partial fulfillment of the
requirements for the degree o



i

Abstract

Modern software-defined networks (SDN) provide additional control and optimal

functionality over large-scale computer networks. Due to the rise in networking appli-

cations, cyber attacks have also increased progressively. Modern cyber attacks wreak

havoc on large-scale SDNs, many of which are part of critical national infrastruc-

tures. Artifacts of these attacks may present as network anomalies within the core

network or edge anomalies in the SDN edge. As protection, intrusion and anomaly

detection must be implemented in both the edge and core. In this dissertation, we

investigate and create novel network intrusion and anomaly detection techniques that

can handle the next generation of network attacks. We collect and use new network

metrics and statistics to perform network intrusion detection. We demonstrated that

machine learning models like Random Forest classifiers effectively use network port

statistics to differentiate between normal and attack traffic with up to 98% accuracy.

These collected metrics are augmented to create a new open-sourced dataset that

improves upon class imbalance. The developed dataset outperforms other contem-

porary datasets with an Fµ score of 94% and a minimum F score of 86%. We also

propose SDN intrusion detection approaches that provide high confidence scores and

explainability to provide additional insights and be implemented in a real-time envi-

ronment. Through this, we observed that network byte and packet transmissions and

their robust statistics can be significant indicators for the prevalence of any attack.

Additionally, we propose an anomaly detection technique for time-series SDN edge

devices. We observe precision and recall scores inversely correlate as ϵ increases, and

ϵ = 6.0 yielded the best F score. Results also highlight that the best performance was

achieved from data that had been moderately smoothed (0.8 ≤ α ≤ 0.4), compared to

intensely smoothed or non-smoothed data. In addition, we investigated and analyzed
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the impact that adversarial attacks can have on machine learning-based network in-

trusion detection systems for SDN. Results show that the proposed attacks provide

substantial deterioration of classifier performance in single SDNs, and some classifiers

deteriorate up to ≈60%. Finally, we proposed an adversarial attack detection frame-

work for multi-controller SDN setups that uses inherent network architecture features

to make decisions. Results indicate efficient detection performance achieved by the

framework in determining and localizing the presence of adversarial attacks. However,

the performance begins to deteriorate when more than 30% of the SDN controllers

have become compromised. The work performed in this dissertation has provided

multiple contributions to the network security research community like providing eq-

uitable open-sourced SDN datasets, promoting the usage of core network statistics

for intrusion detection, proposing robust anomaly detection techniques for time-series

data, and analyzing how adversarial attacks can compromise the machine learning al-

gorithms that protect our SDNs. The results of this dissertation can catalyze future

developments in network security.
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Chapter 1

Introduction

The creation of the ARPANET in October 1969 revolutionized computer networking

forever [1]. Since then, networking has continued to be permanently embedded within

the fabric of computer communications. Over time, traditional networks evolved,

and their intelligence was distributed across physical network devices like routers and

switches. Traditional networks combined the control and data planes. Configuration

of network nodes and programming of the paths for data flow was administered by the

control plane while, based on this control information, the data plane was responsible

for data forwarding at the hardware level [2]. A visual representation of a traditional

network is provided in Figure 1.1. However, this network configuration started becom-

ing more challenging, as it became difficult to perform alterations regarding network

policies because every physical switch and router needed to be individually recon-

figured. Additionally, modern applications of computer networks like the Internet

of Things (IoT), vehicular networks, and smart grid technology aim to be dynamic

in nature, with computing devices connecting and disconnecting periodically. The

network policies for these applications also may require frequent alterations. Also,
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Control Plane

Data Plane

Figure 1.1: Visual Representation of Traditional Computer Networks

modern networking applications are interconnected with other networks, which makes

them geographically distributed over a wide area [3]. Hence, the dynamic nature and

wide area distribution of modern networking applications are not a proper fit for

traditional computer networks.

Software-defined Networks (SDN) were introduced to address the highlighted short-

comings and to act as the new standard for computer networks. SDNs decouple the

control and data planes and are administered by a logically centralized SDN con-

troller, which controls mute switches. This consolidated architecture ensures that

network issues are handled more easily. An illustration of the SDN architecture is

provided in Figure 2.1. The SDN controller is responsible for injecting flow tables in
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network switches which control network operations and policies. This makes it easier

to enact network policy alterations, upgradations, and monitoring. Operations like

network data mining and analysis are made easier due to this architecture. This can

be crucial when performing network analysis for improved efficiency, or when dealing

with cybersecurity threats that can lead to anomalous network patterns.

Network anomalies refer to situations where network operations and recorded metrics

deviate from normal system behavior. These anomalies, traditionally, show them-

selves within the core of the network and can be problematic in SDNs as they can

leave communications in a vulnerable state. Network anomalies can arise due to mul-

tiple causes such as internal factors, like physical device malfunction, environmental

issues, and/or network overload. They can also be introduced due to cyber attacks

like network intrusions including, but not limited to, Denial of Service (DoS), Dis-

tributed DoS (DDoS), malicious traffic insertion, Structured Query Language (SQL)

injection, fake packet insertion, botnets, and false data injection. These anomalous

events are difficult to detect unaided as they often tend to display similar network

traffic patterns as that of normal functionality [4].

The problem of network anomalies gets exacerbated in traditional computer networks.

Due to their design of dispersed intelligence across network devices, individual cyber

threat monitors and anomaly detectors must be independently configured at every

single network node. In addition, every single detector must operate in a coordinated

manner, which can lead to synchronization problems and complexities for implemen-

tation. However, anomaly detection can be more easily performed in SDN setups,

due to the logically centralized SDN controller which oversees all network operations

and policies. This can make it easier to create a principal anomaly detector, that

can be hosted in the SDN controller, and can monitor the whole network for network

anomalies.
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However, despite their centralized design, SDNs continue to be under attack. The

progressive adoption of SDNs across industries, organizations, and infrastructures,

along with the steady increase in network devices over time, has made these net-

works more vulnerable to cyber attacks like network intrusions. Network intrusions

are expected to inflict damages up to $10.5 trillion by 2025 [5]. Therefore, organi-

zations must protect their networks from harm as failure to do so can lead to loss

of revenue, reputation, and intellectual property. This can be especially fatal if the

SDN is connected to a country’s critical national infrastructures like the power grid,

transportation systems, and energy sectors [6]. Performing robust network intru-

sion detection in the network core to detect network anomalies can be an effective

technique for ensuring critical SDNs are protected.

Another type of anomaly that exists in current SDNs is edge anomalies. These are

anomalies that affect SDN edge devices and can rise from cyber attacks that directly

target these edge devices like computers, hosts, sensors, servers, automobiles, virtual

reality (VR) and augmented reality (AR) systems, and security cameras. In many

cases, edge anomalies can lead to the rise of network anomalies within the core network

as cyber attacks directed at these devices can affect their operation and, in turn, the

recorded network metrics and statistics. Due to increased SDN applications like IoT,

Unmanned Aerial Vehicles (UAV), micro-grid systems, smart city infrastructures,

and smart home environments, a prominent portion of these edge devices tend to

time-series sensors that monitor infrastructure, environment, and user activity. An

eminent attack against these edge devices is false data injection, where criminals

tend to strategically and maliciously modify/augment sensor data to corrupt the

working functionality of these SDN edge devices [7]. Other significant attacks on

SDN edge devices include DoS, Data Type Probing, Malicious Control, and Malicious

Operation [8]. The ability to detect potential anomalies in edge devices can further
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assist in creating more robust anomaly and intrusion detection approaches in the

entirety of the SDN.

Due to the rise in new computing technologies, faster resources, and availability of

more data, machine learning (ML) has become a very popular technique that is being

investigated for SDN anomaly and intrusion detection [9], [10] in both the network

core and edge. ML is a useful tool for this purpose due to its capability of finding

correlations in traffic flow patterns [11] along with the ability to detect patterns over

long sequences. ML techniques can be easily deployed in SDN infrastructures as it is

expected to have sufficient computational resources like quicker memory and faster

processing speeds. With the availability of open-sourced SDN intrusion detection

datasets like [12] [13] and SDN edge device datasets like [14], creating ML-based

SDN anomaly and network intrusion detection systems (NIDS) have become more

sophisticated and accessible. However, certain voids are prevalent in the current

state-of-the-art technology and research available in ML-based anomaly and intrusion

detection for SDNs. The next few sections outline the identified voids in this research:

1.1 Network Intrusion Detection - Dataset Voids

In SDN security research, the usage of ML for intrusion detection has received consid-

erable attention, primarily due to the prevalence of open-source datasets like [12] [13].

However, in this dissertation, I have identified some limitations, surrounding the avail-

able open-sourced datasets, that need to be addressed to facilitate the creation of more

robust intrusion detection approaches to protect future SDN infrastructures. In this

section, I highlight these specific limitations.
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1.1.1 Unmatching Topologies

Most network intrusion detection datasets that are currently being used for SDN secu-

rity research are generated/simulated on a singular topological setup. The generated

and collected network metrics and patterns that exist in these datasets work well for

their specific topologies. However, organizational SDN topologies vary depending on

their application, size, and usage. Large organizational SDNs will have more users,

spread, nodes, devices, hosts, and links, which can differ from small organizational

SDN topologies. This can cause variances in the observed network metrics and col-

lected statistics [15]. Therefore, training an ML-based network intrusion detection

model on existing open-sourced datasets may not be fruitful for protecting an organi-

zation’s SDN infrastructure as it may differ in the number of devices, users, spread,

nodes, hosts, and links, and doing so can put the organization at risk of network

intrusions.

1.1.2 Overdependence on Flow-based Statistics

Many of the network intrusion detection datasets rely mostly on flow statistics, which

again can limit the transferability of solutions to different networks since the flow

statistics depend on network topology and traffic characteristics [15]. For example,

the original DARPA dataset provides artificially high feature values compared to

real traffic data, as it was simulated in a military network environment [16]. The

same problem exists in other datasets that are derived from DARPA such as NSL-

KDD [12]. Similarly, the open-sourced datasets like the UNSW-NB15 dataset [17]

contain multiple flow features like IP addresses, protocols, TCP/IP headers, payload

information, recorded start time, SYN Flag, and ACK Flag count. These may end

up as redundant features that play no impact in being able to detect potential TCP-

SYN flood attacks. Depending on the approach being used to detect TCP-SYN floods,
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these features can also increase the cardinality of the dataset, leading to increased

training and inference times.

1.1.3 Imbalanced Classes/Labels

Another limitation associated with open-sourced datasets for network intrusion de-

tection is the problem of class imbalance. As these datasets try to provide data from

multiple attack scenarios, some of these classes get less represented over the majority

classes. This can cause any intrusion detection approach to get skewed towards the

majority class and in turn, decrease detection performance. Additionally, none of the

datasets provide much information from the core devices of the network like switches

and routers. Gathering and reporting this information can highlight insights that can

be useful for SDN intrusion detection. Also, due to the primary usage of core devices

like switches and their statistics, the number of observed features for intrusion detec-

tion can be reduced, helping with operational complexities while providing efficient

intrusion detection performance.

1.1.4 Lack in Number of Datasets

The last limitation that exists with open-sourced datasets for network intrusion detec-

tion in SDNs is that there are just not that many datasets. Currently, there are three

contemporary datasets available, upon which most academic and industrial research

gets conducted: NSL-KDD [12], CIC-IDS-2018 [13], and UNSW-NB15 [17]. Due to

the limited number of datasets, further research, and the creation of more robust

intrusion detection methods in this field gets hindered. One of the restrictions with

certain datasets is the lack of testbed and/or topological information for the data.

For example, NSL-KDD provides no documentation on the testbed upon which their
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dataset was generated. This limits further understanding and insight when perform-

ing anomaly detection. Other datasets have historically been a challenge to utilize.

UNSW-NB15 is a complicated dataset to parse as data features and their magnitudes

are similar between multiple classes. This leads to unsatisfactory performance when

it comes to using ML techniques for intrusion detection. More extensive anomaly

detection techniques have been proposed just for this dataset [18] [19]. However,

these generated techniques are not suitable in live environments for real-time SDN

intrusion detection, due to increased inference times resulting from the complicated

nature of these techniques. Hence, generating a dataset whose features are rapidly

trainable, with proper topological documentation, for live environments would be an

attractive expansion for SDN intrusion detection applications.

1.2 Network Intrusion Detection - Algorithmic Voids

Along with the open-sourced dataset limitations in the previous section, there are also

some algorithmic limitations for network intrusion detection that have been identified

in this dissertation. Addressing these limitations can help create the next generation

of network intrusion detectors.

1.2.1 Prevalence of Underconfident Classifiers

One current void in ML-based SDN intrusion detection is low confidence scores when

it comes to predictions, which makes it difficult to ascertain the certainty of these

predictions. Many classifiers have been proposed that provide high performance at

detecting intrusions. However, there has not been much emphasis placed on the

confidence with which these classifiers are forecasting their predictions, which can

be a hindrance in real-time network intrusion detection. Prioritizing high confidence
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levels, along with high accuracy, can allow ML systems to be deployed in real-time

scenarios as predictions get forecasted correctly with high probability. Therefore, an

ML-based service requires, not only high accuracies in train/test datasets but also

high confidence scores. High confidence scores can allow ML predictions to automate

changes in SDN flow tables that govern network policies.

1.2.2 Lack of Explainability/Interpretability in Classifiers

Another void is the lack of explainability in ML-based SDN intrusion detection. Many

studies have conducted ML-based analysis in SDN intrusion detection, but this re-

search was conducted in a “black-box" manner. This means that the ML approach

lacked any transparency and interpretability. This can be an obstacle in network

intrusion detection as users will not be able to explain the cause of an intrusion.

Having an interpretation of the ML intrusion detector will make it easier for the

system to understand which of the network features is more influential in detecting

intrusion types. The lack of explainability can be fatal, specifically in SDN networks

connected with critical infrastructures, where the intrusion detection process is auto-

mated and involves minimal human intervention. Providing explainability will assist

in improving trust in the intrusion detector’s predictions; specifically on the relevance

of the dataset features, the confidence of the predictions, and the justification of the

results [20]. Also, it would enable a network system to scrutinize and deduce infor-

mation beyond a simple knowledge extraction using a model training process. This

provides benefit to SDN intrusion detection as ML models do not just classify net-

work flows as normal or anomalous, but also provide evidence for such predictions.

It will also help network administrators improve analytics and manage system design

policies that protect them from cyber threats like network intrusions.
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1.3 Edge Device Anomaly Detection Voids

Performing anomaly detection on SDN edge devices also comes with certain voids in

the current state-of-the-art. In this section, we discuss the identified voids surrounding

anomaly detection in SDN edge devices.

1.3.1 Restrictions of Time-series Metrics

A prominent portion of current SDN applications includes IoT, UAV, smart city,

and smart homes, and a significant chunk of these technologies rely on time-series

sensors that monitor infrastructure and user activity. The first limitation is the lack

of supervised datasets for these devices, as most of these devices are time-series and

hence, unsupervised. This hinders the ability to design mechanisms for more robust

anomaly detection on edge devices. There is a need for ML methods that can convert

time-series data into a supervised format for more effective behavior modeling.

1.3.2 Sub-optimal Classifier Performance from Noise

Another noteworthy problem associated with real-time sensors for SDN edge appli-

cations is the subjection to sensor noise, which in turn, can affect anomaly detection

performance. This noise can be introduced during actual analog measurements of

the sensor, or even from random variables during data gathering. Due to this sensor

noise, anomaly detection performance can degrade, which is why it is essential to

propose techniques that can process out sensor noise without compromising anomaly

detection performance on these SDN edge devices.
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1.4 Detrimental Impacts of Anomaly/Intrusion De-

tectors to Adversarial Attacks

Lastly, there is limited research that has been conducted in the realm of how ML

for robust anomaly and intrusion detection in SDNs can get affected by adversarial

attacks. Adversarial attacks are cyber attacks that aim to manipulate ML operations

and corrupt their functionality by performing adversarial manipulations on the pa-

rameters or other components in ML frameworks. By exploiting training data and

model parameters and sensitivities, these attacks can affect the performance of the

classifiers, putting the entire MSDN infrastructure at risk. Discovering how adversar-

ial attacks affect SDN ML pipelines can help create new robust security mechanisms

that can protect the SDN from these new kinds of threats.

The above-recognized limitations restrict the effectiveness of ML-based intrusion and

anomaly detection from its full potential. Additionally, this restrictiveness can result

in putting SDNs in jeopardy from cyber attacks and intrusions. Therefore, in this

dissertation, we propose the following research directions and objectives:

• Develop a supervised SDN NIDS dataset that is capable of generalizing multiple

anomalies and intrusions.

• Enhance the developed SDN NIDS dataset by utilizing network metrics other

than traditional flow-based statistics.

• Attempt to minimize the class imbalance problem in the dataset for better

anomaly detection performance.

• Create SDN anomaly detection algorithms that have high confidence scores for

their predictions.
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• Provide explainability to these anomaly detection algorithms to increase inter-

pretability.

• Analyze the impact of adversarial attacks on the achieved performance for ML-

based networks and anomaly detection for SDN.

• Create detection strategies for adversarial attacks that aim to compromise ML-

based network and anomaly detection for SDN.

• Create ML techniques that can account for time series data types in edge de-

vices, for more robust training.

• Develop methods that can process out SDN edge device sensor noise to improve

anomaly detection performance.

The remainder of the dissertation is structured as follows: Chapter 2 provides the

background for important concepts for this research, along with related research and

their limitations that have been conducted in anomaly/intrusion detection in SDN.

In Chapter 3, we introduce the usage of network port and differential/delta port

statistics towards network intrusion detection. Chapter 4 highlights our established

network intrusion detection dataset called UNR-IDD which improves upon contempo-

rary datasets to improve upon the issue of class imbalance. In Chapter 5, we propose

an ensemble learning-based network intrusion detector that prioritizes the confidence

scores of its predictions for intrusion detection. In Chapter 6, we provide an anomaly

detection framework that can perform anomaly detection on time-series SDN edge

devices. In Chapter 7, we investigate and analyze the impact that adversarial attacks

can have on ML-based network intrusion detection systems (NIDS) for SDN. Chap-

ter 8 proposes an adversarial attack detection framework for multi-controller SDN

setups that uses inherent network architecture features to make decisions. Finally,

conclusions are drawn and future research ideas are presented in Chapter 9.
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Chapter 2

Background and Related Works

In this chapter, we introduce some background topics that are related to the content

presented in this proposal. These background topics include a general overview of

modern-day SDN architecture and its benefits, the multiple classifications of anomaly

types that exist and how they may exist within the confines of the SDN architecture,

and some of the most prominent methods that can be employed to conduct anomaly

and intrusion detection in SDN. We also present the related works of the proposed

research to see what has already been proposed in the literature, and how we plan to

improve upon the established techniques and results.

2.1 Background

2.1.1 Software Defined Network Architecture

An SDN architecture traditionally consists of three main layers: The infrastructure,

control, and application layers. It also consists of two different communication in-
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Figure 2.1: SDN Architecture Overview

terfaces: the northbound interface and the southbound interface [21]. Figure 2.1

illustrates a traditional SDN architecture setup.

1. Infrastructure layer: Contains physical network devices that make up the

network topology like routers, switches, bridges, and repeaters. This layer serves

as a medium over which network virtualization can be laid down through the

control layer [21].

2. Control layer: Contains the centralized SDN controller which regulates the

infrastructure network devices and network policies [22]. A lot of business logic

is written in this layer to make the controller fetch and maintain various types of

network details, state information, topology characteristics, and network statis-

tics.

3. South bound interface: This interface is meant to facilitate communication

between the infrastructure layer and the control layer of the SDN architecture.
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This is typically conducted using southbound protocols like OpenFlow, Netconf,

and Ovsdb.

4. Application layer: Houses SDN applications that communicate with the SDN

controller by leveraging network information like topology, state, and statistics.

Examples can be applications for network automation, management, monitor-

ing, configuration, visualization, and analytics. These applications can provide

end-to-end solutions for real-world enterprise and data center networks.

5. North bound interface: This interface is meant to facilitate communication

between the control layer and the application layer of the SDN architecture.

This is typically conducted using northbound protocols like REST APIs of the

SDN.

As previously stated, SDN decouples the network’s control and data planes. This

control separation provides a multitude of benefits:

• Management: Network operations can be configured, monitored, and trou-

bleshoot from the controller as a complete view of the network can be ac-

cessed [23]. This also makes it easier to enact network policy alterations, upgra-

dations, and monitoring. Additionally, operations like network data mining and

analysis are made easier due to this centralized management system.

• Light-weight network equipment: Due to this centralized architecture,

physical network devices like routers and switches can become slimmer and

less expensive. As the intelligence is computed at the control level, physical

devices can be controlled by rules and guidelines pushed from the control level

to the infrastructure level [23].

• Network virtualization: This benefit enables and leverages the full poten-

tial of the network elements. The SDN controller can abstract the underlying
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physical network to allow administrators to program virtual networks for each

tenant [23].

2.1.2 Types of Network Anomalies

According to Douglas Hawkins, a statistician and Professor at the University of Min-

nesota, an outlier or anomaly is defined as “an observation which deviates so sig-

nificantly from other observations as to arouse suspicion that it was generated by

a different mechanism" [24]. Within the confines of SDN, it can be said that an

anomaly is an unexpected deviation of data from an otherwise expected distribution.

The anomaly can occur concerning both local and global norms for the data distri-

bution [25]. There are several important observations when it comes to defining the

nature of normal data in SDNs.

1. Most of the data that is captured can be defined as “normal" data, as it appro-

priately fits the expected characteristics and distribution for that network when

functioning naturally.

2. The concept of “normal" operation in SDNs can change over time for multiple

reasons, including but not limited to the number of active users, number of

hosts, and dynamic changing of the network topology for certain applications.

Within the context of SDN anomalies, we can identify three types of anomalies that

frequently occur: point, contextual, and pattern anomalies [25].

• Point anomalies: These are anomalies that tend to diverge for single or min-

imal observations. They are characterized by their return to normal system

state within a few observations. These anomalies can represent statistical noise

or signal noise within SDN edge devices or latency within the core SDN network

due to device malfunction or faulty sensing. They can also represent a short
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Figure 2.2: Common Anomalies in SDN

time of interest to the network administrators. An example of a point anomaly

can be seen in Figure. 2.2a.

• Contextual anomalies: Contextual anomalies are observations that deviate

from a normally expected sequence of patterns in a time series. It is a deviation

from a norm in the context of the surrounding observations. Within SDN

applications, contextual anomalies can represent an attempt at a false data

injection attack on an edge device. An example of a contextual anomaly can be

seen in Figure. 2.2b.

• Pattern anomalies: Pattern anomalies refer to a collection of observations

that are anomalous from the rest of the distribution. Individual observations

may or may not look anomalous, but when viewed with the rest of the data,

they arise suspicion. With the confines of SDN, pattern anomalies can represent

sustained attacks within the network at both edge and core devices like DDoS.

An example of a pattern anomaly can be seen in Figure 2.2c.

2.1.3 Anomaly Detection Methods

Anomaly detection is a research area that spans multiple domains like engineering,

business, economics, and science. Hence, over time, multiple anomaly detection meth-
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Table 2.1: Summary of commonly used anomaly detection methods in SDN

Anomaly Detection Methods Prominent Algorithms Advantages Disadvantages

Statistical methods
- Wavelet analysis
- Principal component analysis
- Covariance matrix

-Innate ability to detect anomalies
- No requirement of prior system knowledge

- Significant time requirements for training
- Thresholds not representative of real-world scenarios

Clustering methods - K-Means
- DBSCAN

- More stable than statistical methods
- Faster response during training

- Time consuming to train
- May get trapped in local minima

Finite state machine methods - Markov chains
- hidden Markov models

- Robust
- Flexible to data and changes

- Time consuming to train
- May not detect uncommon anomalies

Classification methods

- Naive Bayes,
- Support vector machine,
- Deep neural networks,
- Ensemble methods

- High accuracy and detection rates
- Adaptive in nature

- High resource consumption
- Tendencies of overfitting

ods have been proposed to better catch outliers embedded within normal system

data [26]. In this section, we provide a list of the most used anomaly detection

techniques that have previously been studied to perform SDN anomaly detection.

• Statistical methods: Statistical methods are widely employed in performing

anomaly detection. These methods typically employ the use of probabilistic

models associated with training data to track appropriate network behavior.

Sudden changes in SDN data result in anomalies, which are caught using hard

thresholds. Common techniques previously used include wavelet analysis, prin-

cipal component analysis, covariance matrix, traffic filtering, and correlational

paraconsistent machine.

• Clustering methods: Clustering techniques aim to congregate data points of

similarity into groups or “clusters". These techniques are adaptable to dynamic

changes, which do occur in SDN data. Clustering techniques can identify values

that are far away from other clusters and hence can be flagged as potential

anomalies. These techniques can also be used as a pre-processing step for other

anomaly detection algorithms. Commonly used techniques for network anomaly

detection includes K-means and DBSCAN.

• Finite state machine methods: Finite state machines are models comprising

states, actions, and transitions. Each state stores information about the past

and the changes that have occurred since entry to the state, beginning when



19

the system first started. A state transition occurs due to a condition, and a

corresponding action can be taken during that time. These techniques can be

used because they have high anomaly detection rates as there is considerable

knowledge regarding normal and attack cases. Common techniques include

Markov chains and hidden Markov models (HMM).

• Classification methods: The modern way to conduct SDN anomaly detec-

tion is using classification methods. This, typically, consists of two steps: train-

ing and testing. During training, a classifier is built using labeled training

data. Then, testing data is parsed through the trained classifier to classify net-

work metrics as either “normal" or “anomalous". Classification problems can

be both binary or multi-class classification. Common classification methods

include Naive Bayesian, support vector machines, deep neural networks, and

ensemble-based approaches.

Table 2.1 provides a summary of the commonly used anomaly detection techniques

used in SDN.

2.1.4 Adversarial Points of Compromise in Machine Learning

Pipelines

Network intrusion detection is an essential component to keep each SDN environment

safe from potential cyber attacks. In multi-controller architectures, each SDN is lo-

cally trained with collected training data. This training data is sourced from network

sensors, metrics, and statistics from network hosts, routers, and switches. According

to the National Institute of Standards and Technology, adversarial attacks can oc-

cur within ML pipelines at one of four major Targets of Attacks (TAs) [27]. These

four TAs are also significant targets within ML-based NIDS as they can compromise
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network security and functionality. The four main TAs are:

• Input domain: This domain contains network metrics, states, and statistics

from multiple network devices like hosts, routers, switches, computers, mobile

devices, vehicles, charging stations, sensors, etc., and is located within the Data

plane level of the MSDN architecture. Prospective attacks targeting this domain

include malicious tampering with the collected data that is to be fed into the

ML pipeline.

• Data Pre-processing: This domain includes techniques for data preparation

before being fed into the ML model. These techniques include noise process-

ing, feature extraction, dimensionality reduction, data sampling, etc., and are

located within the SDN controller and a part of the Control plane of the multi-

controller SDN setup. Here, attackers can manipulate collected data sets that

are being pre-processed and maliciously alter them so that tampered data are

presented to the ML model for training.

• Machine learning model: The primary TA within the pipeline is the ML

model itself. This ML model can be any algorithm like neural networks, de-

cision trees, random forests, support vector machines, reinforcement learning

techniques, etc., and is located within the SDN controller and a part of the

Control plane. Attackers can poison data or labels that are being processed or

create generative adversarial examples of data that deceive ML algorithms to

make misclassifications and false predictions. These attacks can occur during

both the training and testing phases of the model. This TA is the most lu-

crative of all the TAs in the ML pipeline as any adversarial attack can incur

the most damage to the multi-controller SDN setup, compared to the other

TAs. Specifically, the attacks conducted during the training phase are the most
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lethal, as their impact can lead to incorrect training of the ML model, and

hamper performance by triggering misclassifications.

• Output domain: This domain includes methods to output the predictions,

classifications, and forecastings of the ML model. The primary function of this

domain in an ML-based NIDS is to perform network intrusion detection and

provide system state, status, and anomalies to the system administrators. This

can be achieved using displays, status lights, and other visualization methods.

The domain is in the Command center and receives output from all the SDN

controllers in the Control plane. Potential attacks can involve malicious tam-

pering with the output sensor or display data that are interpretable to the

remainder of the system and the system operators.

An illustration of the ML pipeline for ML-based NIDS and the four main TAs is

illustrated in Figure 2.3.

2.2 Related Works

SDN intrusion detection has received appreciable attention and has been liberally

researched in literature. An important driving force behind this research has been

the prevalence of SDN datasets upon which ML algorithms and other approaches

have centered. The original dataset created was the DARPA dataset developed at

MIT Lincoln Laboratory [28], which consisted of 41 features and a variety of attack

types. However, this dataset has been rendered obsolete as it no longer represents

real-world network data scenarios. DARPA also does not represent general networks

as it was simulated in a military network environment. Thus, it contains artificially

high feature magnitudes compared to real traffic data. The next major dataset was

the KDD Cup 99 [29] introduced in 1999, which also suffered from redundant and
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Figure 2.3: Four Targets of Attack in ML-based NIDS

duplicate data samples, rendering intrusion detection inefficient on this dataset. Other

prominent datasets that also were generated included CAIDA [30], CDX [31], Kyoto

[32], Twente [33], and ISCX2012 [34]. CAIDA dataset is limited as it contains only

20 features and is solely focused on detecting DDoS attacks. Similarly, the CDX

dataset from the United States Military Academy contains only 5 features and focuses

on detecting Buffer Overflows. The dataset from Kyoto University performs SDN

intrusion detection; however, it also contains a limited number of dataset features

and only performs binary classification. Due to the relatively simple setup of the
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above datasets, intrusion detection approaches may be missing additional insights

which could be vital to system performance. The dataset from the University of

Twente is solely focused on IP flows at the network level. However, the size of this

dataset is small, and the scope of the attack types is limited [35]. Similarly, the ISCX

dataset also only consists of IP flows.

Currently, the most prominent datasets are NSL-KDD, UNSW-NB15, and CICIDS-

2018. Yet, these datasets also come with their limitations. For instance, NSL-

KDD has no documentation on the testbed upon which their dataset was generated.

This limit further understanding and insights when performing intrusion detection.

UNSW-NB15 is a complicated dataset where dataset features between various labels

are similar in magnitude, leading to inefficient intrusion detection performance on

basic intrusion detection techniques. More extensive detection techniques have been

proposed just for this dataset [18] [19], but these cannot be deployed in a live envi-

ronment due to increased training and inference times. The NSL-KDD and CIC-IDS-

2018 datasets suffer from missing data samples within their datasets. Additionally,

all three datasets suffer from class imbalance, which degrades intrusion detection per-

formance. Lastly, none of these datasets capture any network information from the

core devices like switches and routers, which might provide additional insights and

improve intrusion detection performance.

Using open-sourced datasets, multiple intrusion detection studies have been con-

ducted in the literature. These techniques are continually being proposed to pro-

vide improved performance for the current-day network architecture and modern

attack types. Researchers in [36] addressed intrusion detection in SDNs using Hidden

Markov Models (HMMs) to create an adaptive intrusion detection technique. The

authors in [37] attempted to use an HMM to make out the presence of noise in the

training dataset for detecting attacks against web applications. The work conducted
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in [38] performed SDN intrusion detection using a multi-class HMM where each of

the HMM layers is geared for a specific type of network traffic. The main problem

of using HMMs or any other finite state machine method is the inefficient intrusion

detection performance if they encounter uncommon anomalies [26].

Other researchers have employed mechanisms like statistical approaches to perform

SDN intrusion detection. The work in [39] used Principal Component Analysis (PCA)

to analyze SDN traffic and detect potential DDoS attacks. The authors in [40] em-

ployed Discrete Wavelet Analysis to identify intrusions in SDN network traffic. Re-

searchers in [41] attempted to perform flooding-based DoS detection in cloud envi-

ronments using Covariance Matrix. The limitation in these works is that statistical

techniques require the use of a hard statistical threshold that does not represent

real-world threat scenarios due to their limited and static nature [26].

Researchers, also, looked at clustering techniques to perform SDN intrusion detection.

The authors [42] used a distributed SDN and k-means clustering to achieve optimal

intrusion detection in smart grid communications. Similarly, the authors in [43] used a

meta-heuristic clustering technique called WOA-DD to detect DDoS attacks in SDN.

The limitation of clustering algorithms is that they could get stuck in local minima

and provide incorrect predictions [26].

The emergence of machine and deep learning has enabled researchers to investigate

SDN intrusion detection using these mechanisms. For instance, the authors in [11]

developed a deep learning mechanism for intrusion detection in SDN. Similarly, in

[44], the researchers proposed a Gated Recurrent Unit Recurrent Neural Network

to conduct intrusion detection in SDN. The work conducted in [45] proposed the

usage of sFlow, adaptive polling-based sampling, and deep learning to detect various

DDoS attacks in an SDN. The knock on these works is the low priority given to the
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confidence scores of their predictions. In live environments where real-time intrusion

detection must be performed, the intrusion detection mechanism must provide high

confidence scores for their predictions. This can enable ML systems to be deployed in

real-time scenarios as predictions get forecasted correctly with high probability. The

above methods also do not investigate the concept of explainability in SDN intrusion

detection. These studies are conducted in a “black box" approach and provided no

interpretability.

The concept of explainability in SDN intrusion detection has received limited atten-

tion, recently. The work in [46] investigated the usage of a variational autoencoder

for intrusion detection in conjunction with a gradient-based fingerprinting technique

for explainability. The research in [47] developed an SDN intrusion detection method

that uses a random forest classifier that incorporated explainability. Similarly, the

authors in [48] explored the usage of multiple classifiers with the SHapley Additive

exPlanations (SHAP) framework to explain detected SDN intrusions in a single SDN

dataset. These published studies focused on intrusion detection performance on sin-

gular algorithms on openly available SDN datasets. The limitations of these datasets

have been described above.

Some works investigated the usage of network-based methods to detect intrusions,

where detection and response methods are deployed at network devices like routers

and switches [49] [50] [51] [52]. In [49], the researchers proposed a route-based packet

filtering method as an expansion to ingress filtering at the core of the network. The

work in [50] proposed Watchers that detected misbehaving routers that launched

DDoS attacks by absorbing, discarding, and misrouting packets. In [51], the authors

presented SAFETY that provided early detection of DDoS floods like TCP-SYN

by harnessing the programming and wide visibility approach of SDN with entropy

method to determine the randomness of flow data. The experiments in this work
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were conducted on only singular destination victims, which is not always the case

in TCP-SYN attacks. [52] proposed AEGIS that detected and mitigated SYN floods

against the SDN controller by regularly checking if there is a performance lag in the

controller during floods. This method can detect SYN floods after the controller

performance drops, by which significant damage could have already been done to the

controller. Additionally, direct network-based techniques suffer from high storage and

processing overhead at the core devices, which can cause deficient performance [53].

For time-series-based SDN edge devices, there has been a limited amount of research

for robust anomaly detection. The main reason for this is the lack of available su-

pervised datasets for timer-series SDN edge devices. On top of this, statistical ap-

proaches like PCA and Wavelet Analysis do not work on time-series data. Clustering

approaches have been a viable option for time-series-based SDN edge device anomaly

detection. The authors in [54] proposed CLAPP, a self-constructing feature cluster-

ing technique for anomaly detection on edge devices. Similarly, [55] proposed using a

fuzzy clustering-based artificial neural network for anomaly detection in cloud com-

puting devices. Clustering methods can be vulnerable in edge devices, as they depend

on normal system state to make decisions. Time-series-based SDN edge devices, on

the other hand, may dynamically change their normal state over time. This can lead

to misclassifications.

Deep learning has also been another viable option to conduct anomaly detection in

these devices. The authors in [56] proposed a convolutional neural network (CNN)

based anomaly detector that can detect point, contextual, and discord anomalies in

time-series data. However, the limitation of this technique is that CNNs cannot ac-

count for the historical value of a time-series data point. That may be essential for

efficient anomaly detection and forecasting. The work in [57] investigated anomaly

detection using a Long-Short Term Memory (LSTM) network, where anomalies were
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detected using error computation. Lastly, the researchers in [58] proposed a su-

pervised anomaly detection approach, based on the time-series data statistics. The

limitation of the above techniques is that they are susceptible to noisy data, which

can be a common additive from sensor values and can lead to misclassifications.

As the study of adversarial attacks against ML algorithms is slowly increasing in

popularity, research has also extended to studying their impact on ML-based NIDS.

Certain adversarial attacks have been proposed in the literature that is geared towards

ML-based NIDS [59] [60] [61]. In [59], the authors propose a novel adversarial attack

against deep learning NIDS. The method consists of two techniques which include

model extraction, to replicate the black-box model of a deep learning method, and a

saliency map, to disclose the impact of each packet attribute on the detection results.

The work in [60] proposed a novel hierarchical adversarial attack generation method to

realize the level-aware black-box adversarial attack strategy that targets graph neural

network-based intrusion detection systems. The researchers in [61] explored a DoS

adversarial attack to craft adversarial samples on an artificial neural network-based

intrusion detection system.

Some techniques that have been established to counteract the impact of adversarial

attacks include adversarial training [62], gradient hiding [63], and defensive distilla-

tion [64]. However, these techniques are not completely robust to adversarial attacks.

Adversarial training can be bypassed using two-step attacks as seen in [63]. Gra-

dient hiding can be circumvented by learning a surrogate black box that contains

visible gradient information and crafting examples using that [65]. Lastly, defensive

distillation is ineffective against black-box attacks [66].

Like many adversarial attacks, label manipulation attacks have become a point of

compromise for many ML pipelines [67] [68] [69]. The authors in [67] proposed an
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optimization framework to perform label manipulation attacks that aim to maximize

the classification error of a supervised classifier. In [68], the authors proposed an

effective attack model LafAK based on approximated closed form of graph neural

networks and continuous surrogate of non-differentiable objective, creating attacks

using gradient-based optimizers. The work in [69] proposes multiple label manipula-

tion attacks that aim to compromise the performance of Naive Bayes classifiers used

on spam filtering systems. Label manipulation attacks in NIDS have also received

limited attention [70] [71]. In [71], the authors performed label manipulation attacks

on two ML-based NIDS to evaluate their performance. The authors in [70] propose

a targeted label manipulation/poisoning attack that aims to flip 0%-50% of labels

in a training dataset for an SVM-based network-based intrusion detection system

using the Clever Hans python library [72]. However, the experiments conducted in

this work only focused on label manipulation attacks against Support Vector Machine

(SVM)-based NIDS. They did not study its effects on other customarily used network

intrusion detection system algorithms like Random Forest (RF) and Multi-Layer Per-

ceptron (MLP).

Research in protection for NIDS against label manipulation attacks is very limited

and still, a new research area [73] [74]. In [73], the authors propose a novel detection

technique called AWFC which detects flipped labels by identifying the difference of

classes in the data. This method can be operationally expensive as the calculation of

fully connected layer weights can be costly if a dataset has many features or classes.

The work in [74] proposes SecFedNIDS, a novel label manipulation attack detection

technique using classpath similarity. The limitation of this work lies in the fact that

the authors use Jaccard Index to compute the similarity between class paths. The

Jaccard Index is insensitive to the size of the set of similar items in two classes, which

can be an issue as two items with a varying number of similar items between can have
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the same similarity score [75] [76].

The work being proposed in this Ph.D. dissertation aims to address the issues and cur-

rent voids that have been identified in the previous chapter, concerning SDN anomaly

and intrusion detection. The proposed work aims to generate a brand new SDN

dataset for conducting intrusion detection. The dataset aims to capture network met-

rics from a simulated SDN environment, to provide network topology which can add

contexts and additional insights to intrusion detection. The dataset will be supervised

and will include network metrics and statistics captured from a multitude of attack

scenarios as well as under normal conditions. The dataset will include, primarily,

port-level information from the core network devices like switches and routers. The

goal of using this switch information is to reduce the number of dataset features, while

still attempting to achieve optimal intrusion detection performance. The prospective

dataset will also try to address the issue of class imbalance in existing datasets, by

attempting to ensure minimal variability between the number of examples between

classes in the dataset. This provides novelty as it adds to the number of existing SDN

intrusion detection datasets while being unique as it is trying to conduct supervised

anomaly detection using, primarily, port-level information from switches. It also adds

novelty as the issue of class imbalance can be addressed without using oversampling

and undersampling techniques. This can ensure that intrusion detection is performed

optimally, without any skew toward a subset of classes.

The proposed work also aims to address the limitation of low confidence scores and

the lack of explainability when it comes to SDN intrusion detectors. Having low

or mediocre confidence scores for anomaly detection makes it difficult to ascertain

the certainty of these predictions. Therefore, this work also aims to create anomaly

detection approaches that provide a high mean confidence score for predictions. The

work also focuses on providing explainability to SDN anomaly detection, which has
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received minimal attention in the current state-of-the-art. Providing interpretability

to anomaly detection algorithms will help the system understand which of the network

features is more influential in detecting anomaly types. This provides novelty as

most published research have given low priority to the confidence scores of their

model predictions. Having high confidence scores can help make anomaly detection

approaches more assured in their predictions, and it would also help automate ML

systems to be deployed in real-time scenarios as predictions get forecasted correctly

with high probability. The inclusion of explainability is also novel as it improves

trust in the anomaly detector’s predictions; specifically on the relevance of the dataset

features, the confidence of the predictions, and the justification of the results.

Additionally, the proposed work aims to conduct anomaly detection in SDN edge

devices like time-series sensors, due to their wide application and usage. The work

aims the limitations in current research like the lack of supervised datasets and the

adverse effect of sensor noise on anomaly detection in SDN edge devices. This provides

novelty as finding a technique that can convert unsupervised time-series data to a

supervised format can help make more robust anomaly detectors. It also eliminates

the need to create a supervised dataset, which is already difficult to do for time-series

edge devices. Also, coming up with appropriate sensor noise processing techniques

will ensure that the device is minimally affected by raw sensor noise. This will lead

to better anomaly detection performance over time and will ensure these SDN edge

devices are protected from cyber attacks.

Finally, the proposed work investigates the impact of adversarial attacks on ML-

based NIDS in SDN. The work aims to run label manipulation attacks against NIDS

to analyze their impact on performance. Negative results will motivate the need for a

label manipulation attack detection mechanism for NIDS that does not depend on an

ML-based or statistical mechanism that can be circumvented and resource exhaustive,
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but by utilizing other inherent network features to its advantage.
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Chapter 3

SDN Attack Detection using Network

Port Statistics

To prevent the limitation of unmatching topologies and an overdependence on flow-

based statistics, we propose an ML-enabled Transmission Control Protocol (TCP)-

Synchronization (SYN) flood detection framework. To restrict the overdependence on

flow-based metrics, we use OpenFlow port statistics as our primary network metrics.

To ensure that organizations were capable of modeling their infrastructure topolo-

gies, an SDN simulation environment is utilized to simulate network activity. We

demonstrate that ML models such as Random Forest classifiers can differentiate nor-

mal traffic from SYN flood traffic with high performance. We also introduce novel

threat detection and localization techniques that can pinpoint where the attack traffic

originates from in the network.
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3.1 Effect of Cyber Attacks on SDN

SDNs were originally introduced to provide modularity and simplicity to modern

networking infrastructures by decoupling the data and control planes. Due to their

increased sophistication, they have become a permanent component in modern net-

work communications. Cyber attacks such as Distributed Denial of Service (DDoS)

threaten the healthy operation of SDN networks. The number of global DDoS attacks

is expected to reach 15.4 million by 2023 [77]. The main goal of a DDoS attack is to

consume and exhaust the resources, like bandwidth and memory, of a target machine,

thereby preventing it from serving legitimate and legal requests. An eminent DDoS at-

tack against SDNs is the TCP-SYN flood, which takes advantage of the Transmission

Control Protocol handshake mechanism, by not returning the final Acknowledgement

(ACK) packet to the target node. Attackers keep sending SYN packets to the target,

thereby consuming the target device’s resources [78] as illustrated in Figure 3.1.

To protect against DDoS attacks like TCP-SYN floods, we propose a TCP-SYN

flood detection framework using an SDN simulation environment that addresses the

above-mentioned limitations. Organizations can gear the simulation environment

and record metrics towards their topology, instead of relying on using the recorded

metrics derived from static topologies from the SDN datasets. This can provide

better performance and security. We also investigate different network statistics to

conduct attack detection. Flow statistics may contain many redundant features and

can increase cardinality, leading to higher training, and inference times. Another

option is to utilize port-level statistics instead of flow statistics where we capture

statistics from every single SDN port in the infrastructure.

Our proposed approach focuses on utilizing port statistics in conjunction with delta/differential

port statistics. Differential port statistics refer to the change in magnitude of observed
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Figure 3.1: TCP-SYN flood attack

statistics in switch ports in a time interval. Differential port statistics can provide

a more fine-grained analysis of network flows from the port level. Using both types

of port statistics, this range can be higher over the magnitude scale and can lead

to more accurate performance and faster identification. This can allow us to rapidly

capture and identify potential TCP-SYN flood attacks from the network traffic before

they cause harm. To avoid the class imbalance problem, we gather an equal number

of logs for both normal and malicious traffic.

Our main contributions proposed in this work are:

• Setting up an SDN simulation environment that each organization can gear
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towards their topology.

• Capturing various port statistics under both normal and attack conditions to

model both circumstances, while minimizing class imbalance by ensuring an

equal representation.

• Training an ML model on our captured data to generalize both conditions.

• Testing the performance of our approach towards real-time detection of TCP-

SYN floods.

3.2 Methodology

Our proposed approach primarily consists of using an SDN simulation environment to

build custom topologies that each organization can cater to its use case. Network flows

are simulated to showcase the appropriate functionality of the generated network.

During these flow simulations, port statistics are collected, which form the basis of

modeling normal behavior in the simulated SDN. Following this, a TCP-SYN flood

attack is launched that targets a particular host in the network. The same network

metrics are collected under this scenario. The accumulated network metrics form the

dataset to train an ML model in an offline manner. The trained ML model can then

be placed in the SDN controller, equipped to detect TCP-SYN floods in real time.

Figure 3.2 illustrates our proposed framework.

3.2.1 SDN Simulation Generation

To set up the simulation environment we used Open Network Operating System

(ONOS) SDN controller (API version 2.5.0) alongside Mininet. ONOS uses Open

Service Gateway Initiative (OSGi) service component at runtime for the creation and
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Figure 3.2: Proposed TCP-SYN detection framework

activation of components and auto-wiring components together, which makes it easy

to create and deploy new user-defined components without altering the core compo-

nents. Mininet creates a realistic virtual network and runs a real kernel, switch, and

application code on a single machine which creates a realistic testbed environment.

We also created our ONOS application (component) to collect the needed statistics.

We were able to gather port, flow entry, and flow table statistics for each connected

Open vSwitch in the Mininet topology. We created a custom Mininet topology us-

ing Mininet API (version 2.3.0) with Open Flow (OF) 14 protocol deployed to the
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switches.

3.2.2 SDN Flow Simulation

IPerf is a tool for testing, measuring, and simulating network functionalities. It is

used to create TCP and UDP data streams simulating network flows in virtual and

real networks with pre-chosen source and destination IPs and with a dummy payload.

By using the Mininet API with IPerf, we created a Python script to simulate realistic

network flows. Every 5 seconds, we created a flow between a randomly chosen source-

destination host pair with a bandwidth of 10 Mbps that lasted for 5 seconds. Hence,

we identify the total number of normal flows by N . This represents the number of

simulated flows under normal working conditions of the simulated SDN and not under

any attack.

3.2.3 Collect Statistics

As mentioned in Section 3.2.1, we created a custom application to collect and log

the available statistics that get polled on a configured interval (5 seconds) from OF

switches. We use port statistics which were collected by the message exchanging of

OFPPortStatsRequest and OFPPortStatsReply and computed on the controller side

by taking the difference between the last two collected data instances. We created a

key-value map of this data by gathering it from the data storage service using the "De-

vice Service" API provided by ONOS. After this, we logged the map of the collected

statistics to a Javascript Object Notation (.json) file with a name Ni.json. Table 3.1

shows the collected statistics and their descriptions per port on every switch in the

simulated SDN. These port statistics are chosen as they are customarily available in

most SDN setups. Also, in the case of any kind of DDoS threat like TCP-SYN, met-
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Table 3.1: Port statistics collected for every port on every switch

Port Statistic Description
Received Packets Number of packets received by the port
Received Bytes Number of bytes received by the port
Sent Packets Number of packets sent by the port
Sent Bytes Number of bytes sent

Port alive Duration The time port has been alive in seconds
Packets Rx Dropped Number of packets dropped by the receiver
Packets Tx Dropped Number of packets dropped by the sender
Packets Rx Errors Number of transmit errors
Packets Tx Errors Number of receive errors

rics that get influenced by byte/packet transmission along with network throughput

are key in detecting if a DDoS attack is actively exhausting network resources.

Additionally, we collect other network metrics as shown in Table 4.3. These metrics

provide the real-time state of the OF ports within the switches of the SDN. Also, they

are contemporary measures that can be collected from any SDN setup, including any

SDN simulation environment like the one utilized in our proposed framework. We

denote the dataset of collected port statistics under normal conditions as XN . The

total number of samples in XN can be symbolized as E. Here, xni
represents a single

data sample and xni
∈ XN , i = {0, 1.....E}. All the samples in XN are labeled as

normal.

3.2.4 TCP-SYN Attack

To capture port statistics during a threat, we launch a TCP-SYN flood attack on

the network. This attack is launched with a particular host machine as the intended

victim. The compromised machines that launch the attack, from here on referred

to as attackers, can be any of the remaining host machines in the simulated SDN

topology. Let the total number of attack flows be A. This represents the number
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Table 3.2: Additional statistics collected for intrusion detection

Statistic Description

Connection Point
Network connection point expressed
as a pair of the network element identifier
and port number

Total Load/Rate Obtain the current observed total
load/rate (in bytes/s) on a link

Total Load/Latest Obtain the latest total load bytes
counter viewed on that link

Unknown Load/Rate Obtain the current observed unknown-sized
load/rate (in bytes/s) on a link

Unknown Load/Latest Obtain the latest unknown-sized load bytes
counter viewed on that link

Time seen When the above-mentioned values were last
seen

is_valid Indicates whether this load was built on valid
values

of simulated flows under attack conditions of the simulated SDN. To create minimal

variance and class imbalance, we ensure that A = N .

Let the dataset of collected port statistics under attack conditions be denoted as XA.

The total number of samples in XA can be symbolized as F . Here, xai represents a

single data sample and xai ∈ XA, i = {0, 1, ..F}. All the samples in XA are labeled

as attack.

3.2.5 Dataset Creation

After the collection of the port statistics, we must combine both datasets N and A

into one dataset X, where X = {XN , XA}. This combination ensures that all data is

aggregated into one source, from which the ML algorithm can begin learning.
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3.2.6 ML Classifier

The ML classifier is utilized to perform predictions on network flows, to see if the

SDN infrastructure is under attack. For this ML procedure, X gets separated into

the Xtrain and Xtest datasets. We denote the total number of samples in Xtrain as

Y , while the total number of samples in Xtest is represented by Z and Y > Z. Let

the ML classifier be represented by µ. The classifier is trained on Xtrain to obtain a

model ν, that is saved:

ν = µ(Xtrain) (3.1)

Once the ML classifier is trained, the values in Xtest are parsed through to obtain the

accurate prediction of the network flow γ:

γ = ν(Xtest) (3.2)

The main objective behind running the testing dataset Xtest through the trained ML

classifier ν is to obtain performance metrics like precision, recall, and F-Measure scores

only. The primary objective of an anomaly detector for an SDN environment is to

rapidly parse through real-time network traffic. This traffic does not have any labels

associated with the data samples. Hence, it is entirely contingent upon the trained

anomaly detector ν to decipher between normal and attack traffic in an online setting.

3.2.7 Threat Detection

This is a primary component of the proposed TCP-SYN flood detection framework.

As we do not collect any flow-level metrics for classification, we do not have access
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to any host-level information like IP addresses. So, to accurately detect TCP-SYN

floods and where they are originating from on the network, we depend on the Threat

Detection and Threat Localization modules. These modules will also be tested on

real-time traffic that have no predicted and ground-truth labels associated with it.

For Threat Detection, let the list of real-time flows be U , and the total number of

flows be denoted with V . Here, ui represents a single flow and ui ∈ U, i = {0, 1, ..V }.

Within every single flow ui, multiple switches can be denoted as uis . Within each

switch uis , some ports predict, using ν, if that flow is normal or under attack. We

assume the total number of switches per flow is denoted as Pi. Let the total number

of ports per-flow ui be Wi, and list of ports for each flow ui get denoted by uisp such

that uisp ∈ ui, p = {0, 1, .....Wi}.

First, we must detect the number of ports that are classifying a flow as under attack.

That can be determined by running each port and its corresponding port statistics

through the pre-trained classifier to obtain their prediction ωp:

ωp =


0 ν(uisp ) == Normal,

1 ν(uisp ) == Attack,

p = {0, 1, .....Wi} (3.3)

The predictions of the flow then get summed up, denoted as ηp:

ηp =

Wi∑
0

ωp (3.4)

We introduce a hyperparameter called port threshold, denoted as Φ. Φ can be defined

as a threshold ratio where any value over this ratio infers that the SDN is under

a potential attack. Φ allows us to possess more control over the threat detection

approach by acting as a control variable. This value is determined by the system
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administrator(s) who oversee the SDN infrastructure and security, and the magnitude

of Φ is determined by the important parameters in the SDN topology like the number

of hosts, switches, links, and ports. We see from previous equations that, for every

single flow, a decision is made within every single port from all switches that the flow

passes through. The port classifies, based on observed port statistics, if that flow

is undergoing an attack using the trained ML model ν. The SDN is categorized as

undergoing a potential TCP-SYN flood attack if the ratio of ports that classify the

flow as an attack to the total number of ports that the flow passed through is greater

or equal to Φ. Hence, a flow is classified as under attack if:

ωp =


Attack ηp < Φ,

Normal ηp ≥ Φ,

p = {0, 1, .....Wi} (3.5)

Using Equation 3.5, we can classify if a network is undergoing a TCP-SYN flood

attack currently.

3.2.8 Threat Localization

For threat localization, we introduced another hyperparameter called the switch

threshold denoted as Θ. Θ allows us to possess more control over the threat lo-

calization approach by acting as a control variable and is responsible for recognizing

the switches where at least Θ+1 ports are classifying the flow as under attack. This

value is also selected by the system administrator(s) in charge of the SDN infrastruc-

ture and security, and the magnitude of Θ is determined by the important parameters

in the SDN topology like the number of hosts, switches, links, and ports. Every SDN

has its unique topology. But the basic building blocks will primarily be the same.

There will be various hosts that communicate with each other using network switches.
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The main goal of Θ is to accumulate the total list and frequency of flagged switches

using the trained ML model ν. The primary goal will be to localize the switch that

is flagged most often, as the malicious hosts performing the TCP-SYN flood will be

connected to that switch. Finding the flagged switches from a network flow can be

accomplished by:

ζs =


Attack

p∑
0

ηp > Θ,

Normal

p∑
0

ηp ≤ Θ,

(3.6)

where ζs represents if a switch has flagged the flow and where p = {0, 1..Wi}, s =

{0, 1..Pi}. Equation 3.6 allows us to detect all the switches that flag a flow as under

ongoing attack. The main goal here is to find all the flagged switches to pinpoint

which switches are passing attack flows through their ports. This can be used to

localize the hosts in the network that are malicious. To perform the final localization

of the switches to find out which hosts are malicious, we must compute the frequency

with which the switches get flagged. The switch that is flagged the most ψ, will be

directly connected to the malicious hosts that are performing the TCP-SYN flood

attack. This can be detected by:

ψ = argmax(
V∑
0

ζs), s = {0, 1, ..Pi} (3.7)

Using the above methodology, we can perform anomaly detection to detect ongoing

TCP-SYN flood attacks in the SDN. Additionally, we are also able to localize the

attackers by flagging the closest switch that the attackers are connected to. The

proposed method employs the usage of port statistics, which are customarily available
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in most normal networking setups. For our experimental purpose, we are emphasizing

on SDNs due to the wide relevance and usage of SDN architectures across industries,

organizations, and critical infrastructures over normal networking architectures. That

is why our experimentation and results are conducted using an SDN and metrics

collection is regulated using OpenFlow statistics. However, this research and the

proposed method can be expanded to other modern computer network architectures

like SD-WAN, SASE, or other traditional networks.

3.3 Experimentation and Results

3.3.1 Setup

The simulated topology for our experimentation can be seen in Figure 3.3 which

consists of 10 hosts and 12 switches. For the attack scenario, we launched a TCP-

SYN flood from Hosts 1 and 2, while the intended target/victim machine was Host

8. The goal of the proposed framework is to be able to detect the ongoing attack and

ultimately, localize which of the hosts are malicious by finding the switch closest to

the attackers. The attack deployment was conducted using the scapy library while

ML analysis, threat detection, and localization were conducted using TensorFlow,

sklearn, and python.

3.3.2 Results and Analysis

For our experiments, we utilized the following initial values: N = 50, A = 50, U =

100,Φ = 0.3,Θ = 3. Our generated datasets were split using an 80%-20% ratio

between training and testing data. For performance metrics, we are using Accuracy

(A), Precision (P), Recall (R), and F-Measure (F) scores. The ML classifier chosen for
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Figure 3.3: Simulated SDN Topology

Table 3.3: Performance of RF, MLP, and SVM to the generated dataset

Classifier Accuracy
Random Forest 99.342%

Multi Layer Perceptron 51.409%
Support Vector Machine 97.852%

our experiments was a Random Forest (RF) classifier. This algorithm was chosen due

to its relevance and wide usage when studying SDN anomaly detection in literature.

First, we look at the performance that is being achieved by various ML classifiers

on our collected port statistics dataset. The classifiers tested were RF, Multi-Layer

Perceptron (MLP), and Support Vector Machine (SVM) due to their relevance and

wide usage when studying SDN anomaly detection in literature. The model with

the highest accuracy can be correlated with better performance during TCP-SYN

flood attack detection. Table 3.3 illustrates the performance of the algorithms when

running the generated datasets. We notice that the RF gives us the best performance

followed by the SVM, while the MLP provides us with mediocre performance for our

dataset.
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Figure 3.4: ML performance on port statistics and combinational port statistics

Next, we analyze the impact of differential port statistics on the performance of our

RF anomaly detector. For this, we observe the performance achieved by our ML

algorithm when facing normal port statistics versus the combination of both normal

and differential port statistics, which we also call combinational port statistics. Figure

3.4 shows us the performance achieved on just port statistics and combinational port

statistics. The ML classifier achieves good performance on both data types, but the

algorithm performs better on combinational port statistics as it attains better P, R,

and F scores. This can be attributed to combinational port statistics being collected

and reported as normal statistics and their magnitude differences in a time interval.

This prevents the aggregation of metrics over time, which may be occurring in normal

port statistics. This also allows a more fine-grained analysis of network flows from the

port level and provides better performance metrics. Superior performance is preferred

as this anomaly detector will be placed to analyze live/real-time traffic which has no

labels.

For a comprehensive analysis of the degree of influence, our captured network met-
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Figure 3.5: Using LIME to find most influential features

rics exhibit over the classification performance of our RF model, we also analyze

the explainability of the model. This is conducted by analyzing the predictions of

the model, on a random single testing sample, using the Local Interpretable Model-

agnostic Explanations (LIME) framework [79] and the results are provided in Figure

4.2. This helped provide explainability and interpretability to our TCP-SYN detec-

tion framework. We observe that, for the sample, the model predicted it as undergoing

a TCP-SYN flood attack. The main dataset features that were influential in the pre-

diction were port statistics like Received Packets, Sent Packets, Received Bytes, and

Sent Bytes. From this, we can see the impact these metrics have on the detection of

TCP-SYN attacks detection. This also reinforces customary knowledge that network

metrics revolving around byte/packet transmission, along with network throughput,

are key in detecting if a DDoS attack is actively exhausting network resources.

Subsequently, we observe the performance of our proposed method by varying the

number of normal and attack flows used to generate the dataset. For this, we obtain
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Figure 3.6: ML performance on varied number of flows for N and A

performance metrics while we are varying the values of N = A = {10, 50, 100}. The

results of this experiment are illustrated in Figure 3.6. We observe that N = A = 10

provided decent A, P, R, and F scores, but those scores rose when N = A = 50.

The magnitudes continue to be steady when N = A = 100. At N = A = 10, the

model was not optimally learned. It achieved optimal learning at N = A = 50 and

continued to hold the same performance till N = A = 100.

The above results were conducted using the testing dataset from our generated TCP-

SYN flood detection dataset. However, the primary aim of this research is to propose a

framework that can conduct anomaly detection on real-time data. The generated ML

algorithm can be placed in the SDN controller, and it can observe live traffic to provide

rapid inferences to protect the SDN infrastructure from TCP-SYN flood attacks. The

remaining analysis is conducted using real traffic from the SDN infrastructure while

it is undergoing the attack.

Next, we observe the performance of the proposed approach under varying values of

Φ = {0, 0.05, ....0.35}. The goal here is the observe the performance metrics when
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Figure 3.7: ML performance on varied values for Φ

the value of Φ is diversified. The analysis is illustrated in Figure 3.7. We can see

that P and F are low at the lower values of Φ. As the value of Φ increases, the values

of P and F progressively increase till Φ = 0.3. The value of R remains constant

throughout. This suggests that lower values of Φ restrict our ability to optimally

detect TCP-SYN floods, as many normal flows get flagged as under attack, leading

to high false positivity rates. This can limit the ability of the framework to optimally

detect ongoing TCP-SYN floods. Higher values of Φ provide more balance to the

framework and lead to better performance.

Similarly, we observe the performance of the proposed approach under varying values

of Θ = {0, 0.5, .....4}. The goal here is to observe the number of flagged switches when
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Figure 3.8: Detecting Number of Flagged Switches by varying Θ

the value of Θ is diversified and to identify the value of Θ that minimizes the number

of flagged switches. The analysis is illustrated in Figure 3.8. We observe that lower

values of Θ yield a high number of flagged switches. That maximizes the number of

switches through which a flow under attack passes and does not help identify and

localize the malicious hosts, which is an optimization problem. As the value of Θ

increases, it provides more control to the anomaly detector to appropriately detect

an attack and localize the malicious hosts as it increases the threshold for how a

switch becomes flagged. Θ = 3 provides the best performance as it identifies the

minimal number of flagged switches before that value becomes null, which is 4. This

means that the malicious hosts must be connected to these 4 switches.
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Figure 3.9: Checking the most frequently flagged switches over U number of real-time
flows

Lastly, we perform the final step of threat localization in which we compute the

frequency with which certain switches are flagged over the total number of real-time

flows being observed. This can be observed in Figure 3.9. Here, we observe that over

U number of real-time flows, Switches 2, 11, 9, and 0 are flagged the most times with

frequencies of 72, 51, 51, and 30, respectively. Switch 2 is flagged the highest number

of times, which indicates that the malicious hosts must be closely connected to this

switch. This is confirmed as we can observe, from the topology diagram in Figure 3.3,

that the malicious hosts 1 and 2 are both directly connected to Switch 2. Using the

proposed methodology, we can identify that the SDN infrastructure was undergoing

a TCP-SYN flood attack using port statistics. On top of identification, we are also

able to localize the malicious hosts 1 and 2 using our Threat Localization module.

Through these research efforts, we create a TCP-SYN flood detection framework

for SDN that can be catered to dynamic organizational topologies. The proposed

technique primarily uses network port statistics from core devices like switches and
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routers in the topology to monitor the network’s security. Evaluated results showcase

that ML classifiers like RF can differentiate normal traffic from malicious traffic with

high performance. This research highlights the ability to perform binary classification

using network port statistics. The subsequent step would be to expand this data

collection to other attack categories for multi-class classification, by generating a new

NIDS dataset with various attack labels.
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Chapter 4

University of Nevada, Reno -

Intrusion Detection Dataset

To reduce the limitations of imbalance classes and labels and a lack of dataset num-

bers, we propose the University of Nevada - Reno Intrusion Detection Dataset (UNR-

IDD) that provides researchers with a wider range of samples and scenarios. The

proposed dataset utilizes network port statistics for more fine-grained control and

analysis of intrusions. To promote balance within the classes, the dataset ensures

that each label is minimally variable from the rest in the number of samples. The

proposed dataset also includes topological information and can be effectively trained

in a short time interval due to its dimensionality. Using different ML algorithms, we

provide a benchmark to show efficient performance for both binary and multi-class

classification tasks. The chapter further explains the intrusion detection activities

rather than providing a generic black-box output of the ML algorithms.
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4.1 Usage of ML Models for NIDS

The usage of ML for NIDS has gained traction in the last decade as various open-

sourced datasets have been proposed and established. Customary NIDS datasets in-

clude NSL-KDD [12], UNSW-NB15 [17], and CIC-IDS-2018 [13]. However, a common

problem that has been identified with many of these datasets is inadequate modeling

of tail classes [80]. Tail classes refer to certain labels with limited samples compared

to other labels, leading to poor performance when fitting the ML model. Researchers

have been looking at methods to address this issue of tail classes. Commonly inves-

tigated methods include undersampling and oversampling. However, oversampling

increases the size of the dataset, increasing training time, memory, and complexity.

Correspondingly, undersampling can reduce data samples from the majority classes,

affecting the overall performance of prediction models [81]. It can also be argued that

because these techniques manipulate existing data samples, they do not add any new

insights.

Another limitation of the current datasets is that they mostly depend on flow-level

statistics. This can limit the transferability of the NIDS solutions to other network

configurations since the flow statistics depend on the network topology and traffic

characteristics. In addition, many of these datasets contain redundant features that

play no impact in being able to detect potential network intrusion types. Depending

on the ML approach being utilized, these features can also increase the cardinality of

the dataset, leading to increased training and inference times. Finally, some existing

datasets suffer from incomplete or missing records. These records or samples must be

ignored or dropped from the overall dataset, which leads to sub-optimal performance.

Addressing the above-mentioned limitations is vital to ensuring that proper NIDS are

being developed to adequately protect networking infrastructures from intrusions.
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We propose the University of Nevada - Reno Intrusion Detection Dataset (UNR-

IDD). The main difference between UNR-IDD and existing NIDS datasets is that

UNR-IDD consists primarily of network port statistics. These refer to the observed

port metrics recorded in switch/router ports within a networking environment. The

dataset also includes delta port statistics which indicates the change in magnitude of

observed port statistics within a time interval. Compared to datasets that primarily

use flow statistics, UNR-IDD can provide a more fine-grained analysis of network

flows as decisions are made at the port level versus the flow level. This can lead

to rapid identification of potential intrusions. We also address the limitation of tail

classes. Our dataset ensures that there are enough samples for ML classifiers to

achieve high F-Measure scores, uniquely. Our dataset also ensures that there are no

missing network metrics. The proposed observable dataset metrics can be obtained

through most networking architectures. However, for our testbed, we have used a

software-defined network (SDN) environment, due to the wide relevance of and usage

of SDN architectures across industries, organizations, and critical infrastructures. In

summary, the main contributions of our dataset include:

• The primary usage of port and delta port statistics to model the various intru-

sions in the dataset.

• Confirms enough samples to ensure high-performance metrics across all tail

classes.

• Ensuring all data samples are filled and there is no missing data in the dataset.

• Provides performance comparison of intrusion detection models when using

UNR-IDD and other NIDS datasets.
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4.2 UNR-IDD Dataset

We setup up our testbed using an SDN simulation environment due to the ease of

usability and implementation. It also ensures that the dataset is not dependent on

any static topology and can be configured to reproduce the network activity of various

topologies. Following the testbed configuration, we perform flow simulations within

the SDN topology to replicate appropriate functionality. During these flow simula-

tions, desired network statistics are collected, under normal and attack conditions.

4.2.1 Testbed Configuration

To set up the testbed, we use Open Network Operating System (ONOS) SDN con-

troller (API version 2.5.0) alongside Mininet for the network topology generation.

ONOS uses the Open Service Gateway Initiative (OSGi) service component at run-

time for the creation and activation of components and auto-wiring components to-

gether, making it easy to create and deploy new user-defined components without

altering the core constituents. Mininet creates the desired virtual network, and runs

a real kernel, switch, and application code, on a single machine, thereby generating a

realistic testbed environment. We also implemented our ONOS application to collect

network statistics. Specifically, we gathered delta and cumulative port, flow entry,

and flow table statistics for each connected Open vSwitch in the Mininet topology.

We created a custom Mininet topology using Mininet API (version 2.3.0) with Open

Flow (OF) 14 protocol deployed to the switches. The generated SDN topology for our

experiments is illustrated in Figure 4.1, which consists of 10 hosts and 12 switches.
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Figure 4.1: Simulated SDN topology

4.2.2 Flow Simulation

IPerf is used to create TCP and UDP data streams simulating network flows in

virtual and real networks using dummy payloads. By using the Mininet API and

IPerf, we created a Python script to simulate realistic network flows. Once every 5

seconds, we initiated Iperf traffic between a randomly chosen source-destination host

pair with a bandwidth of 10 Mbps and a duration of 5 seconds. These values must be

carefully chosen as they are dependent on the number of nodes, hosts, switches, and

geographical spread of the simulated network. We then simulate flows under normal

and intrusion conditions to gather data in every scenario. To ensure that each normal

and intrusion category is minimally variable and adequately represented, we execute

the same number of flows while simulating each scenario.
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4.2.3 Data Collection

We create a custom application to collect and log the available statistics that are

captured periodically (once every 5 seconds) from OpenFlow (OF) switches. The

statistics are collected utilizing OFPPortStatsRequest and OFPPortStatsReply mes-

sages between controller and switches. The delta port statistics are computed on the

controller side by taking the difference between the last two collected data instances.

We create a key-value map of this data by gathering it from the data storage service,

using the "Device Service" API provided by ONOS. After this, we logged the map

of the collected statistics to a Javascript Object Notation (.json) file with a name

Ni.json. Table 4.1 shows the collected port statistics and their descriptions per port

on every switch in the simulated SDN. These statistics relay the collected metrics

and magnitudes from every single port within the SDN when a flow is simulated

between two hosts. Table 4.2 illustrates the collected delta port statistics and their

descriptions per port on every switch. These delta statistics are used to capture the

change in collected metrics from every single port within the SDN when a flow is

simulated between two hosts, at a time interval of 5 seconds. Additionally, we also

collect some flow entry and flow table statistics to work in conjunction with the col-

lected port statistics as seen in Table 4.3. These metrics provide information about

the conditions of switches in the network and can be collected in any network setting.

4.2.4 Intrusions

The following intrusions are simulated in the data collection phase:

• TCP-SYN Flood: A Distributed Denial of Service (DDoS) attack where at-

tackers target hosts by initiating many Transmission Control Protocol (TCP)

handshake processes without waiting for the response from the target node. By
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Table 4.1: Port statistics collected for every port on every switch

Port Statistic Description
Received Packets Number of packets received by the port
Received Bytes Number of bytes received by the port
Sent Packets Number of packets sent by the port
Sent Bytes Number of bytes sent

Port alive Duration The time port has been alive in seconds
Packets Rx Dropped Number of packets dropped by the receiver
Packets Tx Dropped Number of packets dropped by the sender
Packets Rx Errors Number of transmit errors
Packets Tx Errors Number of receive errors

doing so, the target device’s resources are consumed as it must keep allocating

some memory space for every new TCP request.

• Port scan: An attack in which attackers scan available ports on a host device

to learn information about the services, versions, and even security mechanisms

that are running on that host.

• Flow Table Overflow: An attack that targets network switches/routers where

attacks compromise the functionality of a switch/router by consuming the flow

tables that forward packets with illegitimate flow entries and rules so that le-

gitimate flow entries and rules cannot be installed.

• Blackhole: An attack that targets network switches/routers to discard the

packets that pass through, instead of relaying them on to the next hop.

• Traffic Diversion: A attack that targets network switches/routers to reroute

the direction of packets away from their destination, to increase travel time,

and/or to spy on network traffic through a man-in-the-middle scenario.

These intrusion types were selected for this dataset as they are common cyber attacks

that can occur in any networking environment. Also, these intrusion types cover

attacks that can be launched on both network devices and end hosts.



60

Table 4.2: Delta port statistics collected for every port on every switch

Delta Port Statistic Description

Delta Received Packets Change in number of packets received
by the port

Delta Received Bytes Change in number of bytes received
by the port

Delta Sent Packets Change in number of packets sent
by the port

Delta Sent Bytes Change in number of bytes sent

Delta Port alive Duration Change in the time port has been alive
in seconds

Delta Packets Rx Dropped Change in number of packets dropped
by the receiver

Delta Packets Tx Dropped Change in number of packets dropped
by the sender

Delta Packets Rx Errors Change in number of transmit errors
Delta Packets Tx Errors Change in number of receive errors

4.2.5 Labels

This dataset can be broken down into two different ML classification problems: bi-

nary and multi-class classification. The goal of binary classification is to differentiate

intrusions from normal working conditions. Binary classification can estimate if a net-

work is under attack but does not provide any information about the type of attack.

The labels for binary classification in UNR-IDD are illustrated in Table 4.4.

The goal for multi-class classification, however, is to differentiate the intrusions not

only from normal working conditions but also from each other. Multi-class classifi-

cation helps us to learn about the root causes of network intrusions. The labels for

multi-class classification in UNR-IDD are illustrated in Table 4.5.
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Table 4.3: Flow statistics collected

Statistic Description

Connection Point
Network connection point expressed
as a pair of the network element identifier
and port number

Total Load/Rate Obtain the current observed total
load/rate (in bytes/s) on a link

Total Load/Latest Obtain the latest total load bytes
counter viewed on that link

Unknown Load/Rate Obtain the current observed unknown-sized
load/rate (in bytes/s) on a link

Unknown Load/Latest Obtain the latest unknown-sized load bytes
counter viewed on that link

Time seen When the above-mentioned values were last
seen

is_valid Indicates whether this load was built on valid
values

TableID Returns the Table ID
values

ActiveFlowEntries Returns the number of active flow entries in
this table.

PacketsLookedUp Returns the number of packets
looked up in the table.

PacketsMatched Returns the number of packets that
successfully matched in the table

MaxSize Returns the maximum size of this table.

4.3 Experimentation, Results, and Analysis

To showcase the functionality of our proposed dataset, UNR-IDD, we run evaluations

using the dataset and demonstrate the performance achieved. We illustrate results

across multiple scenarios by varying the classification type, the ML algorithms, and

other prominent NIDS in the literature. For performance evaluation, we are using

accuracy (A), precision (P), Recall (R), and F-Measure (F) scores as the metrics.

In addition, we are also using the mean scores for precision (Pµ), recall (Rµ), and

f-measure (Fµ) across all label types in the datasets during multi-class classification.

This will provide us with the mean performance achieved on the dataset for all label
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Table 4.4: Multi-class Classification Labels

Label Description
Normal Normal Network Functionality
Attack Network Intrusion

Table 4.5: Multi-class Classification Labels

Label Description
Normal Normal Network Functionality

TCP-SYN TCP-SYN Flood
PortScan Port Scanning
Overflow Flow Table Overflow
Blackhole Blackhole Attack
Diversion Traffic Diversion Attack

types.

First, we observe the performance that is being achieved from the proposed dataset

on both binary classification and multi-class classification scenarios. For this, we are

utilizing a Random Forest (RF) as our ML algorithm. We chose to use an RF due to its

relevance and wide usage when studying NIDS in literature. The binary classification

performance and multi-class classification performance achieved from the dataset can

be observed in Table 4.6 and Table 4.7, respectively. We can see that in Table 4.6,

both label types are providing a performance of 1.0 for P, R, and F scores. This means

that the dataset is linearly separable, and the RF has no trouble detecting if a given

network flow is normally functioning or under any potential intrusion. Similarly, in

Table 4.7, we see the RF achieving excellent performance as well. All the label types

achieve high scores for P, R, and F scores. These can be attributed to the fact that

each label type has adequate representation and enough data samples thereby, makes

them linearly separable from each other. This makes it easier for ML classifiers to

recognize them individually, which does not deteriorate performance. These results

demonstrate one of the main contributions of this proposed dataset, which is ensuring
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Table 4.6: Binary Classification Performance

Label P R F
Attack 1.0 1.0 1.0
Normal 1.0 1.0 1.0

Table 4.7: Multi-class Classification Performance

Label P R F
Blackhole 0.98 0.98 0.98
Diversion 0.99 0.97 0.98
Normal 1.0 1.0 1.0
Overflow 0.98 0.76 0.86
PortScan 0.91 0.94 0.92
TCP-SYN 0.91 0.92 0.92

that all labels have enough data samples to achieve high performances, individually

and as a collective.

Next, we observe the performance that is being achieved from the proposed dataset us-

ing multiple ML algorithms: RF, Multi-layer Perceptron (MLP), Support Vector Ma-

chine (SVM), Bagging Classifier (BC), KNeighborsClassifier (KNC), and AdaBoost

Classifier (ABC). We chose to use these algorithms due to their relevance and wide

usage when studying NIDS in literature, along with their ease of accessibility through

the sklearn libraries. The performance achieved by the algorithms on UNR-IDD is

provided in Table 4.8. We can see that the best performance is achieved by the RF

and BC classifiers as they achieve the near-optimal Pµ, Rµ, and Fµ scores. This is

followed by the SVM, KNC, and ABC classifiers which achieve above-average scores,

succeeded by the MLP which achieves substandard performance. These results can

be associated with the fact that an RF classifier is an ensemble classifier consisting

of multiple decision trees and can overcome the problem of overfitting. Similar func-

tionality occurs in BC as it also is an ensemble classifier whose default classifier is a

decision tree. Accuracy and variable importance are also automatically generated in
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Table 4.8: Multi-class Classification Performance using Machine Learning Algorithms

Algorithm Pµ Rµ Fµ

SVM 0.89 0.79 0.81
MLP 0.59 0.54 0.54
RF 0.96 0.92 0.94
BC 0.95 0.93 0.94

KNC 0.79 0.75 0.77
ABC 0.69 0.59 0.55

RF and BC [82], compared to the other classifiers observed.

We also analyze the explainability of the RF model across various labels for a more

comprehensive analysis. This is conducted by analyzing the predictions of the model,

on testing samples with varying predicted labels, using the Local Interpretable Model-

agnostic Explanations (LIME) framework [79]. These results are provided in Figure

4.2. We exhibited another proposed contribution to the UNR-IDD dataset, which

incorporates the primary usage of port and delta port statistics to model the various

intrusions in the dataset.

Lastly, we compare the performance that is being achieved from the proposed UNR-

IDD dataset to two open-sourced NIDS datasets: NSL-KDD and CIC-IDS-2018.

These two are established NIDS datasets that are frequently used for researching

network intrusion and anomaly detection. We use the same RF classifier for all three

datasets and their performance is evaluated using A, Pµ, Rµ, and Fµ. We also in-

troduce a new metric, min F, which represents the minimum F-Measure score that

is achieved for any label in that dataset. This metric can highlight the variability

between Fµ and the min F value in each dataset.

We observe the impact of the dataset sizes on the training times. We provide this

comparison in Table 4.9 where we provide the dataset dimensions (samples and fea-

tures) for all the datasets. As observed, CIC-IDS-2018 contains 6,291,450 samples
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(a) Explanations for PortScan

(b) Explanations for Normal

(c) Explanations for Overflow

Figure 4.2: LIME Explanations for UNR-IDD

and 80 features, NSL-KDD contains 125,974 samples and 43 features, and UNR-IDD

contains 37,412 samples and 34 features. This emphasizes that the proposed UNR-

IDD dataset has the lowest operational footprint out of the observed NIDS datasets.

For evaluation, we note both the Overall Training Time (OTT) in seconds (s) and

Normalized Training Time (NTT) in milliseconds (s). We observe that UNR-IDD,

due to its smaller dimensions, takes less time to train at 4.03s than NSL-KDD at

9.84s and much less time to train than CIC-IDS-2018 at 9056.23s. NTT can be de-

fined as the time taken to train one sample and can be computed by dividing the

OTT by the number of samples. We notice that the NTT is least for the NSL-KDD

with 0.078 ms/sample, with UNR-IDD achieving comparable performance to it with

0.107 ms/sample. This can be attributed to NSL-KDD having only 3 categorical
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Table 4.9: Training Analysis of the NIDS Datasets

Dataset Samples Features OTT (s) NTT (ms)
UNR-IDD 37,412 34 4.03 0.107
NSL-KDD 148,517 43 9.84 0.078

CIC-IDS-2018 6,291,480 80 9056.23 1.439

UNR-IDD CIC-IDS-2018 NSL-KDD
NIDS Datasets
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Figure 4.3: Performance Analysis of UNR-IDD, NSL-KDD, and CIC-IDS-2018
datasets

features per sample, whereas UNR-IDD contains 5 categorical features per sample.

CIC-IDS takes the most NTT out of the three datasets with 1.439 ms/sample. From

the perceived OTT and NTT, we observe that the UNR-IDD provides the quickest

OTT and very comparable NTT. This signifies that using UNR-IDD, a competent

ML model for intrusion detection can be generated much quicker as it can train the

overall dataset the fastest while training each sample with a comparable speed to that

of the other observed NIDS datasets.

In Figure 4.3, we observe that both the NSL-KDD and CIC-IDS-2018 datasets achieve

99% A scores. Relatively, the UNR-IDD dataset achieves comparable performance

with an A score of 95%. This can be attributed to the UNR-IDD dataset being
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smaller, overall, than NSL-KDD and significantly smaller, overall, than CIC-IDS-

2018 in terms of both the number of samples and features. We also note that the

Pµ score for the UNR-IDD dataset is equivalent to that of CIC-IDS-2018 at 96%.

Compared to this, NSL-KDD achieves a Pµ score of 79%. Similarly, the Rµ score for

UNR-IDD is higher than CIC-IDS-2018 and NSL-KDD at 93% versus 91% and 74%,

respectively. The most important contribution of the proposed UNR-IDD dataset is

its effect on F-Measure scores. Since each tail class is adequately represented in the

dataset, it achieves the highest Fµ out of all three datasets with 94% compared to

93% and 76% for CIC-IDS-2018 and NSL-KDD, respectively. Similarly, the minimum

F score that is achieved across all three datasets is highest in the UNR-IDD dataset

with 86%, while the CIC-IDS-2018 and NSL-KDD datasets achieve a minimum F

score of 58% and 0% respectively. This highlights the UNR-IDD’s prioritization of

the F-Measure score as it achieves the least variability between the Fµ and the min

F value observed among all the datasets.

In this research effort, we generated a new NIDS dataset called UNR-IDD that fo-

cuses primarily on the usage of network port statistics to perform both binary and

multi-class classification. The dataset prioritizes representation for all tail classes and

ensures that each label achieves high performance and F scores. Compared to custom-

ary datasets, UNR-IDD is a smaller operational footprint. However, the dataset still

provides efficient performance across all the labels. Due to this, anomaly/intrusion

detection could be trained more easily in resource-constrained network devices or

low-end servers. Presently, this dataset can be publicly accessed on Kaggle [83]. The

next step in this research is to generate ML classifiers capable of performing real-time

network intrusion detection to protect SDNs from cyber attacks.
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Chapter 5

Confident and Explainable Anomaly

Detection

To diminish the prevalence of underconfident and non-interpretable ML-based NIDS

classifiers, we propose an SDN anomaly detection application, Confident and Explain-

able Anomaly Detector (CEAD), that automatically detects malicious network flows

in SDN-based network architectures. The proposed application employs a set of ML

classifiers to improve the confidence score of a prediction, thereby creating improved

trust in the prediction while providing interpretability to the anomaly detector. The

method utilizes the Explainable Artificial Intelligence (XAI) framework to provide

interpretation to predictions, in contrast to their traditional “black box" nature. It

unearths network features that establish the most influence between predicted intru-

sion types.
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5.1 Increasing Trust on ML Classifiers

A common problem associated with ML-based predictions is mediocre confidence

scores. This makes ascertaining the certainty of predictions difficult. High confidence

scores allow us to use an ML system in a live environment, as predictions are fore-

casted correctly with high probability. Therefore, an ML-based service requires, not

only high accuracies in train/test datasets but also high confidence scores. The high

confidence in an ML prediction assists to automate the changes in SDN flow tables

that govern network policies. Another limitation of ML-based systems is the lack of

explainability, as most ML research is conducted in a “black box" manner, lacking

transparency and explainability. This can be problematic in network anomaly detec-

tion as users will not be able to explain the cause of the anomaly. An interpretation

of the ML anomaly detector makes it easier for the system to understand which of

the network features is more influential in detecting anomaly types.

The low confidence scores and lack of explainability can be catastrophic, specifically,

in critical infrastructures like power, energy, and transportation systems as these sys-

tems are automated and contain minimal human interaction. Adding explainability

will improve trust in the anomaly detector’s predictions; specifically, the relevance

of the dataset features, the confidence of the predictions, and the justification of the

results. Also, it can be used to scrutinize and deduce information from the SDN

beyond a simple knowledge extraction. Hence, SDN anomaly detection models can

not only classify network flows as benign or anomalous but also provide evidence for

such predictions; this can help network administrators with improved analytics. They

can then use this knowledge to design system policies that protect them from cyber

attacks. The major contributions of this research include:

• This chapter presents an ML pipeline, called CEAD, that uses different models
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to improve the confidence score of an SDN-based automated network anomaly

detector.

• We use the proposed pipeline and incorporate an Explainable Artificial In-

telligence (XAI) framework to interpret the type of predictions made by the

proposed ML pipeline.

• We test the proposed pipeline on diverse SDN network datasets. We also un-

cover dataset features that maximally influence the predictions from the pro-

posed framework.

5.2 System Model

As previously mentioned, the three main components in an SDN architecture are the

infrastructure, control, and application layers. Automatic detection of anomalies and

their type is done at the application layer along with the other hosted applications

like network monitoring or management modules (Dynatrace or SolarWinds Network

Performance Monitor). This ensures the availability of adequate resources like low

latency memory and faster processor speeds to conduct online anomaly detection.

Upon the detection of a particular type of anomaly, the flow tables are updated via the

SDN control plane to take any action at the infrastructure or network switch layers.

For example, the flow tables could be updated to block packets from a malicious IP

address in case a Denial of Service (DoS) attack is detected. The presence of the

XAI module enables to update of variables in the flow table like source or destination

address/port, based on its influence on prediction. Another possible instance is if

XAI shows that the source port is influencing the prediction, then flow tables could

be updated to block it. It will enable only particular kinds of traffic to be blocked

rather than benign traffic.
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Figure 5.1: Proposed ML pipeline for anomaly detection and interpretation

Furthermore, the type of attacks and the features responsible for the attack can be

stored in a log file. The log information is analyzed in an offline manner by the

network administrator. Based on the collected log, long-term network policies are

designed to make the system robust against different kinds of attacks.

5.3 Methodology

The proposed approach primarily consists of a high-confidence anomaly detector

whose predictions are then interpreted by an XAI framework, from which the in-

fluential features are logged. Fig 5.1 illustrates our proposed methodology.
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5.3.1 Raw dataset for Machine Learning pipeline development

The proposed approach has wide network applications and is agnostic to the dataset

features. Let the network dataset be denoted using the variable X, consisting of E

total samples. xi represents a single data sample and xi ∈ X, i = {0, 1...E}. The full

data suite X is partitioned into the training Xtrain and test Xtest sets. We assume

the total number of training samples is U , while the total number of testing samples

is V . After the preparation of train and test sets for the ML pipeline, we perform

data balancing.

It should be noted that Xtest is used in this chapter, primarily, to showcase test-

ing purposes and performance evaluation. However, in a live system for which this

pipeline is intended, the input to the model would be network features in real time.

Based on the network features as input, the attack type and its interpretation are

performed.

5.3.2 Data balancing

We balance the data in the train set to avoid overfitting due to the majority classes.

Data balancing is performed using the random oversampling method. Random over-

sampling involves augmenting the dataset with multiple copies of minority classes to

provide more representative data samples for minority classes in Xtrain. This ensures

that both minority and majority classes are proportionate.



73

5.3.3 Machine Learning pipeline anomaly detection and clas-

sification

Following dataset balancing, we develop the ML pipeline for prediction, interpreta-

tion, and log information. The proposed pipeline combines many ML classifiers. Let

an ML classifier be represented by µ and the total number of classifiers be denoted

as N . Then, each classifier is trained on Xtrain, to obtain a model Mj that is saved

and stored:

Mj = µj(Xtrain), j = {1, 2.....N} (5.1)

Once the ML classifiers are trained, the values in Xtest are parsed through every

trained ML classifier to obtain the predicted type of the anomaly γj and the confidence

level ϵj of the associated prediction:

γj, ϵj =Mj(Xtest) (5.2)

After parsing, the next step is comparing the confidence scores.

5.3.4 Confidence Score Comparator

In this module, the aim is to determine the trained ML model µj that provides the

best confidence score for each sample xi ∈ Xtest. This can be conducted using the

following equation:

ηi = arg max
xi∈Xtest

(ϵj), i = {0, 1.....V } (5.3)

Here, ηi corresponds to the trained ML classifier µj that provides the best confidence

score and corresponding prediction γj, for the testing data sample xi.
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5.3.5 Prediction interpretation using XAI

The detected attack type is interpreted using an XAI framework. For our technique,

we use Local Interpretable Model-agnostic Explanations (LIME) [79]. We perform

interpretability analysis for Xtest, using each testing sample xi’s optimally trained ML

classifier ηi. We introduce β that represents the fitted and simple, interpretable model

around the data sample xi ∈ Xtest and supplies the local explanations of the classifier

ηi and operates along the same interpretable representation as xi. The interpretable

representation of xi is denoted as x′i. Therefore, the explanation τ is provided using:

τ(xi) = argmin
β∈B

Λ(ηi, β, πxi
) + Ω(β) (5.4)

Here, B represents the family of explainable linear models. The loss function of the

framework is symbolized by Λ, while πxi
denotes the locality around the value of

xi. Finally, Ω represents the complexity penalty of the local model β. The locally

weighted square loss function Λ is represented by:

Λ(ηi, β, πxi
) =

∑
j

πxi
(zj)(ηi(zj)− β(z′j))

2 (5.5)

which denotes the weighted euclidean distance where the sum iterates over a set of

sample perturbed points z around xi, {(zk, z′k), k = 1, 2....M}. Here, zk ∈ z is a

perturbed original data sample while z′k is the corresponding interpretable represen-

tation. The samples are weighed using πxi
(zk), based on their similarity to xi. Here,

πxi
(zk) is represented as:

πxi
(z) = exp(−D(xi, z)

2/σ2) (5.6)



75

where D represents a distance function with width σ. Many open-sourced XAI frame-

works use a Lasso regression [84], as the distance function D, to prompt any sparsity

in explanations and depend on a hyperparameter to restrict their explorations and

complexity. In this case, the hyperparameter is K which represents the number

of most influential features for the local interpretable explanation. After performing

Equations 5.4, 5.5, 5.6, the resultant value for each τ(xi) = {F0, F1, F2, ......K}, where

F represents the influential dataset feature for sample xi. Lastly, we must compute

the complete list of influential features within the whole testing dataset. This is

computed using a frequency counter that is represented by:

ϕ =
V∑
i=0

τ(xi) (5.7)

where ϕ represents the list of the most influential dataset features or features that were

most frequently encountered by the XAI algorithm when providing local interpretable

explanations throughout Xtest.

5.4 Simulation and Results

Our proposed methodology was implemented in python and utilized the TensorFlow,

sklearn, imblearn, and LIME frameworks.

5.4.1 Datasets

We performed our experiments using two open-sourced SDN datasets: NSL-KDD [12]

and CICIDS-2017 [13]. The features in these datasets contain network metrics that

can be gathered from any SDN setup, like inter-arrival time, source and destination

bytes, flow duration, transaction bytes, etc.



76

Dataset Classifier Accuracy Mean Confidence Score
NSL-KDD RF 99.82 % 0.979

MLP 96.09 % 0.997
SVM 93.06 % 0.595
CEAD 97.25% 0.998

CICIDS-2017 RF 99.86 % 0.994
MLP 84.44 % 0.824
SVM 84.16 % 0.451
CEAD 98.94 % 0.995

Table 5.1: Performance of ML classifiers using NSL-KDD and CICIDS-2017 datasets

5.4.2 Machine Learning classifiers

We selected three ML classifiers for our framework: random forest (RF), multi-layer

perceptron (MLP), and support vector machine (SVM).

5.4.3 Experimentation

In our experiments, we set up the following initial values: N = 3, K = 5, L =

1000,M = 1000. All the datasets were split using a 70%-30% ratio between training

and testing data, respectively. For performance metrics, we are using accuracy and

confidence scores.

Pipeline Accuracy and Performance

First, we look at the performance achieved by our proposed method. Table 5.1 pro-

vides the metrics and performance achieved between RF, MLP, SVM, and CEAD.

From Table 5.1, we can see that SVM gives the least accuracy on both datasets,

followed by the MLP classifier. The proposed CEAD classifier gives better accuracy

than the SVM and MLP and provides comparable accuracy against the RF, which

gives the best accuracy across both the SDN datasets. However, the CEAD achieves

the best mean confidence score for their predictions. This can be attributed to the
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fact that the CEAD prioritizes decisions made with the highest confidence score and

associates a dataset sample with the classifier that provided the best confidence score.

In contrast, RF, MLP, and SVM give lower confidence scores as the algorithms may

not be able to properly differentiate between certain labels whose features are similar.

XAI Results

Next, we observe the raw data sample and the XAI explainability results obtained

from the CEAD framework. This is achieved by running individual and random

testing samples through the approach to get their explainability and most influential

features. Due to resource constraints, we adapted our testing dataset Xtest for this

XAI analysis. Instead of performing experiments on the entirety of the testing data,

we performed them on a subset of the testing data. For adapting to the new format, we

introduced two new variables. L represents the number of new samples in the testing

dataset and M represents the iterations for sample gathering. To generate the new

testing data, we start by randomly selecting L samples from Xtest, per iteration. In

total, we run this random selection over M iterations to generate a total of L ∗M

testing samples. We, then, check the frequency of all the randomly selected Xtest

samples. From here, we select the top L most frequently occurring random data

samples as our testing data. The remainder of the analysis has been conducted using

this adapted testing dataset.

In Figure 5.2, we illustrate the XAI graphs for two random testing samples from the

NSL-KDD dataset. We can observe, from Figure 5.2a, that the testing sample was

classified as a neptune attack, while the most corresponding influential features were

Flag and Src_bytes. Additionally, the data sample in Figure 5.2b was classified as

normal network flow with Flag, Src_bytes, and Dst_bytes being the most influential

features:
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(a) Test Sample 1

(b) Test Sample 2

Figure 5.2: XAI Analysis of Random Testing Samples

Next, we analyze the CEAD framework’s ability to discover dataset features that

are influential for predictions for the whole testing dataset. Here, we look at all of

the labels that are in our testing dataset and observe, collectively, which dataset

features exhibited the most influence and the frequency with which these features

were encountered by the XAI framework when providing interpretable explanations.

This analysis was conducted using equations 5.4, 5.5, 5.6, 5.7. This information gets

stored in log files and is then used by network administrators in making robust system

design decisions. Figures 5.3 and 5.4 illustrate the most influential and interpretable

dataset features for the NSL-KDD and CICIDS-2017 datasets.

In Figure 5.3, we can see that across all label types, Src_bytes and Flag were the

two most influential dataset features, followed by Dst_bytes. Src_bytes measures the

number of data bytes transferred from source to destination in a single connection.

Flag indicates the status of the connection, normal or error. Dst_bytes represents the

number of data bytes transferred from destination to source in a single connection.
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Figure 5.3: Most influential dataset features in NSL-KDD

From this, we can note that the number of data bytes or packets transmitted in a

single connection within this SDN, along with the status of the connection, is the

highest indicator regarding if this SDN is under attack.

In Figure 5.4, we can see that, across all label types, Bwd Packet Length Std and

Destination Port were the two most influential dataset features, followed by Packet

Length Mean and Bwd Packet Length Min. Bwd Packet Length Std measures the

standard deviation size of a packet in the backward direction. Destination Port was

flagged as an influential dataset feature. However, that is a misleading feature re-

sulting from a dataset artifact because Destination Port is represented as a numeric

value, instead of a categorical value. We did not address this as the goal of our exper-

iments was to analyze the performance of our framework on default publicly available

datasets. Packet Length Mean represents the mean length of a flow. Correspondingly,

Bwd Packet Length Min signified the minimum size of the packet in the backward

direction. From this, we can note that the average length of a network flow along

with the statistics of packet lengths from destination to source is the primary and
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Figure 5.4: Most influential dataset features in CICIDS-2017

influential features to indicate if this SDN is under attack.

Next, we analyze the CEAD framework’s ability to discover influential dataset features

for predictions, for every unique label. Here, we look at each label to determine which

dataset features exhibited the most influence and the frequency with which these

features were encountered when providing interpretable explanations, for that label.

This analysis was conducted using equations 5.4, 5.5, 5.6, 5.7 and is illustrated in

Figures 5.5 and 5.6.

In Figure 5.5, we can see that, across all label types, certain dataset features are

specifically influential. The feature counts for labels neptune and normal are higher

than the rest of the labels, due to an increased number of samples for these two

labels in Xtest. Also, we note that all of the labels exhibit similar behavior patterns

across the feature indexes, i.e certain features are counted more often than others

and these features are similar across all label types. The general list of influential

features for NSL-KDD is presented in Table 5.2. Also in Figure 5.5, if we observe more

thoroughly, it can be noticed that certain features are more influential than others
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Figure 5.5: Most influential dataset features, per label, in NSL-KDD

in detecting different attack types. For example, in the NSL-KDD dataset, feature

indexes 33 and 35 are more influential when detecting neptune or TCP SYN attacks.

Correspondingly, feature indexes 9 and 12 are more influential when detecting ipsweep

or ICMP sweep attacks on the network.

Similarly, in Figure 5.6, we can see that, across all label types, certain dataset features

are specifically influential. The feature counts for label BENIGN are higher than the

rest of the labels, due to an increased number of samples for BENIGN in Xtest. Also,

we note that all of the labels exhibit similar behavior patterns across the feature

indexes, i.e certain features are counted more often than others and these features are

similar across all label types. The general list of influential features for CICIDS-2017

is presented in Table 5.3. Also in Figure 5.6, if we observe more thoroughly, it can

be noticed that certain features are more influential than others in detecting different

attack types. For example, in the CICIDS-2017 dataset, feature indexes 11, 13, and

40 are more influential when detecting PortScan attacks and DoS-Hulk or Hulk flood

attacks. Also, feature index 40 is another influential feature to detect DDoS attacks
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Figure 5.6: Most influential dataset features, per label, in CICIDS-2017

on the network.

From a complete overview of the analysis conducted in Figures 5.3, 5.5, 5.4, and 5.6,

across two separate SDN datasets, we can see that the transmission of bytes and

packets and their correlated statistics like mean, standard deviation, maximum, and

minimum values, from a source to a destination, and vice-versa, can be significant

indicators if an SDN is working normally or not. This correlates with contemporary

knowledge that if the productivity of a network degrades over a time interval, there

may be an event that is hindering its functionality. We also note from using the

proposed CEAD framework across both datasets, all labels are generally influenced

by similar features. Additionally, in both datasets, we have noted that specific features

can be very influential in detecting specific threats to the SDN. These insights can

have a positive influence as an SDN-based anomaly detection algorithm can primarily

focus on these significant features that influence the detection of anomalous scenarios,

thereby reducing overhead and the usage of resources.

In this research, we developed the CEAD framework that is capable of providing
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Feature Index Feature Name
2 Service
3 Flag
4 Src_bytes
5 Dst_bytes
6 Land
22 Count
25 Srv_serror_rate
28 Same_srv_rate
29 Diff_srv_rate
38 Dst_host_srv_s error_rate

Table 5.2: Most influential features, across labels, for NSL-KDD

Feature Index Feature Name
0 Destination Port
10 Bwd Packet Length Max
11 Bwd Packet Length Min
12 Bwd Packet Length Mean
13 Bwd Packet Length Std
40 Packet Length Mean
41 Packet Length Std

Table 5.3: Most influential features, across labels, for CICIDS-2017

highly confident predictions for ML classifiers when conducting real-time network

intrusion detection. This prioritization for high confidence in the predictions helps

create increased trust in the predictions. This framework also employs an XAI frame-

work to provide interpretability to the predictions to unearth the network features

that maximally influence predicted intrusion types. This research provides a com-

plete solution for intrusion detection at the core of the network. Now, it is essential

to focus on protecting the edges of SDNs from anomalies that can be emblematic of

cyber attacks on edge devices.
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Chapter 6

Anomaly detection in SDN Edge

Devices

Anomalies in time-series devices can be emblematic of cyber attacks that aim to com-

promise the edge of the SDN. Therefore, having a robust anomaly detection algorithm

is essential for protecting edge devices from cyber attacks. For combating the restric-

tions of time-series data and sub-optimal performance from device/sensor noise, we

propose an anomaly detection mechanism for unsupervised time-series SDN edge de-

vices. This methodology is novel as it provides a technique that can be employed to

create a supervised training approach from time-series data. This eliminates the need

for generating an independent supervised dataset for time-series SDN edge devices,

which is already a non-trivial task. We also highlight a methodology to process out

noisy sensor data, so that the resulting dataset is minimally affected by sensor noise,

leading to improved classifier performance. This ensures that anomaly detection is

performed optimally in these edge devices with minimal false positive rates.
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6.1 ML for the Security of Edge Devices

Modern SDN architectures and edge devices can be used from an extensive list of ap-

plications: IoT, smart homes, UAVs, vehicular networks, and smart cities. In many

cases, these SDN edge devices are time-series in functionality and data collection.

Oftentimes, these devices are available commercially off the shelf (COTS). There-

fore, these devices do not come with adequate security monitoring capabilities. Also,

due to their inexpensiveness and commercial allurement, security is not provided

much priority [85]. Therefore, it is important to ensure that these SDN edge devices

are protected from potentially damaging anomalous behavior that can corrupt their

functionality and prevents any propagation of this behavior to the rest of the core

network. We also attempt to ensure that analog sensor noise does not contaminate

or compromise the optimal anomaly detection performance.

For this research, we propose an anomaly detection method using a Long-Short Term

Memory (LSTM) neural network. An LSTM is employed as it is a standard architec-

ture that is used to conduct ML analysis for time-series data, due to its capability of

identifying patterns over long sequences. We use an open-source IoT sensor dataset,

consisting of unsupervised sensor data. Our approach first performs data smoothing

on this data to remove inherent noise from the dataset. Following this, we create a

supervised dataset from the data, that is used to train the model, which is used for

anomaly detection. Our main contributions include:

• Performing data smoothing on our dataset to remove sensor noise.

• Converting unsupervised time-series data into a supervised format for LSTM

training.

• Modeling normal sensor behavior using an LSTM network, using robust statis-

tical properties.
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Figure 6.1: Anomaly Detection Architecture

• Mathematically modeling anomalies to check model efficacy at anomaly detec-

tion.

6.2 System Model and Methodology

The dataset consists of time-series data from an indoor environment [14]. The sensor

being polled is a temperature sensor from a single location. The sensor gets polled

every 31 seconds. We are considering the temperature readings from February 28th

to March 21st, 2004. We use a time unit i as a discrete value and a natural number,

where i represents a particular time slot. The temperature sensor readings are repre-

sented by x. The temperature reading at a particular time unit i is represented as xi.

The goal is to determine if these temperature readings xi are anomalous or normal.

The final sensor reading time is denoted as E.

The proposed anomaly detection architecture is illustrated in Fig. 6.1. The main

steps of the proposed approach are highlighted in the following subsections:

6.2.1 Data Smoothing

To ensure that our data is minimally affected by noise, we perform Holt-Winters
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Exponential Smoothing [86]. This method was chosen as it is an eminent method

to perform smoothing on data containing seasonality and trend, which the target

dataset carries. Data smoothing methods that do not take seasonality and trend into

consideration are avoided as they may reduce performance. There are three operating

parameters: the data smoothing factor denoted by α, where 0 ≤ α ≤ 1, the trend

smoothing factor denoted by β, where 0 ≤ β ≤ 1, and the seasonal change smoothing

factor denoted by γ, where 0 ≤ γ ≤ 1. The magnitudes of α, β, and γ, are inversely

proportional to the amount of smoothing performed. These smoothing constants

determine how quickly the weights of the series decay for the current observation.

Values closer to 1 weigh recent observations heavily, while values closer to 0 give

weight to past observations [87]. α is the primary variable for data smoothing, as

it establishes the most influence on the level of smoothing. α = 1 means that the

dataset has not undergone any smoothing, while α = 0 indicates maximal smoothing.

The seasonal period of the time-series data is symbolized by ρ. The smoothed data

level Li at time i is given by:

Li = α(xi − Si−ρ) + 1− α(Li−1 + Ti−1), i = {0, 1, ....E} (6.1)

The trend Ti of the data at time i is illustrated with:

Ti = β(Li − Li−1) + (1− β)Ti−1, i = {0, 1, ....E} (6.2)

The trend Ti represents the slope of the data trend at time i [87]. Correspondingly,

the seasonal component Si of the data at time i is provided by:

Si = γ(xi − Li) + (1− γ)Si−ρ, i = {0, 1, ....E} (6.3)
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The seasonal component Si symbolizes a weighted average between the current sea-

sonal index, and the seasonal index of the same time during the last season [88].

Finally, the forecasted time-series value x̂i for the data at time i can be computed

using:

x̂i = Li−1 + Ti−1 + Si−ρ, i = {0, 1, ....E} (6.4)

Using this technique, the time-series data becomes more representative of the normal

state of the sensor, with minimal interference from noise.

Finding optimal data smoothing factor

Data smoothing should be performed optimally so that minimal information is lost

from the original data. Simultaneously, data smoothing should also minimize the

noise. This makes it important to select the data smoothing factor α that ensures

maximum performance while minimizing the information loss from smoothing. The

appropriate α can be selected by abiding by the inequality:

M −M ′ < λ (6.5)

where M is the mean of the standard deviations of all the non-smooth data segments.

Dataset segmentation is explained in the following subsection. M can be computed

by:

M =

∑N
j=0

√
1
K

∑K−1
i=0 (xi − x̄i)2

N
(6.6)

where x̄i represents the mean of the sensor values in that segment. Correspondingly,

M ′ is the mean of the standard deviations of all the smooth data segments smoothed
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by α and is computed by:

M ′ =

∑N
j=0

√
1
K

∑K−1
i=0 (x̂i − ¯̂

ix)2

N
(6.7)

where ¯̂
ix represents the mean of the sensor values in that segment. Finally, we in-

troduce λ which is the strength of anomaly, where λ ≥ 0. The magnitude of λ will

further sway the value of the anomalies from the expected sensor value, meaning that

a lower λ value looks more like normal sensor data, and is more difficult to detect,

than a higher λ value. Optimal α is selected when the value of λ is minimized in 6.5.

6.2.2 Segmentation

Post data smoothing comes the data segmentation module. In this module, we split

the smoothed data into segments of size K. The goal behind segmentation is to ef-

fectively identify anomalies in a localized context. Each segment is represented as

Segi, where Segi = {xi, xi+1, .....xK−1} and i represents the starting time slot for

that segment. We also assume the total number of segments to be N. Every segment

gets sorted in ascending order of their values. Then, the middle 50% of the segment

is extracted. We assume that the middle 50% contains no anomalies, as they are

representative of normal sensor data. The other 25% on either side may or may not

contain any anomalies. We represent the middle 50% values of all segments as Segi,m.

6.2.3 Statistics Computation

For every single segment Segi, we must also compute statistics for that segment. In
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our case, we compute the M-estimator for every Segi. M-estimator tends to be robust

when there are anomalies in a dataset, as they use the median in their construction.

The median, in comparison to the mean, is not easily swayed by anomalies. This

makes them a better fit for anomaly detection. The M-estimator for a particular

segment can be computed using:

K−1∑
i=0

η(
xi − µj

σ(Segi)
) = 0, j = {0, 1, .....N} (6.8)

where σ(Segi) represents a function on Segi which provides the initial estimate that

may be mean or median. The variable µj, the solution of the equation, represents the

M-estimator of the segment Segi. Lastly, η represents a real value Huber function

which is denoted by:

η(x) = x.min(1,
b

|x|
) (6.9)

where b is a constant value. The computed statistics are essential for anomaly detec-

tion further down in this process.

6.2.4 Deviation computation

We aim to convert our unsupervised dataset into a supervised one for training. After

we compute the statistics, we separate the segments into training and testing seg-

ments. The goal is to compute the acceptable deviations dj of each training segment

from the µj of that segment. The formula to compute deviations for the training

segments is given:

dj = max((|µj −min(Segi)|), (|µj −max(Segi)|)),
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i = {0, 1, .....E}, j = {0, 1, .....N} (6.10)

However, we do not compute the deviations for the testing segments. The reason

is that the testing segments are the ones that will contain anomalies, which may

negatively influence direct deviation computation. Hence, we plan to predict the

deviations for each testing segment, from the middle 50% of the segments.

6.2.5 LSTM Model

We are using an LSTM network for training. This network will be used to predict

the deviations for the testing segments. The inputs to the network are Segi,m, and

the corresponding labels are dj. Fig. 6.2 illustrates the proposed LSTM.

6.2.6 Anomaly Detector

The anomaly detector is responsible for detecting anomalies in the testing segments.

An essential component of the anomaly detection approach is the ϵ, where ϵ ≥ 0.

Another important component of the anomaly detection approach is the training

segment threshold T. These parameters allow additional control over the anomaly

detector to ensure proper anomaly identification. T is computed only on the training

segments, by the following equation:

T =

∑N
j=0

√
1
K

∑K−1
i=0 (x̂i − ¯̂

ix)2

N
(6.11)
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Figure 6.2: LSTM Network

where ¯̂
ix represents the mean of the sensor values in that training segment. Once

the deviations of the testing data are predicted, we combine the deviations and the

previously obtained statistical properties to check if a sensor value is an anomaly or

normal. The anomaly test is presented as:

x̂i =


1 if(x̂i > µj + ϵTdj),

1 if(x̂i < µj − ϵTdj),

0 otherwise,

(6.12)
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The above equation is computed to test if a sensor value x̂i, in the testing segment,

is equal to 1 (anomaly) or 0 (normal).

6.3 Simulation and Results

Our approach was implemented in python, using the TensorFlow library. The dataset

used was the Intel Berkeley Research Lab Dataset [14], specifically the temperature

sensor data from the first sensor node. Once the network was trained, we embed-

ded anomalies in the testing data. Then, we performed experiments to measure the

efficiency of our approach.

6.3.1 Anomaly Generation

To embed anomalies in the testing data, we manipulated measured sensor values.

This manipulation can symbolize a false data injection or even a physical scenario

like a house fire. Our manipulation included both positively and negatively scaled

anomalies, which are referred to as positive and negative anomalies, respectively, from

here on. The positive anomalies have values more than the expected sensor value.

Correspondingly, the negative anomalies have values less than the expected sensor

value. Positive anomalies are therefore embedded using:

x̂i = x̂i + λT (6.13)

while negative anomalies are denoted by:

x̂i = x̂i − λT (6.14)
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Table 6.1: Performance against positive anomalies

λ P R F
0 5.93% 39.13% 10.30%
2 15.67% 75.41% 25.95%
4 21.64% 99.59% 35.55%
6 78.39% 99.59% 87.73%
8 97.60% 100.00% 98.79%
10 97.60% 100.00% 98.79%
12 97.60% 100.00% 98.79%
14 97.60% 100.00% 98.79%
16 97.60% 100.00% 98.79%
18 98.39% 100.00% 99.19%

The positive and negative anomalies are added to the upper and lower 25% of the

segments respectively.

6.3.2 Experimentation

In our experiments, we set up the following initial values: K = 16, α = 0.3, β =

0.05, γ = 0.05, λ = 6, ϵ = 5. As our dataset has not undergone any fundamental

change in values and consists of mostly steady data with random noisy fluctuations,

the value of α, β, and γ should be on the lower end of the spectrum [87]. The values

of λ and ϵ are not strict and must be chosen according to the statistics of the dataset

being used: standard deviation, maximum and minimum values, and range. For

performance metric computation, we are using Precision P, Recall R, and F-Measure

F.

We experiment with our approach to see how effectively it can detect positive and

negative anomalies. Table I shows performance against positive anomalies with vary-

ing λ = {0, 2, 4...18}. We see that the values of P, R, and F increase as λ increases.

This is expected as larger anomalies are more evident and easier to detect in the
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Table 6.2: Performance against negative anomalies

λ P R F
0 6.71% 45.90% 11.71%
2 11.44% 82.38% 20.09%
4 13.65% 99.59% 24.01%
6 13.65% 99.59% 24.01%
8 14.30% 99.59% 25.01%
10 17.08% 99.59% 29.15%
12 24.16% 99.59% 38.88%
14 34.86% 100.00% 51.69%
16 45.61% 100.00% 62.64%
18 56.22% 100.00% 71.98%

context of a segment. Table II provides the performance against negative anomalies

with varying λ. This table also shows that P, R, and F scores increase as the value

of λ increases. The approach, comparatively, slightly under-performs in detecting

negative anomalies, as the dataset is solely filled with positive values and the value of

T is low, compared to the range of the dataset. Hence, it takes a higher magnitude

of λ to show effective performance in detecting negative anomalies.

Subsequently, we showcase the performance of the approach by varying the parameter

ϵ = {0, 1, ....16}. Fig. 6.3 illustrates the performance of the anomaly detection

method as the value of ϵ is varied. We can see changes in the performance metrics

when the parameter ϵ is gradually increased. An inverse correlation is noted between

the observed P and R. The value of R is higher at low values of ϵ, while the value

of P is higher at high values of ϵ. We also note that the rate of increase in P and

the rate of decrease in R appears to be approximately the same. The best balance

between P and R is observed at ϵ = 6, where the F = 0.9.

Next, we analyze the effect of data smoothing on the performance of the anomaly

detection approach, by varying α = {1, 0.6, 0.2}. Fig. 6.4 illustrates the P, R, and

F values, when the data has undergone no smoothing (α = 1), moderate smoothing
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Figure 6.3: P, R, F against varying ϵ

(α = 0.6), and intense smoothing (α = 0.2). We see that R values are nearly similar

across all cases. However, both the P and F scores are lowest when there is no data

smoothing performed. In comparison, P and F scores are higher in the scenario where

the data has undergone intense smoothing. The highest P and F scores are recorded

when the dataset has passed through moderate smoothing. From this we can see that

data smoothing, to a moderate extent, increases anomaly detection efficiency. Intense

smoothing or higher can lead to a decrease in performance.

Finally, we analyze the impact of the data-smoothing factor α on the detectability of

the anomaly strength λ. This is studied by varying the value of α = {1.0, 0.8, 0.6, 0.4, 0.2, 0.01}.

We assume that the detection approach, trained on a dataset that has been smoothed

with α, can efficiently detect anomalies of a certain strength λ if it achieves a certain
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Figure 6.4: P, R, F against varying α

baseline performance for P, R, and F. We examine four scenarios:

1. P ≥ 0.6, R ≥ 0.6, F ≥ 0.6.

2. P ≥ 0.7, R ≥ 0.7, F ≥ 0.7.

3. P ≥ 0.9, R ≥ 0.9, F ≥ 0.9.

4. P ≥ 0.95, R ≥ 0.95, F ≥ 0.95.

the Fig. 6.5 shows the impact of α and the kind of anomaly strength λ it can efficiently

detect, as we increase the expectation for the baseline performance of P, R, and F.

From the figure, we observe that the anomaly detector exhibits similar behavior across

all four scenarios. Values of λ increase, for every α, as we go from scenario 1 to 4. This
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Figure 6.5: Effect of data smoothing factor α on anomaly strength λ under varied P,
R, F conditions

is to be expected, as we are increasing the expectation of baseline performance for P,

R, and F. In scenarios 1,2,3, and 4, we notice that when there is no data smoothing

performed (α = 1), the anomaly detector can effectively detect higher λ anomalies of

8,8,9, and 10, respectively.

The performance of the anomaly detector improves between 0.8 ≤ α ≤ 0.4, in all four

situations. The best anomaly detection performance in scenarios 1 and 3 was α = 0.6

as it yielded the least λ values of 4 and 5, respectively. In scenarios 2 and 4, the best

performance was observed when 0.8 ≤ α ≤ 0.4 as it efficiently detected anomalies of

λ value 5 and 6, respectively. However, as data smoothing continued to increase, we

noticed that the performance of the anomaly detector decreased across all scenarios.
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In scenarios 1,2,3, and 4, a dataset smoothed with α = 0.2 yields λ values of 6,6,7,

and 7, respectively. Correspondingly, α = 0.01 effectively detected anomalies of λ

values of 5,6,6, and 6, respectively.

Therefore, we can demonstrate that non-smoothed data will only help the anomaly

detector effectively detect anomalies of higher λ, but do not perform optimally when

there is harder to detect anomalies. We observe that data smoothing helps increase

anomaly detection efficiency, specifically with harder-to-detect anomalies. This effi-

ciency is best when the data is smoothed with 0.8 ≤ α ≤ 0.4. In certain scenarios,

this efficiency is shown to be maximum when α = 0.6. However, excessive data

smoothing (α < 0.4) is detrimental to performance as it eliminates many essential

data points, which leads to incorrect forecasting. Also, the presence of anomalies

in the dataset disrupts performance on excessively smoothed data. The results and

analysis presented are not a generalized solution, and the location of optimal data

smoothing might change depending on the dataset being used. Optimal α should be

computed using Equation 6.5.

This research effort allowed us to create an anomaly detection mechanism that can

circumvent the restrictions of time-series data by converting unsupervised data points

into a supervised format for more robust ML training using an LSTM network and

robust statistical properties. In conjunction, the utilization of data smoothing allows

us to remove sensor noise from the data and, in turn, increase performance for anomaly

detection at the edge. Many of the contemporary approaches to performing network

intrusion and anomaly detection in SDNs rely on the usage of ML algorithms and

frameworks. Hence, protecting these algorithms, frameworks, and pipelines from

adversaries is another interesting research direction that can be explored to protect

the next generation of ML-based NIDS.
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Chapter 7

Adversarial Attacks Against Network

Intrusion Detection Systems

Adversarial attacks are cyber attacks that aim to corrupt the functionality of ML

algorithms by performing adversarial manipulations on them. These attacks aim to

manipulate training data and model sensitivities to adversely affect the performance

of the classifier. To study the impact of adversarial attacks on ML-based NIDS, we

demonstrate the feasibility of an adversarial attack called the Cosine Similarity Label

Manipulation (CSLM), which is geared toward compromising training labels for ML-

based NIDS, and how they can affect ML pipelines. We demonstrate the efficacy of

the attacks towards both single and multi-controller software-defined network (SDN)

setups. Results indicate that the proposed attacks provide substantial deterioration

of classifier performance in single SDNs, specifically, those that utilize RF under Min-

CSLM attacks, and SVMs from a Max-CSLM attack. We also note that RF, SVM,

and MLP classifiers are also extensively vulnerable to these attacks in Multi-controller
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SDNs (MSDNs) as they incur the most observed utility deterioration. MLP-based

uniform MSDNs incur the most deterioration under both CSLM attacks, while SVM

and RF-based variable MSDNs incur the most deterioration under both attacks.

7.1 Impact of Adversarial Attacks on ML-based NIDS

for SDN

A subset of adversarial attacks against ML algorithms is called poisoning attacks,

where the goal is to tamper with a target model or data that makes the algorithm

provide less optimal performance and triggers misclassifications [89]. Common poi-

soning attacks include data injection, logic corruption, and data manipulation attacks

like label manipulation. Label manipulation attacks are data poisoning attacks where

the labels of the training data can be adversarially perturbed to decrease the perfor-

mance of the trained classifier. An illustration of a label manipulation attack on an

ML system can be seen in Figure 7.1. Within industrial SDNs that utilize ML-based

NIDS, label manipulation attacks can be detrimental as they can put the infrastruc-

ture at risk. These attacks can gradually shift the decision boundaries of the NIDS

through the manipulation of training labels. Due to this gradual shifting, data sam-

ples that should be classified correctly are incorrectly predicted, compromising the

performance and the predictions of the ML classifier [90]. Within the context of

SDN NIDS, these attacks could misidentify attack labels as normal network traffic,

which can adversely affect network functionality and resources. These attacks can

also misrepresent one attack category for another, altering the response strategies of

the network administration, and leading to compromised systems, incorrect responses,

and revenue loss. Label manipulation attacks can also be exacerbated if they attack
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Figure 7.1: Label Manipulation Attack on ML Pipeline

SDN topologies that are part of critical national and industrial infrastructures.

We propose a novel adversarial poisoning label manipulation attack that targets the

SDN controller and aims to corrupt ML-based NIDS, called Cosine Similarity Label

Manipulation (CSLM) attack. The proposed technique optimally manipulates the

labels within NIDS training data, using the Cosine Similarity function. For experi-

mentation, we run this attack on an open-sourced network intrusion detection dataset.

The main contributions of our proposed work include:

• Proposing a novel label manipulation attack called CSLM attack.

• Running the proposed attack on an open-sourced network intrusion detection

dataset.

• Studying the impact of the proposed attack on both single and multi-controller

SDN setups.
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Figure 7.2: Multi-controller SDN Setup

7.1.1 System Model

We assume an industrial MSDN setup as shown in Figure 8.2,

For our system model, we present the following assumption: SDN setup: Within

the real-world context, every physical SDN topology in an MSDN setup can vary

depending on the number of users, nodes, devices, and geographical spread of the

network. In certain cases, there may be shared switches between various topologies

that are under the control of multiple SDN controllers. However, for simplicity pur-

poses, in this work, we assume that all the physical topologies are the same with the

same number of parameters. We also assume that each SDN topology is administered

by a unique SDN controller situated in the control plane.
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7.2 Methodology

7.2.1 Raw Topology and NIDS Setup

We represent the set of SDN topologies S, where S = {S1, S2, ...SN}. Similarly, we

introduce the set of SDN controllers C, where C = {C1, C2, .....CN}. We also assume

that the total number of SDN infrastructures in the MSDN is N . Also, we denote

the subset of compromised SDN controllers N ′, where N ′ ⊂ N . The proposed CSLM

will be conducted on these compromised SDN controllers. Let the target network

intrusion dataset, X, consist of E total samples. xi represents a single dataset sample

and xi ∈ X, i = {0, 1...E}. Correspondingly, let the labels of the same target network

intrusion dataset be denoted using Y , which consists of E total samples. yi represents

a single label and yi ∈ Y, i = {0, 1...E}. We also denote the set of unique labels in

Y as L, where each unique label is lj ∈ L, j = {0, 1...F}, and F represents the total

number of unique labels.Additionally, we assume that each unique label lj has Mj

number of samples within X, such that:

∑
j=0

Mj = E, j = {0, 1...F} (7.1)

7.2.2 Cosine Similarity Label Manipulation Attack

Our proposed CSLM attack is conducted by maliciously manipulating the training

data before it is trained by the ML algorithm for network intrusion detection. This

goal is to poison the training data that would trigger sub-optimal performance and

misclassifications in the ML algorithm. The first step is to model all unique labels

that are present in L. This is achieved by combining all the labels in the training

dataset X that contain each unique label of lj:
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Vj =

Mj∑
j=0

xi | lj, j = {0, 1...F} (7.2)

where Vj represents the combined sum of all dataset samples in X that are associated

with the label lj. Next, we find the mean value of each of the unique labels lj. This

is achieved by:

Uj =
Vj
Mj

, j = {0, 1...F} (7.3)

where Uj refers to the mean combined value of each unique label lj. All computed

values of Uj form a set of the unique values for all labels, denoted by U , where

Uj ∈ U, j = {0, 1...F}. Once the mean label values of each unique label lj are

computed, the label manipulation process can commence.

We compute the cosine similarity of each unique label Mj with the remaining unique

labels M−j using:

Θj =
Mj ·M−j

|Mj||M−j|
(7.4)

where Θj represents the cosine similarities of each unique label Mj with the remaining

unique labels M−j. All computed values of Θj form a set of the cosine similarities for

all labels, denoted by Θ, where Θj ∈ Θ, j = {0, 1...F}. For the proposed work, we put

forth the following two attack types: Maximum Cosine Similarity (Max-CSLM)

and Minimum Cosine Similarity (Min-CSLM).

Max-CSLM

In this label manipulation attack, the target label is replaced with another dataset

label that is maximally similar to it. The goal of this attack is to minimally alter
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the training dataset labels, to be minimally detectable. Despite being minimally

detectable, this attack will still minimally compromise NIDS by triggering sub-optimal

performance and misclassifications in the ML algorithm. Performing a Max-CSLM

attack can be conducted using:

L′
j = argmaxΘj|Lj, j = {0, 1...F} (7.5)

where L′
j represents the replacement label for the target label Lj in the dataset X.

Min-CSLM

In this label manipulation attack, the target label is replaced with another dataset

label that is minimally similar to it. The goal of this attack is to maximally al-

ter the training dataset labels, to be maximally detectable. This attack does not

prioritize detectability. Instead, it prioritizes the capability to cause maximal dam-

age in minimal time, by compromising NIDS by triggering sub-optimal performance

and misclassifications in the ML algorithm. Performing a Min-CSLM attack can be

conducted using:

L′
j = argminΘj|Lj, j = {0, 1...F} (7.6)

where L′
j represents the replacement label for the target label Lj in the dataset X.

All computed values of L′
j form a set of the malicious labels , denoted by L′, where

L′
j ∈ L′, j = {0, 1...F}. Figure 7.3 illustrates a visual depiction of the mechanism

behind the proposed Max and Min-CSLM attacks.

Additionally, we introduce a parameter Φ, that serves as a control parameter for our

CSLM attack. The value of Φ, where 0 ≤ Φ ≤ 1, determines the ratio of dataset

samples that will be maliciously replaced. A value of 0 means that the adversary does
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Figure 7.3: Visual Depiction of Mechanism behind Max and Min-CSLM attacks

not manipulate any labels, while a value of 1 means that the adversary manipulates

all labels in the dataset X. Lower values of Φ signify that the adversary is attempting

to evade detection by the NIDS while continuing to compromise its performance and

safety. Higher values of Φ denote that the adversary does not care about being

detected, and wishes to inflict as much damage on the SDN as possible. Based on

this, the number of data samples that will be infected in the dataset will be:

D = ⌊ΦE⌋ (7.7)

The final step is to randomly replace the D number of dataset samples in X to form

the malicious dataset X ′ that will be used to adversarially train the ML-based NIDS

for the MSDN.

7.2.3 Evaluation

For our proposed label manipulation attack, we must evaluate the impact of this

adversarial threat on both the local SDN and the global MSDN. For evaluating the

impact on the local SDN environment, we use Accuracy (A) and the mean scores

for precision (Pµ), recall (Rµ), and f-measure (Fµ) for the multi-class classification
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problem, that is defined using:

A =
TN + TP

TN + FP + TP + FN
(7.8)

Pµ =

∑L
0

TP
TP+FP

|li
L

(7.9)

Rµ =

∑L
0

TP
TP+FN

|li
L

(7.10)

Fµ =

∑L
0 2

PµRµ

Pµ+Rµ
|li

L
(7.11)

where the fundamental variables include True Positive (TP), True Negative (TN),

False Positive (FP), and False Negative (FN).

We must also evaluate the impact this type of attack can have on the MSDN scenario.

For this, we employ a utility function defined by:

Ua = F∆ (7.12)

Here Ua represents the utility achieved from a single SDN topology that forms a set

of utilities for all SDN controllers, denoted by U , where a ∈, a = {0, 1...N}. Here,

∆ represents the computed Matthews Correlation Coefficient (MCC) for SDN. The

equation for MCC is:

∆ =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7.13)

We chose to employ the MCC as it provides a comprehensive evaluation of an ML

classifier performance incorporating all fundamental variables. It has also been ac-
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tively used to evaluate ML algorithms in literature [91] [92]. The utility can phys-

ically represent an industrial organization’s financial gain or reward for the proper

functionality of its MSDN infrastructure. Any malicious compromise of these MSDN

infrastructures could reduce the financial gain that is being achieved, leading to a

loss in efficiency, productivity, and optimal functionality. Also, depending on the

importance and application of this industrial MSDN, any compromise could lead to

a loss in revenue, reputation, and intellectual property, and could also put the public

in danger.

The final utility of the entire MSDN is computed using:

UT =
U∑
0

Ua (7.14)

where UT represents the total utility achieved for the MSDN.

For our proposed methodology, we present the following assumptions:

Point of compromise: As the proposed CSLM attacks are targeting the train-

ing labels, the adversary needs to have access to this training data collection setup.

Therefore, we can assume that the adversary can achieve this malicious access by

compromising integral points in the SDN architecture. Compromising high-value tar-

gets like the SDN controller can provide complete access to the training labels, while

lower-value targets like a data plane switch or end hosts can provide access to partial

training labels.

Adversary possesses NIDS knowledge: Contemporary methods to perform

NIDS primarily uses ML-based methods, where training data is collected and trained

offline, and a trained model is placed online. Due to this being general knowledge, an

attacker can assume that the target MSDN also uses an ML-based method. Also, if
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Table 7.1: Performance Metric Fluctuations under Min CSLM Attack

Highest
Value

Lowest
Value Deterioration

Classifier A Pµ Rµ Fµ A Pµ Rµ Fµ A Pµ Rµ Fµ

RF 0.91 0.94 0.86 0.88 0.37 0.35 0.35 0.35 0.54 0.58 0.50 0.53
SVM 0.80 0.89 0.75 0.78 0.39 0.44 0.36 0.33 0.40 0.45 0.39 0.44
MLP 0.47 0.48 0.46 0.43 0.24 0.20 0.18 0.16 0.22 0.28 0.27 0.27

they can compromise the SDN infrastructure, then the labels that are being collected

as part of network intrusion detection can also be unearthed by the adversary. Other

ways an adversary can identify important training labels would be through a black-

box attack where the attacker can simply feed data samples through the ML model

and map the labels to the inputs.

7.3 Experimentation, Results, and Analysis

7.3.1 Setup

For our MSDN scenario, N = 3, and all topologies are each connected to their unique

SDN controller. We also assume N ′ = 1, upon which the CSLM attack will be

conducted. All SDN controllers communicate with a centralized command center as

seen in Figure 8.2. For experimentation, we are using the UNR-IDD dataset [93], as

it is a relevant NIDS dataset for our experiments. We are also experimenting with

the impact of our CSLM attack on three ML algorithms: RF, MLP, and SVM, due to

their wide usage for studying network intrusion detection in the literature. We assume

Φ = 0.1, as the magnitude of Φ should be low to avoid instantaneous detection, while

still being able to incur a negative impact on the NIDS performance.
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Figure 7.4: Performance of ML-based NIDS against the Min CSLM Attack
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Figure 7.5: Performance of ML-based NIDS against the Max CSLM Attack

Table 7.2: Performance Metric Fluctuations under Max CSLM Attack

Highest
Value

Lowest
Value Deterioration

Classifier A Pµ Rµ Fµ A Pµ Rµ Fµ A Pµ Rµ Fµ

RF 0.91 0.94 0.87 0.89 0.41 0.36 0.34 0.34 0.50 0.58 0.53 0.55
SVM 0.80 0.89 0.75 0.78 0.36 0.25 0.20 0.18 0.43 0.64 0.55 0.60
MLP 0.47 0.48 0.46 0.43 0.19 0.13 0.19 0.11 0.27 0.35 0.27 0.32
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7.3.2 Experiments

We begin the experimentation by analyzing the impact of the proposed CSLM at-

tacks on the observable performance metrics for various ML-based NIDS. Figure 7.4

illustrates the impact of the Min-CSLM attack on the ML-based NIDS across RF,

SVM, and MLP-based classifiers. Here, we can observe that, as the value of Φ in-

creases, the performance decreases for the A, Pµ, Rµ, and Fµ metrics, across the three

different classifiers. We observe that the RF and SVM classifiers start with decent

performance but degrade to sub-optimal performance, and the MLP, which started

with sub-optimal performance, degrades to low performance as the value of Φ in-

creases. This is further reinforced in Table 7.1, where we note that the RF undergoes

the most deterioration between the highest and lowest observed A, Pµ, Rµ, and Fµ

scores, followed by the SVM and the MLP.

This suggests that the Min-CSLM attacks affect the RF-based NIDS the hardest as it

showcases the largest performance deterioration. This can be attributed to a random

forest being an ensemble of non-robust decision trees (DT). DTs utilize a “divide and

conquer" approach to generalizing a dataset which creates dependence on a subset of

highly relevant dataset features to make predictions and whose performance suffers

from the presence of complex interactions. Creating disruptions within the training

dataset labels with a CSLM attack can make a DT perform worse, which propagates

to the rest of the RF [94]. This is especially significant as the RF classifier is one

of the most effective ML algorithms for NIDS in literature [95], and the proposed

Min-CSLM attack seems to compromise the algorithm’s performance.

Similarly, we also analyze the performance achieved by the ML-based NIDS against

the Max-CSLM attack, as illustrated in Figure 7.5. Here, we observe that, as the value

of Φ increases, the performance for the A, Pµ, Rµ, and Fµ metrics, across the three
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different classifiers. Like the Min-CSLM attack, the RF and SVM classifiers start with

decent performance but degrade to sub-optimal performance, and the MLP, which

started with sub-optimal performance, degrades to low performance as the value of

Φ increases. This is further emphasized in Table 7.2, where we note that the SVM

undergoes the most deterioration between the highest and lowest observed Pµ, Rµ,

and Fµ scores, followed by the RF and MLP.

This suggests that the Max-CSLM attacks affect the SVM-based NIDS the hardest as

it showcases the largest performance deterioration. When training labels are linearly

separable, SVM hyperplanes can be computed quickly and efficiently. However, when

they are not, the data usually is mapped with a kernel function into a higher dimen-

sional space where a hyperplane can be fitted to separate the labels. Inconsistent and

manipulated training labels can adversely affect the functionality and performance of

an SVM. This is especially significant as the SVM classifier is one of the most effective

ML algorithms for NIDS in literature [96], and the proposed Max-CSLM attack seems

to compromise the algorithm’s performance.

Next, we observe the performance of the proposed CSLM attacks compared to two

other intuitive label manipulation attacks:

• Simple Attack: All labels in the training data are maliciously altered to a

single label.

• Random Attack: All labels in the training data are maliciously altered to a

randomly chosen label.

These label manipulation attacks serve as benchmarks only, upon which we evaluate

the effectiveness of our proposed CSLM attacks. Figure 7.6 illustrates the perfor-

mance achieved by the ML-based NIDS when the label manipulation attacks are

performed. We observe that a Random Label Manipulation attack provides the least
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Figure 7.6: Performance of Max and Min CSLM against other Label Manipulation
attacks

deterioration in classifier performance, followed by the Simple Label Manipulation

attack. This can be attributed to the fact that a simple attack changes all labels

to a single label, making it more difficult to differentiate between various classifica-

tions, whereas a training dataset that has undergone a Random Label Manipulation

will have a variable number of labels in it. Out of the proposed CSLM attacks, the

Min-CSLM provides more deterioration than the Max-CSLM attack as the attack is

designed to maximally inflict damage on the dataset by not prioritizing detectability.

In contrast, the Max-CSLM attack will provide less deterioration but will be harder

to detect, due to minimally altering the training labels, and hence, being minimally

detectable. Additionally, these two proposed techniques perform better than the
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other two benchmark techniques as the labels are optimally selected to incur dam-

age, whereas both Simple and Random Label Manipulation linearly and randomly

manipulate the training labels, respectively.

Next, we focus on the impact of our proposed CSLM attacks on the entire MSDN.

We evaluate this scenario under two conditions:

• Uniform: All the SDN controllers are performing network intrusion detection

using the same ML algorithm.

• Variable: Each SDN controller is using a different ML algorithm to perform

network intrusion detection.

First, we observe the impact of N ′ on a uniform MSDN setup and the achieved utility,

illustrated in Figure 7.7. We note that, in all three situations, under no attack, the

achieved utilities by the MSDNs stay the same as the value of Φ increases. However,

when facing Min and Max-CSLM attacks, the utilities of the MSDNs progressively

decrease as Φ increases. We note that as the value of Φ increases, the achieved utility

of RF and MLP-based uniform MSDNs remains higher under a Max-CSLM attack

than a Min-CSLM attack. This re-emphasizes the designs of the two attack types.

The Min-CSLM provides lower utility than the Max-CSLM attack as the attack is de-

signed to maximally inflict damage on the dataset by not prioritizing detectability. In

contrast, the Max-CSLM attack will provide better utility but will be harder to detect,

due to minimally altering the training labels, and hence, being minimally detectable.

An adversary wanting to compromise an RF or MLP-based uniform MSDN should

use a Max-CSLM attack to incur minimal damage by prioritizing undetectability and

use a Max-CSLM attack to incur maximal damage by not prioritizing undetectability.

Here, we notice that for the SVM-based uniform MSDN, the Max-CSLM attack

achieves more utility than the Min-CSLM attack at Φ < 0.65, after which the utili-



116

0.0 0.2 0.4 0.6 0.8 1.0
Control parameter ( )

12

13

14

15

16

M
SD

N 
Ut

ilit
y

Normal
Min Attack
Max Attack

(a) Observed Utility of Uni-
form MSDN when all NIDS
are RF

0.0 0.2 0.4 0.6 0.8 1.0
Control parameter ( )

9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5

M
SD

N 
Ut

ilit
y

Normal
Min Attack
Max Attack

(b) Observed Utility of Uni-
form MSDN when all NIDS
are SVM

0.0 0.2 0.4 0.6 0.8 1.0
Control parameter ( )

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

M
SD

N 
Ut

ilit
y

Normal
Min Attack
Max Attack

(c) Observed Utility of Uni-
form MSDN when all NIDS
are MLP

Figure 7.7: Observed Utilities of a Uniform MSDN Setup
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Table 7.3: Uniform MSDN Utility Decrease under CSLM attacks

Max-CSLM
Attack

Min-CSLM
Attack Utility Decrease

Classifier Highest Utility
Value

Lowest Utility
Value

Highest Utility
Value

Lowest Utility
Value Max-CSLM Min-CSLM

RF 15.93 11.89 15.93 11.69 25.40% 26.59%
MLP 5.50 4.06 5.50 3.82 26.14% 30.53%
SVM 13.43 9.47 13.43 10.11 29.47 24.70%

Table 7.4: Variable MSDN Utility Decrease under CSLM attacks

Max-CSLM
Attack

Min-CSLM
Attack Utility Decrease

Classifier Highest Utility
Value

Lowest Utility
Value

Highest Utility
Value

Lowest Utility
Value Max-CSLM Min-CSLM

RF 11.50 7.58 11.50 7.27 34.07% 36.77%
MLP 11.75 10.19 11.75 10.18 13.26% 13.43%
SVM 11.63 7.96 11.63 8.26 31.50% 28.99%

ties switch. This phenomenon can be attributed to the fact that SVMs can generate

hyperplanes efficiently when the labels are linearly separable but need the assistance

of a kernel function when they are not. An attack that manipulates training labels

could adversely affect the functionality and performance of an SVM-based uniform

MSDN. Hence, an adversary wanting to attack an SVM-based uniform MSDN should

aim to use a Min-CSLM attack if they wish to manipulate < 65% of training labels

and use a Max-CSLM attack if they wish to corrupt ≥ 65% of training labels. In

Table 7.3, we observe the utility decrease percentage achieved by each ML algorithm

when facing the proposed CSLM attacks. We note that uniform MSDNs that consist

of SVM incur the most utility decrease when faced with a Max-CSLM attack. This

observation is consistent with the previously observed deductions which note the vul-

nerabilities of the SVM algorithm to the proposed CSLM attacks. Also, we note that

the MLP-based uniform MSDN incurred the most utility decrease when faced with

a Min-CSLM attack. Like the SVM, the MLP is unable to accurately classify labels

that are not linearly separable. This is because, unlike a neural network, an MLP does

not utilize a non-linearity function to differentiate between non-linear labels [97]. An

adversarial attack that exploits training labels could adversely affect the functionality
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and performance of an MLP-based uniform MSDN. Finally, we observe the impact

of a compromised SDN controller N ′ on a uniform MSDN setup and the utility that

is being achieved. Figure 7.8 illustrates the observed utilities for a variable MSDN

setup. To minimize any variability, we have ensured that in each scenario, a separate

ML-based NIDS is being used for the compromised controller N ′. In Figures 7.8a,

7.8b, and 7.8c, N ′ = RF, SVM, and MLP, respectively, and we refer to them as RF-

based, SVM-based, and MLP-based variable MSDNs, separately. From the figure, we

can see that, in all three situations, under no attack conditions, the achieved utili-

ties by the MSDN stay the same as the value of Φ increases. However, when facing

Min and Max-CSLM attacks, the utilities of the MSDN progressively decrease as Φ

increases. We note that as the value of Φ increases, the achieved utility of RF and

MLP-based variable MSDNs remain higher under a Max-CSLM attack than a Min-

CSLM attack, reinforcing the mechanism design behind both attack categories. The

Max-CSLM attack aims at minimal variability during label manipulation, making it

more difficult to detect. In contrast, the Min-CSLM attack aims to inflict maximal

damage and does not care about detectability. An adversary wanting to compromise

an RF or MLP-based variable MSDN should use a Max-CSLM attack to incur min-

imal damage by prioritizing undetectability and use a Max-CSLM attack to incur

maximal damage by not prioritizing undetectability.

We note that for the SVM-based variable MSDN, the Max-CSLM attack achieves

more utility than the Min-CSLM attack at Φ < 0.65, after which the utilities switch.

This is similar to the observations made in Figure 7.7b and can be attested to SVMs

being capable of generating hyperplanes efficiently when the labels are linearly sepa-

rable, but needing the assistance of a kernel function when they are not. An attack

that manipulates training labels could adversely affect the functionality and perfor-

mance of an SVM-based variable MSDN. Hence, an adversary wanting to attack an
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SVM-based variable MSDN should aim to use a Min-CSLM attack if they wish to

manipulate < 65% of training labels and use a Max-CSLM attack if they wish to

corrupt ≥ 65% of training labels.

In Table 7.4, we observe the utility decrease percentage achieved by each ML algo-

rithm when facing the proposed CSLM attacks. Here, we notice that the variable

MSDN where N ′ = RF incurred the most utility decrease out of all variable MSDN

setups for both Max-CSLM and Min-CSLM attacks. This can be a consequence of a

random forest being an ensemble of DTs, which are non-robust classifiers. Due to the

“divide and conquer" approach, many DTs create a dependence on a subset of highly

relevant dataset features to make predictions and whose performance suffers from

the presence of complex interactions. Adversarial attacks that negatively influence

training labels with a CSLM attack can deteriorate a DT performance, making the

performance of the RF suffer.

Through this work, we were able to observe the effect adversarial attacks can have

on single SDN and MSDN environments. Our results indicate that our proposed ad-

versarial poisoning attacks provide substantial deterioration of classifier performance

and utility in both single SDN and MSDN setups. Under these perturbations, SDN

architectures are put in more jeopardy as system administrators of the SDNs will

not be able to confirm if the ML security mechanisms are performing as intended.

Therefore, we require robust adversarial attack detection mechanisms that can detect

ongoing attacks and notify system administrators so that necessary responses can be

taken.
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Chapter 8

Detection of Adversarial Attacks on

Network Intrusion Detection Systems

To prevent SDN infrastructures from adversarial attacks, we develop the Trans-

controller Adversarial Perturbation Detection (TAPD) framework for NIDS in multi-

controller SDN setups. The detection framework takes advantage of the SDN archi-

tecture and focuses on the periodic transference of network intrusion detection models

across the SDN controllers in the topology, and validates the models using the local

datasets to calculate errors in their predictions with the ground truth. We demon-

strate the efficacy of this framework in detecting RLM attacks in an MSDN setup.

Results indicate efficient detection performance achieved by the TAPD framework in

determining the presence of RLM attacks and the localization of the compromised

controllers. We also note that the frameworks work well when there is a low number

of compromised controllers in the topology proportional to the total number of SDN

controllers. However, the performance begins to deteriorate after a certain threshold
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of SDN controllers in the MSDN has become compromised.

8.1 Detecting Adversarial Attacks on ML Pipelines

for ML-based NIDS

Adversarial attacks are cyber attacks that aim to manipulate ML operations and cor-

rupt their functionality by performing adversarial manipulations on the parameters.

By exploiting training data and model parameters and sensitivities, these attacks

can affect the performance of the classifiers, putting the entire MSDN infrastructure

at risk. A prominent subset of adversarial attacks is called poisoning attacks. In

this attack category, the goal is to tamper with or “poison" a target ML model by

maliciously manipulating the model parameters or data, forcing the model to make

incorrect predictions, and affecting system performance by triggering misclassifica-

tions [89]. Contemporary ways to perform adversarial poisoning attacks include logic

corruption, data injection, and label manipulation. Label manipulation attacks are

poisoning attacks that adversarially perturb the training labels to trigger misclassifi-

cations and decrease the performance of a trained classifier. An illustration of a label

manipulation attack on an ML pipeline can be seen in Figure 8.1.

Label manipulation attacks can be detrimental to MSDN infrastructures, as they can

gradually shift or re-position the decision boundaries of the NIDS through the flipped

labels. Due to this, data samples that should be classified correctly get incorrectly

predicted. This compromises NIDS performance and puts the MSDN at risk [90].

This attack could misidentify attack labels as normal, or misrepresent attack cat-

egories, which can alter response strategies and lead to a compromised networking

environment. Additionally, the effects of label manipulation attacks on MSDNs can
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Figure 8.1: Label Manipulation Attack on ML Pipeline

be exacerbated if the MSDN is an essential part of critical national infrastructures

like the power grid and transportation systems.

Due to their imminent risk on ML pipelines, defensive tactics to protect ML-based

NIDS for MSDNs must be created and deployed. However, there has been limited re-

search in this field. In this paper, we propose a novel adversarial label manipulation

detection mechanism for ML-based NIDS in MSDN setups, called Trans-controller

Adversarial Perturbation Detection (TAPD). The proposed technique involves peri-

odically transferring NIDS models across all the SDN controllers in the MSDN setup.

During these transfers, the trained NIDS models are validated using the local dataset
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of each SDN setup to calculate the error in their predicted values and ground truth.

Once all models have been parsed through all SDN controllers, each controller analy-

ses all local errors using robust statistics to detect any anomalous distribution values.

These can be indicative of potential label manipulation or “poisoning" attacks on the

NIDS for the controllers. Each controller votes on their suspected SDN controllers,

and in the end, the comprehensive list of suspect SDN controllers is accumulated.

For experimentation, we apply the proposed TAPD method to detect random label

manipulation attacks on an open-sourced network intrusion detection dataset. The

main contributions of our proposed work include:

• Proposing a novel label manipulation attack detection for ML-based NIDS.

• Evaluating the impact of the proposed solution on random label manipulation

upon an open-sourced network intrusion detection dataset.

• Studying the impact of the proposed solution upon varying parameters of attack

strength and the number of compromised SDN controllers.

8.2 System Model

For our experimentation purposes, we assume an industrial MSDN setup, which con-

sists of multiple SDN topologies, SDN controllers, and a single command center.

Depending on the application scenario, this architecture could span spatially dis-

tributed wide-area geographical locations. An illustration of our industrial MSDN

setup is provided in Figure 8.2.

For our system model, we present the following assumption:

SDN setup: Within the real-world context, every physical SDN topology in an

MSDN setup can vary depending on the number of users, nodes, devices, and ge-
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ographical spread of the network. In certain cases, there may be shared switches

between various topologies that are under the control of multiple SDN controllers.

However, for simplicity purposes, in this work, we assume that all the physical topolo-

gies are the same with the same number of parameters, meaning that the data is Inde-

pendent and Identically Distributed (I.I.D). We also assume that each SDN topology

is administered by a unique SDN controller situated in the control plane.
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8.3 Methodology

8.3.1 Raw Topology and NIDS Setup

We present an MSDN topology that contains a set of separate SDN topologies, de-

noted by S, where S = {S1, S2, ...SN}. Correspondingly, we introduce a set of SDN

controllers for every SDN topology, denoted by C, where C = {C1, C2, .....CN}. The

number of SDN topologies in the MSDN setup is assumed to be N . Next, we assume

the subset of compromised SDN controllers that have been affected by label manipu-

lation attacks to be denoted by N ′, where N ′ ⊂ N . Let our target network intrusion

detection dataset be X which consists of E total samples. In X, xi represents a single

sample where xi ∈ X, i = {0, 1...E}. Similarly, let all labels of X be denoted by Y . yi

represents a single label corresponding to xi and yi ∈ Y, i = {0, 1...E}. The number

of unique labels in Y is denoted at L. Here, lj represents each unique label in L and

lj ∈ L, j = {0, 1...F}, and F represents the total number of unique labels. Also, we

can assume that a unique label lj has Mj number of samples associated with it within

X, such that: ∑
j=0

Mj = E, j = {0, 1...F} (8.1)

8.3.2 Random Label Manipulation

For our label manipulation attack, we are choosing the Random Label manipulation

(RLM) attack as our threat. In this attack category, a subset or all of the training

dataset’s labels get randomly manipulated and altered. This attack scenario was

chosen as our threat vector due to its current relevance in studying adversarial attacks

in literature [68] [98]. To initiate an RLM attack, we must first decide the number of

labels to maliciously alter. For this, we denote Θ as our Attack Control parameter,
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where 0 ≤ Θ ≤ 1. Θ represents the proportion of samples from X to alter and

is selected by the adversary based upon their specific agenda. A low value of Θ

means that the adversary is trying to alter as minimal labels as possible, thereby not

incurring too much damage on the SDN, and staying more undetectable. Similarly, a

high value of Θ means that the adversary is trying to alter as many labels as possible,

thereby incurring more damage on the SDN, and not prioritizing undetectability.

Using Θ, the adversary must select the number of samples that they will maliciously

alter. This can be done using Equation 8.2:

V = ceil(Θ ∗ E) (8.2)

where V represents the total number of samples that will be altered by the adver-

sary. Therefore, the adversary can randomly choose V samples from the dataset and

randomly change each of their labels.

All SDNs train their ML models for network intrusion detection. However, a subset

of these models trains incorrectly as they have been exposed to the RLM attack. We

denote the set of ML models Φ, where Φ = {Φ1,Φ2, ...ΦN}. Each SDN controller

contains a single ML model. Once the ML models become trained, then they become

trained NIDS, denoted by ∆, where ∆ = {∆1,∆2, ...∆N}. Finally, as a subset of

these trained NIDS has been compromised by RLM attacks, we denote them as ∆′,

where ∆′ contains the set of all compromised trained ML-based NIDS.

8.3.3 Trans-controller Adversarial Perturbation Detection (TAPD)

When ML-based NIDS has been compromised with poisoning attacks like RLM, they

can degrade the performance and functionality of both the local SDN environment and

the whole MSDN infrastructure. To combat the effect of poisoning attacks, it would
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be beneficial to periodically validate the efficiency of the ML-based NIDS across the

multiple controllers in the MSDN. This is the approach undertaken in our proposed

framework, TAPD, to detect RLM attacks when they occur in MSDN setups. The

TAPD framework can be broken into multiple stages, illustrated in Figure 8.3. The

TAPD operation begins when the Command Center sends a request out to the Control

plane and correspondingly receives the list of voted malicious SDN controllers from all

SDN controllers after a predetermined time interval. The entire operation ends when

the Command Center can identify any prospective compromised SDN controllers from

the list provided by the Control plane. The predetermined time interval is decided

upon by the system administrators by leveraging the network operations and the

overhead and latency costs that can occur from running the TAPD framework.
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Send Request

In this stage, the Command Center sends a request to the Control plane to begin the

TAPD framework functionality. This can be done using the Northbound interface

which facilitates communication between the Control plane and the Command Center.

These messages can be typically sent using northbound protocols like REST APIs.

They can be sent to any SDN controller in the Control plane, keeping the system

de-centralized. De-centralization prevents the message from being intercepted in the

case the message is received by a malicious SDN controller. This stage can be event-

triggered if an event causes suspicion to the network administrator that the ML-

based NIDS has been compromised, or periodic, to ensure optimal functionality in

the network at all times. If the request is sent to a malicious SDN controller, it

may be intercepted and the entire operation may not commence. At that time, the

Command Center waits for the predetermined time interval for the reception of the

list of voted malicious SDN controllers from all SDN controllers in the Control plane.

If that list does not show up, the operation will begin again, with a different SDN

controller being sent the request.

ML Model Transfer

Once an SDN controller receives this request to begin the TAPD algorithm, it sends

a message to all other SDN controllers to begin their model transfers. This message

is transmitted using non-standardized interfaces referred to as the east-west protocol

which can facilitate communication between SDN controllers [99]. East-west protocols

are newer communication frameworks that are becoming imminent [100] [101] [102].

These use a notification system or distributed routing protocol like Border Gateway

Protocol or Open Shortest Path First. When all SDN controllers receive this message,

they begin the model transfer stage.



129

The first step for each SDN controller is to generate a duplicate ML model for network

intrusion detection. The operations of the normal model will be transferred to this

duplicate model. Then, the transfer begins. We can assume the source SDN controller

CSr contains the ML-based NIDS ∆Sr. The destination SDN controller for ∆Sr is

denoted as CD. In CD, ∆Sr will undergo localized error checking and processing and

then will be transferred to the next SDN controller. Once the target ML model ∆Sr

has passed through the processing of all the SDN controllers in the Control plane, it

returns to the source SDN controller CSr.

It should be noted that the costs of operating an east-west protocol will depend on

the type of SDN controller that is used in the architecture like an Open Network Op-

erating System, Open Day Light, and Faucet, along with the number of controllers

in the architecture. The overhead cost for this step is inversely proportional to the

number of SDN controllers in the system and is contingent upon the SDN controller

and its communication protocols. Similarly, the latency achieved is directly propor-

tional to the number and type of SDN controller that is partaking in the east-west

transfer [103].

Error Computation

When the target model ∆Sr arrives at the destination SDN controller CD, it must

undergo local error checking and processing. The first is the prediction the local

training data of CD, Xd, through ∆S using Equation 8.3:

∆SrP redd = predict(∆Sr,Xd) (8.3)

where, ∆SrP redd represents the predictions of ∆Sr for the local training dataset Xd.

Next, the error of the predictions must be computed, in comparison to the ground-
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truth values of the local training labels, denoted by Yd. We assume the number of

samples in Xd and Yd is denoted as J . Thus, the error computation is performed

using Equation 8.4:

Γsr =
1

j

J∑
i=1

(Ydi −∆SrP reddi)
2 (8.4)

where Γsr represents the total computational error achieved by ∆SrP redd in comparison

to Yd. Following the error computation, the target ML model ∆Sr is transferred over

to the next destination SDN controller for further analysis.

Outlier Detection

The most important step in the proposed framework for detecting the ML models

that have fallen victim to RLM attacks is outlier detection. Once an ML model ∆Sr

has been parsed through all the SDN controllers in the Control plane, it returns to

its source SDN environment CSr. At this moment, each SDN controller has a set of

errors that have been computed for all the ML models from all the SDN controllers,

including their own. This set can be denoted as FSr, which represents the set of errors

computed by the source SDN controller on all the ML models in the Control plane

that have passed through it. Now, the SDN controller must perform outlier detection

to detect any ML models that have given anomalous error values, compared to the

rest of the models. The intuition is that the ML models that have been trained using

adversarially perturbed data will be noticeable as abnormal.

For our outlier detection, we are using Inter-Quartile Range (IQR). This metric is

used as it is not influenced by extreme values in distribution due to its usage of median

to find the midpoint in the distribution and can be used as a measure of variability

if the extreme values are not being recorded exactly as is [104]. To begin the outlier

detection, we must compute the quartiles of the distribution present in FSr. Next,
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we must find the 25th quartile, which can be done using Equation 8.5:

χ25 = (1/4) ∗ (N + 1)th term (8.5)

where χ25 represents the 25th percentile of the distribution FSr. Similarly, we also

find the 75th quartile, which can be done using Equation 8.6:

χ75 = (3/4) ∗ (N + 1)th term (8.6)

where χ75 represents the 75th percentile of the distribution FSr. Finally, we achieve

the IQR of the distribution, denoted by χ, by the following Equation 8.7.

χ = χ75 − χ25 (8.7)

The value of χ serves as an important magnitude for our outlier detection. We

can assume that low error values in FSr correlate to local ML models for network

intrusion detection. Meaning, that the lowest computed error signifies the local ML

model for network intrusion detection. Correspondingly, we can also assume that

the highest magnitudes of error are associated with ML models for network intrusion

detection that have undergone adversarial perturbation training by RLM attacks.

We are mostly interested in detecting these high magnitudes across all the SDN

controllers.

Our computed threshold for outlier detection, ω, is done using Equation 8.8:

ω = χ75 + χ ∗ η (8.8)
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Here, η represents the detection scale, where 0 ≤ η ≤ 1. Low values of η provide finer

detection if the variance of the FSr is low, and the variance of the entire distribution

of FSr is very close to the variance of the normal values in FSr. High values provide

more flexibility to the outlier detection algorithm if the variance of the FSr is high,

and the variance of the entire distribution of FSr is very close to the variance of the

normal values in FSr.

Voting

The penultimate step in the TAPD approach, and the final step in the SDN controller,

is to use the distribution threshold for outlier detection, χ, to detect the outlier error

values and the associated SDN controllers. This can be performed using Equation

8.9:

λs =


Compromised if Fsi > ω,

Safe if Fsi ≤ ω,

(8.9)

Here, λs represents the list of compromised SDN controllers, according to the source

SDN controller CSr, and is CSr’s vote as to which controllers are compromised. This

list is then sent to the Command Center where the final analysis occurs to detect the

compromised SDN controllers, based on the voting results of all N SDN controllers.

λs ∈ λ represents the final list of all the compromised controllers voted by all the

controllers in the Control plane.

Figure 8.4 illustrates an overview of the TAPD framework mechanism.
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Malicious Controller Detection

The final step of the TAPD framework is malicious controller detection, which is

performed in the Command Center. This is performed here to let the system admin-

istrators know which controllers have been subjected to the RLM or other adversarial

poisoning. This is performed by conducting a frequency analysis of the voting results

provided by the control plane, λ. This is illustrated using Equation 8.10:

ζ =
Z∑
i=0

Λj |j ∈ L (8.10)

where ζ denotes the final list of compromised controllers, Z represents the total

number of elements in λ, and L denotes the unique elements present in λ. Once, the

compromised SDN controllers, ζ, are identified, the system administrators can take

response measures like separating the SDN topologies from the rest of the MSDN

setup or coming up with resiliency mechanisms to make more robust ML models for

SDN NIDS that can withstand adversarial attacks like RLM.
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For our proposed methodology, we present the following assumptions:

Point of compromise: As the proposed RLM attacks are targeting the train-

ing labels, the adversary needs to have access to this training data collection setup.

Therefore, we can assume that the adversary can achieve this malicious access by

compromising integral points in the SDN architecture. Compromising high-value tar-

gets like the SDN controller can provide complete access to the training labels, while

lower-value targets like a data plane switch or end hosts can provide access to partial

training labels. Ways an adversary can achieve this can include performing allergy

attacks on signature-based intrusion detection systems [105], or even through false

data injection/backdoor poisoning [106].

Adversary possesses NIDS knowledge: Contemporary methods to perform

NIDS primarily uses ML-based methods, where training data is collected and trained

offline, and a trained model is placed online. An attacker can assume that the target

MSDN also uses an ML-based method or discover this practice through reconnaissance

techniques network scanning, fingerprinting, enumeration, and traffic sniffing [107]

[108]. If they can intrude upon or compromise the SDN infrastructure, then the

labels that are being collected as part of network intrusion detection can also be

unearthed by the adversary. Other ways an adversary can identify important training

labels would be through a black-box attack where the attacker can simply feed data

samples through the ML model and map the labels to the inputs.
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8.4 Experimental Results and Analysis

8.4.1 Setup

For our MSDN topology, N = 10, and all topologies are each connected to their

unique SDN controller. We also assume N ′ = 1 which performs RLM attacks on their

respective ML-based NIDS in the SDN controllers. All SDN controllers communicate

with a centralized command center as seen in Figure 8.2. For experimentation, we are

using the UNR-IDD dataset [93], as it is a relevant NIDS dataset for our experiments.

This experiment is being conducted with independent and identically distributed

(I.I.D) data. Figure 8.5 showcases our proposed experimental setup. An adversary

has successfully compromised the ML model in one SDN controller. Also, we assume

that Θ = 0.2, as the magnitude of Θ should be low to avoid instantaneous detection,

while still being able to incur a negative impact on the NIDS performance. In addition,

our detection scale, η = 0.1, as the total variance of our error is assumed to be low, and

the variance of the normal error values is very close to that of the entire distribution

as the majority of our ML models will not be compromised by the adversary. For

performance evaluation, we utilize the performance metrics of Accuracy (A), the mean

precision score (Pµ), the mean recall score (Rµ), and the mean F-Measure score (Fµ)

of the multi-classification.

8.4.2 Experiments

We begin experimentation by observing the performance achieved by the proposed

TAPD framework at detecting RLM attacks on ML models as the number of infected

samples, Θ, gets varied. This is illustrated in Figure 8.6. We note that as the value

of Θ increases, the performance achieved by TAPD at detecting the RLM attacks

increases across the observed A, Pµ, Rµ, and Fµ metrics. This can be attributed
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Figure 8.5: Experimental Setup for RLM Attacks

to the fact that at low values of Θ, a low percentage of training samples get ran-

domly manipulated. This can make it difficult for the TAPD framework to detect

compromised SDN controllers due to limited manipulation. At higher values of Θ,

a high percentage of training samples get randomly manipulated. This type of ma-

licious data handling makes it more evident to the TAPD framework that the SDN

controller has been compromised, making it easier to detect.

Next, we observe the performance achieved by the TAPD framework as we vary the

number of compromised SDN controllers N ′, illustrated in Figure 8.7. Here, we note

that as the number of compromised controllers, N ′, increases, the performance of the

TAPD framework decreases across the observed A, Pµ, Rµ, and Fµ metrics. This can

be attributed to the change in collected error metrics on the controller level, which
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Figure 8.6: Performance Achieved against varying Θ

sways which controllers are being voted as compromised. At lower values of N ′,

(N ′ = 1, 2, 3), the number of compromised controllers is proportionately lower than

the number of benign controllers. Hence, the size of abnormal computed errors in

each controller is proportionately low to the total number of computed errors, making

these errors show up outside the outlier detection threshold, χ. This makes it more

evident which controllers are compromised, making it easier for the TAPD framework

to detect it. However, when the value of N ′ increases, (N ′ = 4, 5, 6....), the number of

compromised controllers is proportionately equivalent to or higher than the number of

benign controllers. This makes it difficult to discern between which of the controllers

are benign, and which have been compromised, as the model for normal functionality

becomes skewed. The size of abnormal computed errors in each controller is propor-

tionately equivalent or higher to the total number of computed errors. This shifts

the value and location of the outlier detection threshold, χ, making it much more

difficult to detect the compromised SDN controllers in the MSDN setup. From this

experiment, we note that the performance of our proposed framework deteriorates if

the number of compromised controllers N ′ > 30% in the entire architecture.
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Figure 8.7: Performance Achieved against varying malicious SDN controller N’

Next, we analyze the performance achieved by the TAPD framework when the detec-

tion scale, η, is varied, illustrated in Figure 8.8. Here, we note that the performance

achieved with lower values of η is higher than those that are obtained with higher

values of η across the observed A, Pµ, Rµ, and Fµ metrics. This can be attributed to

the fact that the variance of the observed errors in each SDN controller is low, and the

variance of the entire distribution is proportionately close to the variance of only the

normal values in the distribution. This occurs as the adversary is only compromising

a single SDN controller out of 10 possible targets, thereby prioritizing being unde-

tectable while incurring damage to the MSDN. This results in higher performance as

seen in the metrics observed at low values of η, (η′ = 0, 0.1, 0.2, 0.3). Correspond-

ingly, the performance deteriorates as the values of η increase, (η′ = 0.4, 0.5, 0.6, ...).

High values provide more flexibility to the outlier detection algorithm if the variance

of the observed errors in each SDN controller is high, and the variance of the entire

distribution is proportionately close to the variance of only the normal values in the

distribution. As the adversary is not compromising a high number of SDN controllers
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Figure 8.8: Performance Achieved against varying detection scale η

proportional to the total number of SDN controllers, high values of η will not be

effective.

Finally, we analyze the SDN controllers that are being flagged by the TAPD frame-

work through the votes that are being transmitted by each SDN controller. This is

illustrated in Table 8.1. On the left column, we provide a list of varying scenarios

of malicious SDN controllers N ′ that are affected by RLM attacks. On the other

side is the frequency with which each SDN controller is voted by the other controller

using the TAPD framework for each scenario. We note that when the value of N ′

is low, (N ′ = {1, 2, 3}), almost all the controllers in the SDN can detect the mali-

cious SDN controllers. This is due to the errors that are being computed with the

ML models from these controllers by the other SDNs being outliers. As the value

of N ′ increases, (N ′ = {4, 5....}), we observe that fewer SDN controllers can detect

the malicious controllers. This can be attributed to the fact that as the number of

malicious controllers has increased, the computed errors from these controllers to the

rest of the controllers no longer seem like outliers. This makes it difficult to detect
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Table 8.1: Malicious Controller Frequency

Flagged Controller Frequency
N’ 0 1 2 3 4 5 6 7 8 9
0 10 - - - - - - - - -
0,1 10 10 - - - - - - - -
0,1,2 9 1 4 - - - - - - -
0,1,2,3 4 3 1 1 - - - - - -
0,1,2,3,4 4 2 3 2 2 - - - - -
0,1,2,3,4,5 4 1 2 2 2 3 - - - -
0,1,2,3,4,5,6 3 1 3 1 - 4 1 - - -
0,1,2,3,4,5,6,7 1 1 1 3 1 3 1 2 - -
0,1,2,3,4,5,6,7,8 3 1 3 1 1 4 1 - 2 -
0,1,2,3,4,5,6,7,8,9 3 1 1 1 1 4 1 1 2 1

the benign controllers from the ones that are affected by RLM attacks. Similar to

the finding in Figure 8.7, in this experiment, we note that the performance of our

proposed framework deteriorates if the number of compromised controllers N ′ > 30%

in the entire architecture.

Through this research effort, we propose the TAPD framework that aims to detect

ongoing adversarial attacks in MSDN setups. This framework takes advantage of

the hierarchical SDN architecture and focuses on the periodic transference of NIDS

models for validation to detect perturbations. Results indicate efficient performance

at detecting adversarial poisoning attacks and localizing their sources in the MSDN

setup.
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Chapter 9

Conclusion

In this dissertation, we highlight the research plan, experimentation, and results

conducted for performing ML-based network intrusion and anomaly detection for

software-defined networks. Chapter 1 begins with introducing the concept of SDNs

and their improvements over traditional network architectures. Then, we discuss the

potentially detrimental impacts that can occur from network anomalies, which may

be indicative of potential ongoing cyber attacks like network intrusions. We con-

clude the chapter by explaining the need for the usage of new network metrics from

central network devices like switches and routers, a new network intrusion detection

dataset that addresses the existing problems of class imbalance, confident core net-

work intrusion detection that is interpretable, robust anomaly detection in SDN edge

devices, and the need to study the impact of adversarial attacks on ML-based NIDS

and on how to defend against them. In Chapter 2, we discuss background knowledge

and concepts related to SDN network architecture, anomaly detection techniques,

and adversarial attacks and how they can compromise ML pipelines. We then focus

on the current state-of-the-art research present in literature and the current voids
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in research along with how the proposed research provides novelty to the current

methodologies out there. In Chapter 3, we introduce the usage of network port and

differential/delta port statistics towards network intrusion detection. These metrics

are garnered from switch ports in the core of the network. We demonstrated that

machine learning models like Random Forest classifiers effectively use network port

statistics to differentiate between normal and attack traffic with up to 98% accuracy.

Chapter 4 highlights our established network intrusion detection dataset called UNR-

IDD which improves upon contemporary datasets to improve upon the issue of class

imbalance. The developed dataset outperforms other contemporary datasets with an

Fµ score of 94% and a minimum F score of 86%. In Chapter 5, we propose an ensem-

ble learning-based network intrusion detector that prioritizes the confidence scores of

its predictions for intrusion detection. Through this, we observed that network byte

and packet transmissions and their robust statistics can be significant indicators for

the prevalence of any attack.

In Chapter 6, we provide an anomaly detection framework that can perform anomaly

detection on time-series SDN edge devices. We observe precision and recall scores

inversely correlate as ϵ increases, and ϵ = 6.0 yielded the best F score. Results also

highlight that the best performance was achieved from data that had been moderately

smoothed (0.8 ≤ α ≤ 0.4), compared to intensely smoothed or non-smoothed data.

In Chapter 7, we investigate and analyze the impact that adversarial attacks can

have on ML-based NIDS for SDN. This analysis is performed to study the impact

on both single and multi-controller SDN setups. Results show that the proposed

attacks provide substantial deterioration of classifier performance in single SDNs,

and some classifiers deteriorate up to ≈60%. Finally, in Chapter 8, we propose

an adversarial attack detection framework for multi-controller SDN setups that uses

inherent network architecture features to make decisions. Results indicate efficient
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detection performance achieved by the framework in determining and localizing the

presence of adversarial attacks. However, the performance begins to deteriorate when

more than 30% of the SDN controllers have become compromised.

Through the work conducted in this dissertation, we have achieved equitable open-

sourced data that can allow network security researchers to ensure multiple prospec-

tive attack categories can be considerably represented. This research also helps pro-

mote the usage of core network metrics from switches and routers to perform network

intrusion detection, therefore, leading the way to intrusion detection systems that are

resource efficient. The work, additionally, provides us with a rigorous methodology

that can address the well-known limitation of performing robust anomaly detection

with time-series data. Finally, this dissertation has also opened the door, for the first

time, to analyzing how adversarial attacks can deteriorate performance in ML-based

NIDS and how certain ML algorithms are more at risk than others. This can serve

as a flash point upon which further research into protecting ML-based NIDS from

adversarial attacks can be conducted.

For future work, we plan to expand upon our data collection procedures for the

UNR-IDD dataset by augmenting the dataset with more attack categories. Potential

categories include data plane threats like ARP spoofing, side-channel attacks, control

plane threats like network manipulation, and application plane threats like API ex-

ploitation, application manipulation, and brute-force/password guessing attacks. We

also aim to generate new ML classifiers to improve the performance of tail classes in

existing NIDS datasets like NSL-KDD, UNSE-NB15, and CIC-IDS-2018 through the

usage of single, zero, and few-shot learning methods. Additionally, we plan to use our

experimentation and results to generate rigorous ML classifiers and pipelines that are

resilient to adversarial attempts and can remain robust in the face of ongoing attacks.
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