2,522 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Defining a magnetic resonance scan sequence for permanent seed prostate brachytherapy postimplant assessment

    Get PDF
    AbstractPurposeWe describe a magnetic resonance (MR) scan sequence for prostate brachytherapy postimplant assessment.Methods and MaterialsOne brachytherapy team at the British Columbia Cancer Agency has incorporated MR–CT fusion into their permanent seed prostate brachytherapy quality assurance procedure. Several attempts were required to ensure that the diagnostic MR scanner at the adjoining general hospital performed the desired sequence, providing many examples of suboptimal scans and underlining the pitfalls for a center trying to incorporate the use of MR scanning into their brachytherapy program.ResultsThe recommended sequence (Fast Spin Echo T2-weighted, repetition time [TR]/echo time [TE] 4500/90, echo train length [ETL] 10, 20×20 field of view [FOV], 80 bandwidth [BW]) is associated with superior edge detection when compared with those images in which a typical diagnostic sequence was used. The use of a low bandwidth sequence does not compromise edge detection or seed identification when compared with a higher bandwidth.ConclusionsWe have defined a magnetic resonance imaging sequence, which appears to optimize both prostate delineation and identification of seeds, lending itself to straightforward fusion with CT images and allowing for less uncertainty in permanent seed prostate brachytherapy quality assurance

    Mesh-to-raster based non-rigid registration of multi-modal images

    Full text link
    Region of interest (ROI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from CAT scanners as pixel or voxel data. Previously, we presented a 2D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster (M2R) framework to register ROIs in multi-modal images; (ii) a 3D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2D using ground truth provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem where the objective consists of a data term, which involves the signed distance function of the ROI from the reference image, and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The ROI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit (ITK) and Elastix

    Magnetic Resonance Imaging for the Functional Analysis of Tissues and Biomaterials

    Get PDF
    Articular cartilage provides mechanical load dissipation and lubrication between joints, and additionally provides protects from abrasion. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis is important for developing effective therapies. However, few reliable imaging biomarkers exist to detect cartilage disease before advanced degeneration in the tissue. One specialized MRI technique, termed displacements under applied loading by MRI (dualMRI), was developed to measure displacements and strain in musculoskeletal tissues, hydrogels and engineered constructs. However, deformation information does not directly describe spatial distributions of tissue properties (e.g. stiffness), which is critical to the understanding of disease progression. To achieve the stiffness measurement, we developed and validated an inverse modeling workflow that combined dualMRI, to directly measure intratissue deformation, with topology optimization in the application of heterogeneous (layered) materials representative of the complex gradient architecture of articular cartilage. We successfully reconstructed bi-layer stiffness from ideal displacements calculated from forward simulation as well as from experimental data measured from dualMRI. To monitor the progression of osteoarthritis, we measured and analyzed biomechanical changes of sheep stifle cartilage after meniscectomy. We found that 2nd principal strain and max shear strain in the femur contact region are sensitive to cartilage degeneration at different stages and compared to more conventional methods like quantitative MRI. To investigate the biomechanical changes in articular cartilage with defect and repair, we implanted decellularized cartilage implant into sheep cartilage defect and evaluate the repair results using quantitative MRI and dualMRI. We found that implants placed in joints demonstrated lower strains compared to joints with untreated defects

    Tissue identification with micro-magnetic resonance imaging in a caprine spinal fusion model

    Get PDF
    Nonunion is a major complication of spinal interbody fusion. Currently X-ray and computed tomography (CT) are used for evaluating the spinal fusion process. However, both imaging modalities have limitations in judgment of the early stages of this fusion process, as they only visualize mineralized bone. Magnetic resonance imaging (MRI) could be of great value as it is able to discriminate between different types of tissue. A feasibility study was performed in nine animals from a goat spinal fusion study, to evaluate the detection capacity of different tissues with micro-MRI. In this study bioresorbable polylactic acid cages were used. Six- and 12-months follow-up specimens were scanned in a 6.3 T micro-MRI scanner. After scanning, the specimens were processed for histology. Different types of tissue as well as the degradable cage material were identified in the fusion zone and designated as regions of interest (ROIs). Subsequently, the location of these ROIs was determined on the corresponding micro- MRI image, and average signal intensities of every individual ROI were measured. An excellent match was seen between the histological sections and micro-MRI images. The micro-MRI images showed quantifiable differences in signal intensity between bone with adipose marrow, bone with hematopoietic marrow, fibrocartilage, fibrous tissue, and degradable implant material. In time the signal intensity of bone with adipose marrow, bone with hematopoietic red marrow, and of fibrous tissue remained relatively constant. On the other hand, the signal intensity of the degradable implant material and the fibrocartilage changed significantly in time, indicating change of structure and composition. In conclusion, in our model using bioresorbable cages the MRI provides us with detailed information about the early fusion process and may therefore, allow early diagnosis of non-union

    Grid simulation services for the medical community

    No full text
    The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services

    Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen

    Full text link
    BACKGROUND AND PURPOSE The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions. MATERIALS AND METHODS A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT. RESULTS The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path. CONCLUSION The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%

    Intervertebral Disc Structure and Mechanical Function Under Physiological Loading Quantified Non-invasively Utilizing MRI and Image Registration

    Get PDF
    The intervertebral discs (IVD) functions to permit motion, distribute load, and dissipate energy in the spine. It performs these functions through its heterogeneous structural organization and biochemical composition consisting of several tissue substructures: the central gelatinous nucleus pulposus (NP), the surrounding fiber reinforced layered annulus fibrosus (AF), and the cartilaginous endplates (CEP) that are positioned between the NP and vertebral endplates. Each tissue contributes individually to overall disc mechanics and by interacting with adjacent tissues. Disruption of the disc\u27s tissues through aging, degeneration, or tear will not only alter the affected tissue mechanical properties, but also the mechanical behavior of adjacent tissues and, ultimately, overall disc segment function. Thus, there is a need to measure disc tissue and segment mechanics in the intact disc so that interactions between substructures are not disrupted. Such measurements would be valuable to study mechanisms of disc function and degeneration, and develop and evaluate surgical procedures and therapeutic implants. The objectives of this study were to develop, validate, and apply methods to visualize and quantify IVD substructure geometry and track internal deformations for intact human discs under axial compression. The CEP and AF were visualized through MRI parameter mapping and image sequence optimization for ideal contrast. High-resolution images enabled geometric measurements. Axial compression was performed using a custom-built loading device that permitted long relaxation times outside of the MRI, 300 m isotropic resolution images were acquired, and image registration methods applied to measure 3D internal strain. In conclusion, new methods to visualize and quantify CEP thickness, annular tear detection and geometric quantification, and non-invasively measure 3D internal disc strains were established. No correlation was found between CEP thickness and disc level; however the periphery was significantly thicker compared to central locations. Clear distinction of adjacent AF lamellae enabled annular tear detection and detailed geometric quantification. Annular tears demonstrated non-classic geometry through interconnecting radial, circumferential, and perinuclear formations. Regional strain inhomogeneity was observed qualitatively and quantitatively. Variation in strain magnitudes might be explained by geometry in axial and circumferential strain while peak radial strain in the posterior AF may have important implications for disc herniation
    corecore