7,727 research outputs found

    CARET analysis of multithreaded programs

    Full text link
    Dynamic Pushdown Networks (DPNs) are a natural model for multithreaded programs with (recursive) procedure calls and thread creation. On the other hand, CARET is a temporal logic that allows to write linear temporal formulas while taking into account the matching between calls and returns. We consider in this paper the model-checking problem of DPNs against CARET formulas. We show that this problem can be effectively solved by a reduction to the emptiness problem of B\"uchi Dynamic Pushdown Systems. We then show that CARET model checking is also decidable for DPNs communicating with locks. Our results can, in particular, be used for the detection of concurrent malware.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Dead code elimination based pointer analysis for multithreaded programs

    Get PDF
    This paper presents a new approach for optimizing multitheaded programs with pointer constructs. The approach has applications in the area of certified code (proof-carrying code) where a justification or a proof for the correctness of each optimization is required. The optimization meant here is that of dead code elimination. Towards optimizing multithreaded programs the paper presents a new operational semantics for parallel constructs like join-fork constructs, parallel loops, and conditionally spawned threads. The paper also presents a novel type system for flow-sensitive pointer analysis of multithreaded programs. This type system is extended to obtain a new type system for live-variables analysis of multithreaded programs. The live-variables type system is extended to build the third novel type system, proposed in this paper, which carries the optimization of dead code elimination. The justification mentioned above takes the form of type derivation in our approach.Comment: 19 page

    Rigorous concurrency analysis of multithreaded programs

    Get PDF
    technical reportThis paper explores the practicality of conducting program analysis for multithreaded software using constraint solv- ing. By precisely defining the underlying memory consis- tency rules in addition to the intra-thread program seman- tics, our approach orders a unique advantage for program ver- ification | it provides an accurate and exhaustive coverage of all thread interleavings for any given memory model. We demonstrate how this can be achieved by formalizing sequen- tial consistency for a source language that supports control branches and a monitor-style mutual exclusion mechanism. We then discuss how to formulate programmer expectations as constraints and propose three concrete applications of this approach: execution validation, race detection, and atom- icity analysis. Finally, we describe the implementation of a formal analysis tool using constraint logic programming, with promising initial results for reasoning about small but non-trivial concurrent programs

    Abstraction and Verification of Properties of a Real-Time Java

    Get PDF
    International audienceWe present a tool for analysing resource sharing conflicts in multithreaded Java programs. Java programs are translated to timed automata models verified afterwards by the Uppaal model checker. Analysed programs are annotated with timing information indicating the execution duration of a particular statement. Based on the timing information, the analysis of execution paths is performed, which gives an answer whether resource sharing conflicts are possible in a multithreaded Java program. If the analysis succeeds, resource locks may be eliminated from the Java program

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    Thread-spawning schemes for speculative multithreading

    Get PDF
    Speculative multithreading has been recently proposed to boost performance by means of exploiting thread-level parallelism in applications difficult to parallelize. The performance of these processors heavily depends on the partitioning policy used to split the program into threads. Previous work uses heuristics to spawn speculative threads based on easily-detectable program constructs such as loops or subroutines. In this work we propose a profile-based mechanism to divide programs into threads by searching for those parts of the code that have certain features that could benefit from potential thread-level parallelism. Our profile-based spawning scheme is evaluated on a Clustered Speculative Multithreaded Processor and results show large performance benefits. When the proposed spawning scheme is compared with traditional heuristics, we outperform them by almost 20%. When a realistic value predictor and a 8-cycle thread initialization penalty is considered, the performance difference between them is maintained. The speed-up over a single thread execution is higher than 5x for a 16-thread-unit processor and close to 2x for a 4-thread-unit processor.Peer ReviewedPostprint (published version

    Thread partitioning and value prediction for exploiting speculative thread-level parallelism

    Get PDF
    Speculative thread-level parallelism has been recently proposed as a source of parallelism to improve the performance in applications where parallel threads are hard to find. However, the efficiency of this execution model strongly depends on the performance of the control and data speculation techniques. Several hardware-based schemes for partitioning the program into speculative threads are analyzed and evaluated. In general, we find that spawning threads associated to loop iterations is the most effective technique. We also show that value prediction is critical for the performance of all of the spawning policies. Thus, a new value predictor, the increment predictor, is proposed. This predictor is specially oriented for this kind of architecture and clearly outperforms the adapted versions of conventional value predictors such as the last value, the stride, and the context-based, especially for small-sized history tables.Peer ReviewedPostprint (published version

    Easier Debugging of Multithreaded Software

    Get PDF
    Software activation is a technique designed to avoid illegal use of a licensed software. This is achieved by having a legitimate user enter a software activation key to validate the purchase of the software. Generally, a software is a single-threaded program. From an attacker’s perspective, who does not wish to pay for this software, it is not hard to reverse engineer such a single threaded program and trace its path of execution. With tools such as OllyDbg, the attacker can look into the disassembled code of this software and find out where the verification logic is being performed and then patch it to skip the verification altogether. In order to make the attacker’s task difficult, a multi-threaded approach towards software development was proposed [1]. According to this approach, you should break the verification logic into several pieces, each of which should run in a separate thread. Any debugger, such as OllyDbg, is capable of single-stepping through only one thread at a time, although it is aware of the existence of other threads. This makes it difficult for an attacker to trace the verification logic. Not just for an attacker, it is also difficult for any ethical developer to debug a multithreaded program. The motivation behind this project is to develop the prototype of a debugger that will make it easer to trace the execution path of a multi-threaded program. The intended debugger has to be able to single-step through all of the threads in lockstep
    • …
    corecore