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Intervertebral Disc Structure and Mechanical Function Under
Physiological Loading Quantified Non-invasively Utilizing MRI and
Image Registration

Abstract
The intervertebral discs (IVD) functions to permit motion, distribute load, and dissipate energy in the spine.
It performs these functions through its heterogeneous structural organization and biochemical composition
consisting of several tissue substructures: the central gelatinous nucleus pulposus (NP), the surrounding fiber
reinforced layered annulus fibrosus (AF), and the cartilaginous endplates (CEP) that are positioned between
the NP and vertebral endplates. Each tissue contributes individually to overall disc mechanics and by
interacting with adjacent tissues. Disruption of the disc's tissues through aging, degeneration, or tear will not
only alter the affected tissue mechanical properties, but also the mechanical behavior of adjacent tissues and,
ultimately, overall disc segment function. Thus, there is a need to measure disc tissue and segment mechanics
in the intact disc so that interactions between substructures are not disrupted. Such measurements would be
valuable to study mechanisms of disc function and degeneration, and develop and evaluate surgical
procedures and therapeutic implants. The objectives of this study were to develop, validate, and apply
methods to visualize and quantify IVD substructure geometry and track internal deformations for intact
human discs under axial compression. The CEP and AF were visualized through MRI parameter mapping and
image sequence optimization for ideal contrast. High-resolution images enabled geometric measurements.
Axial compression was performed using a custom-built loading device that permitted long relaxation times
outside of the MRI, 300 m isotropic resolution images were acquired, and image registration methods
applied to measure 3D internal strain. In conclusion, new methods to visualize and quantify CEP thickness,
annular tear detection and geometric quantification, and non-invasively measure 3D internal disc strains were
established. No correlation was found between CEP thickness and disc level; however the periphery was
significantly thicker compared to central locations. Clear distinction of adjacent AF lamellae enabled annular
tear detection and detailed geometric quantification. Annular tears demonstrated "non-classic" geometry
through interconnecting radial, circumferential, and perinuclear formations. Regional strain inhomogeneity
was observed qualitatively and quantitatively. Variation in strain magnitudes might be explained by geometry
in axial and circumferential strain while peak radial strain in the posterior AF may have important implications
for disc herniation.
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ABSTRACT 

 

INTERVERTEBRAL DISC STRUCTURE AND MECHANICAL FUNCTION UNDER 

PHYSIOLOGICAL LOADING QUANTIFIED NON-INVASIVELY UTILIZING MRI 

AND IMAGE REGISTRATION 

 

Jonathon H Yoder 

Dawn M Elliott 

 

The intervertebral discs (IVD) functions to permit motion, distribute load, and dissipate 

energy in the spine. It performs these functions through its heterogeneous structural 

organization and biochemical composition consisting of several tissue substructures: the 

central gelatinous nucleus pulposus (NP), the surrounding fiber reinforced layered 

annulus fibrosus (AF), and the cartilaginous endplates (CEP) that are positioned between 

the NP and vertebral endplates. Each tissue contributes individually to overall disc 

mechanics and by interacting with adjacent tissues. Disruption of the disc’s tissues 

through aging, degeneration, or tear will not only alter the affected tissue mechanical 

properties, but also the mechanical behavior of adjacent tissues and, ultimately, overall 

disc segment function. Thus, there is a need to measure disc tissue and segment 

mechanics in the intact disc so that interactions between substructures are not disrupted. 

Such measurements would be valuable to study mechanisms of disc function and 

degeneration, and develop and evaluate surgical procedures and therapeutic implants. The 

objectives of this study were to develop, validate, and apply methods to visualize and 
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quantify IVD substructure geometry and track internal deformations for intact human 

discs under axial compression. The CEP and AF were visualized through MRI parameter 

mapping and image sequence optimization for ideal contrast. High-resolution images 

enabled geometric measurements. Axial compression was performed using a custom-built 

loading device that permitted long relaxation times outside of the MRI, 300 m isotropic 

resolution images were acquired, and image registration methods applied to measure 3D 

internal strain. In conclusion, new methods to visualize and quantify CEP thickness, 

annular tear detection and geometric quantification, and non-invasively measure 3D 

internal disc strains were established. No correlation was found between CEP thickness 

and disc level; however the periphery was significantly thicker compared to central 

locations. Clear distinction of adjacent AF lamellae enabled annular tear detection and 

detailed geometric quantification. Annular tears demonstrated “non-classic” geometry 

through interconnecting radial, circumferential, and perinuclear formations. Regional 

strain inhomogeneity was observed qualitatively and quantitatively. Variation in strain 

magnitudes might be explained by geometry in axial and circumferential strain while 

peak radial strain in the posterior AF may have important implications for disc herniation. 
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CHAPTER 1 Introduction 

The intervertebral disc (IVD) functions to permit motion of the spine while 

distributing the multidirectional loads experienced during daily activities, including 

tension, compression, torsion, and bending. Intervertebral disc degeneration widely 

afflicts the aging population, often manifesting itself in low back pain. This progressive 

and irreversible process causes deleterious changes to the disc’s structural integrity, 

mechanical function, and nutritional pathways. The current surgical standard of care for 

painful disc degeneration is limited to disc removal, followed by superior and inferior 

vertebral body fusion or total disc replacement. Fusion results in a loss of motion and the 

ability to distribute load. Total disc replacement attempts to preserve mobility, but does 

not replicate the native disc load distribution characteristics. Quantification of internal 

IVD mechanics can improve knowledge of the effect of degeneration on disc mechanical 

function. This knowledge will provide crucial design criteria to better recapitulate healthy 

disc structure and function, and thus improve treatment options.  

 Measuring disc internal mechanics is a complicated challenge; in situ boundary 

condition replication is difficult with excised tissue testing samples. Motion segment 

testing permits the study of overall disc stress and strain behavior, but it does not present 

detail of the discs internal mechanics and interactions between its constituents. Prior 

experimental studies have attempted to study the IVD internal deformations; however 

they are limited to physical marker insertion or entire disc bisection, disrupting the discs 

structural integrity. Physical markers may move separately from the surrounding tissue 

and bisection depressurizes the NP, altering the AF mechanics. Magnetic resonance 

imaging (MRI) has recently been utilized to study IVD internal deformations, providing a 
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non-invasive technique to visualize the disc’s substructures in two-dimensions (2D). This 

technique has only been applied to measure 2D strain under single loads. However, the 

IVD deforms in three-dimensions (3D). Single 2D images are not able to capture out-of-

plane deformations, which are typical of a loaded disc. Work within this dissertation will 

develop techniques utilizing 3D MRI and image registration to allow intervertebral disc 

structural visualization and the quantification of its deformations under load. The overall 

objective of this dissertation is to measure the disc’s 3D internal deformations when 

subjected to physiological loading, and more specifically, the effect of incremental axial 

deformations on the regional annulus fibrosus (AF) mechanics. 

 Chapter 2 will provide background on the IVD and explain the structure, 

composition, and mechanical function of healthy discs as well as the effects of 

degeneration. Additionally, a thorough review of internal deformations within the IVD, 

medical image analysis, and an introduction to Advanced Normalization Tools for image 

registration will be presented. 

Current MRI techniques for visualizing the detailed IVD structure have been 

limited to single 2D images in one of the primary orthogonal planes: sagittal, coronal, or 

transverse. Chapter 3 will develop a 3D MRI sequence to visualize and distinguish the 

cartilaginous endplate (CEP). As the IVD degenerates, there is a loss of structural 

integrity causing the CEP to become sclerotic. The imaging techniques developed in 

Chapter 3 will then be applied to detecting and quantifying CEP thickness. 

Chapter 4 will further visualize and distinguish the annulus fibrosus lamellae 

within the IVD. A 3D MRI sequence will enable the ability to differentiate between 

adjacent AF lamella facilitating the detection of deformities such as tears (radial, 
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circumferential, perinuclear), rim lesions, and Schmorl’s nodes. The high-resolution 3D 

images will then be applied to the clinically relevant problem to non-invasively 

characterize and quantify annular deformities which are linked to low back pain and alter 

disc mechanics. The ability to visualize AF lamellae in 3D will be applied to track 

internal deformations within the disc under physiological loading in Chapters 7-8. 

Chapter 5 describes an MRI compatible loading device designed to apply 

incremental amounts of axial compression, maintain disc hydration, and integrate with a 

curved RF coil. The developed loading frame will enable disc image acquisition in both a 

reference and deformed state with the optimized sequence from Chapter 4. 

Image registration is considered a promising soft tissue (e.g., pulmonary and 

cardiovascular tissues, and ligament) strain analysis technique utilizing medical images. 

Chapter 6 will establish the use of Advanced Normalization Tools (ANTs), an image 

registration software for disc registration and optimize its parameters for 2D strain 

analysis. The use of manual segmentation tools will enable registration accuracy 

verification and strain measurements across user-defined regions. Registration strain 

measurements before and after nucleotomy will be compared with previously published 

texture correlation methods. Image registration optimization in 2D will be translated to 

3D in chapters 7-8. 

In Chapter 7, the high-resolution isotropic MR imaging sequence (Chapter 4), 

MRI safe loading frame (Chapter 5), and optimized image registration parameters 

(Chapter 6) will enable 3D internal deformation measurements in intact human discs. 

Intervertebral disc substructures work together and distribute multi-directional loading in 

compression, torsion, and bending. Data within the literature quantifying 3D internal 
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strain distributions under physiological loading is limited. Experimental whole-disc 

testing is limited to providing global disc load and deformation details, not yielding 

internal mechanics information. The effect of incremental amounts of axial compression 

on the regional strain variance will be reported along the mid-axial disc height. 

Chapter 8 will expand upon the techniques developed in Chapters 3 – 6 to assess 

the internal regional strain properties of the IVD. Regional strain analysis has been 

limited to mid-axial, ex-vivo tissue testing, surface strain measurements, and two-

dimensional internal analysis. A complete 3D internal strain analysis will be performed 

segmenting the disc into radial (i.e., inner and outer), circumferential (i.e., anterior, 

lateral, and posterior) and axial (i.e., inferior, medial, and superior) components. 

The developed capabilities to measure 3D internal strain within the disc, the 

results from this dissertation, and proposed future studies involving the assessment of 

degeneration, different loading schemes, and clinical treatments will be discussed in 

Chapter 9. 
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CHAPTER 2 Background 

2.1. Clinical Significance 

Intervertebral disc (IVD) degeneration is a progressive disease strongly linked to 

low back pain (Frymoyer 1988, Andersson 1999, Adams 2004, Adams and Dolan 2005). 

This ailment debilitates more than 5 million Americans and is the second most frequent 

reason for physician visits (Deyo and Tsui-Wu 1987, Luo, Pietrobon et al. 2004). Its 

estimated $100 billion societal cost in the United States (Katz 2006) mandates increased 

knowledge of the effects of this disease. Current surgical treatment options for painful 

disc degeneration is limited to disc removal, followed by either superior and inferior 

vertebral body fusion or total disc replacement (Schizas, Kulik et al.). Fusion results in a 

loss of motion and load distribution. Total disc replacement attempts to preserve mobility 

but does not replicate the native disc load distribution characteristics (Costi, Freeman et 

al.). Degeneration greatly affects the IVD and its constituents; it is associated with 

mechanical damage, biological degradation, and a loss of nutritional pathways (Martin, 

Boxell et al. 2002). Studies have shown that individuals, who undergo recurring 

compressive and torsional motion, have a higher incidence of disc degeneration 

compared to the general population (Kumar 2004, Hangai, Kaneoka et al. 2009). The 

factors that cause disease progression, including interactions of mechanical, 

compositional, structural, and cellular changes, are not well understood (Buckwalter and 

Mow 2000). The primary function of the disc is mechanical; however the understanding 

of disc internal deformations is limited to 2D work (O'Connell, Malhotra et al. , 

O'Connell, Vresilovic et al. , O'Connell, Johannessen et al. 2007) for a 3D structure. This 
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motivates the current study to examine the disc’s 3D internal mechanics, quantify the 

effects of degeneration, and explore potential restorative techniques for AF mechanics. 

2.2. Intervertebral Disc Structure 

The spine is a column-like structure that is made up of alternating vertebral bodies 

(VB) that encapsulate the intervertebral discs (IVD) acellular soft-tissues. The IVD sub-

structures (Figure 1) comprise of the nucleus pulposus (NP), annulus fibrosus (AF), and 

the cartilaginous endplates (CEP). 

 

Figure 1: Representative lumbar spine image and the intervertebral disc sub-structures. 

The NP is a hydrated, gel-like structure made up of water, proteoglycan, and type 

II-collagen that primarily aids the IVD during compression (Pearce, Grimmer et al. 

1987). The NP is circumferentially encapsulated by the AF, which is made up of highly 

organized concentric lamellae. Each layer of lamellae has alternating fiber orientations 

28°-43° above and below the transverse plane (Marchand and Ahmed 1990); with the 

angle increasing from outer to inner AF. These fibers are made up of collagen bundles 

that are embedded in a matrix of proteoglycans and non-fibrillar collagens. Along the 

transition from the outer to inner AF, there is an increase in type II collagen and decrease 



7 

 

in type I collagen (Buckwalter 1995); resulting in less distinctive lamellae. Lamellae 

thickness varies by location (anterior/posterior/lateral) within the disc and becomes 

thicker towards the NP ranging from 140 – 520 μm (Marchand and Ahmed 1990). The 

AF outer lamella fibers are attached to the vertebra, while the inner lamellas merge with 

the CEP. The CEP is a very thin layer of hyaline-like cartilage, ranging from 450 – 800 

μm positioned between the vertebral endplates and the NP (Roberts, Menage et al. 1989, 

Marchand and Ahmed 1990, Roberts, Menage et al. 1993, Moore 2000, Urban and 

Roberts 2003). It provides a mechanical barrier between the pressurized NP and the VB, 

acting as a gateway for nutrient transport from blood vessels into the disc (Roberts, 

Menage et al. 1993, Moore 2000, Urban and Roberts 2003). The structure and 

composition of the disc is strongly linked to its mechanical function (Buckwalter and 

Mow 2000). 

2.3. Disc Mechanical Function 

The intervertebral discs sub-structures (nucleus pulposus – NP, annulus fibrosus – 

AF, and cartilaginous endplate – CEP) function to distribute multi-directional loads, 

which are applied to the disc during daily activities that relate to tension, compression, 

torsion, and bending with stresses ranging from 0.1-2.3 MPa (Nachemson and Morris 

1963, Wilke, Neef et al. 1999). The disc acts as a pressurized vessel, under load the NP 

exhibits viscoelastic properties (Iatridis, Weidenbaum et al. 1996, Iatridis, Setton et al. 

1997), where the pressurization of the NP transfers hoop stresses radially to the 

anisotropic nonlinear AF. The alternating AF collagen fiber network permits resistance to 

bending and torsion while experiencing direct compression, plus radial and 
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circumferential stress from the NP bulging under physiological loading. The proposed 

work will focus on the internal strains seen during physiological compressive loads. 

Motion-segment (bone-disc-bone) testing has been extensively performed in 

compression analyzing both the static (Stokes, Laible et al. , Koeller, Funke et al. 1984, 

Keller, Spengler et al. 1987, Cannella, Arthur et al. 2008) and dynamic (Adams and 

Hutton 1983, Liu, Njus et al. 1983, Hansson, Keller et al. 1987, Race, Broom et al. 2000, 

Riches, Dhillon et al. 2002, Johannessen, Vresilovic et al. 2004, van der Veen, van Dieen 

et al. 2007, Korecki, MacLean et al. 2008, Wang, Wu et al. 2008) responses of the disc. 

Disc height decreases under axial compression, resulting in an intradiscal pressure 

increase. The reported disc’s compressive stiffness and modulus are 1.73 kN/mm and 3-

10MPa (Nachemson, Schultz et al. 1979, Shea, Takeuchi et al. 1994, Beckstein, Sen et al. 

2008) respectively. Under extended creep loading the NP transfers load to the annulus. 

The thin posterior annulus sustains high strains (Stokes 1987, Heuer, Schmidt et al. 2008) 

resulting in stress concentrations (Adams, McMillan et al. 1996, Edwards, Ordway et al. 

2001). Radiographic measures have shown the endplate to bulge under increasing 

amounts of load (Holmes, Hukins et al. 1993). 

Torsional shear modulus ranges between 2-9 MPa (Abumi, Panjabi et al. 1990, 

Elliott and Sarver 2004, Beckstein, Espinoza Orias et al. 2007) within the AF, where the 

disc experiences 1-2° of torsion in-vivo (Adams and Hutton 1981). Both the facet joints 

and annulus resist torsion (Shirazi-Adl 1994, Krismer, Haid et al. 1996) with the annulus 

bearing upwards of 77% (Yingling and McGill 1999). Surface strain measurements have 

shown the posterior lateral region to experience the greatest strain under torsion (Stokes 

1987). The disc stiffens with age in torsion (Nachemson, Schultz et al. 1979) and is 
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linked to degeneration by the derangement of the AF lamellae at low magnitudes (Farfan 

1969, Farfan, Cossette et al. 1970) and to increased risk of herniation under combined 

loading conditions (Drake, Aultman et al. 2005). 

2.4. Disc Degeneration 

Degeneration of the IVD causes progressive changes to the disc’s structural 

integrity (Figure 2), mechanical function, and loss of nutritional pathways; the 

interactions of these changes are not well understood. During IVD degeneration the 

proteoglycans breakdown, resulting in a pressure loss and the ability to maintain 

hydration within the NP. This pressure and hydration loss subsequently causes a 

decrease in compressive stiffness (Buckwalter 1995, Nguyen, Johannessen et al. 

2008). These changes in biochemical composition as a result of degeneration lead to 

a loss in fixed charge density (Urban and McMullin 1985, Urban and McMullin 

1988). Consequently, the AF bears most of the loads within the IVD (Tsantrizos, Ito 

et al. 2005), leading to inward bulging of the AF (Brinckmann and Grootenboer 

1991), disorganization, and thickening. Thickening increases collagen cross-linking 

(Pokharna and Phillips 1998), which can lead to annular tears (Thompson, Pearce et 

al. 1990, Adams 2004) and ultimately disc herniation. The inner AF undergoes an 

increase in collagen content with type II collagen fibrils becoming type I. 

(Weidenbaum and Iatridis 2006). This change in fibril type makes the distinction 

between NP and AF less apparent. Additionally, the CEP becomes sclerotic and loses 

vascular contact, which in turn causes decreased permeability, nutritional loss, and 

apoptosis of NP cells (Nachemson, Lewin et al. 1970, Bernick and Cailliet 1982, 
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Roberts, Urban et al. 1996, Grignon, Grignon et al. 2000, Bibby, Jones et al. 2001, 

Martin, Boxell et al. 2002, Adams and Roughley 2006, Accadbled, Laffosse et al. 

2008, Raj 2008). These compositional changes of the IVD cause height loss, shifting 

the load towards the facets (Yang and King 1984) and placing high stresses on the 

AF leading to tears (Vernon-Roberts, Fazzalari et al. 1997, Lawrence, Greene et al. 

2006). 

 

Figure 2: Magnetic resonance images illustrating different stages of human lumbar 

degeneration. (A) A healthy disc exhibiting distinct AF lamellae and central NP region. 

(B) A disc exhibiting early stages of degeneration, including moderate height reduction, 

decreased NP signal intensity and inward bulging of AF lamellae (*). (C) A disc 

exhibiting advanced stages of degeneration, including severely reduced height, large 

fissures (*) and generalized structural deterioration.(Smith, Nerurkar et al. 2011)   

Annular defects have been categorized into classic tear categories: radial, 

circumferential, perinuclear (Osti, Vernon-Roberts et al. 1992, Vernon-Roberts, 

Moore et al. 2007) and other defects such as rim lesions and Schmorl’s nodes (Figure 

3). Radial tears typically initiate at the NP and radiate outward, occurring primarily 

in the posterior AF. Tears are closely associated with NP degeneration and 
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increased age (Osti, Vernon-Roberts et al. 1992, Vernon-Roberts, Fazzalari et al. 

1997). Circumferential tears are the separation of lamellae and occur equally in the 

anterior and posterior AF, often concentrated in the outer regions (Osti, Vernon-

Roberts et al. 1992, Vernon-Roberts, Fazzalari et al. 1997). Perinuclear tears are the 

separation of the NP from the AF and result in a cleft (Vernon-Roberts, Moore et al. 

2007). 

 In cadaveric studies, morphological/histological sections and discograms 

(fluid contrast injected into the NP) have been used to quantify AF tears. 

Morphological sections are limited because they only view one disc slice, while tears 

occur in a complex 3D pattern (Vernon-Roberts, Fazzalari et al. 1997, Videman and 

Nurminen 2004). 

 

Figure 3: Representative annular and intervertebral disc defects. (Vernon-Roberts, Moore 

et al. 2007) 

Discogram studies detect the presence of radial tears, but not their size or structure, 

and these studies do not detect circumferential tears (Adams, Dolan et al. 1986, 



12 

 

Kakitsubata, Theodorou et al. 2003, Videman and Nurminen 2004). The risk of a 

radial AF tears has been shown to be 60% in early adulthood and 100% by 

retirement age through an extensive discogram study of 157 cadaver spines. The 

risk of a full AF tear is 10% for 20 to 49 year olds and 35% for 50 to 59 year olds 

(Videman and Nurminen 2004). A comprehensive recent study using multiple 

histological sections of L4-L5 quantified the incidence concentric tears to be ~100% 

between ages 10 and 80 years (Vernon-Roberts, Moore et al. 2007). The incidence of 

perinuclear tears was also high at ~90% across all ages. Posterior radial tears 

increase from 70% incidence in those 10-30 years to 85% within the 51-89 year 

group (Vernon-Roberts, Moore et al. 2007). Rim lesions occur at the junction of the 

AF and vertebral endplate and are related to trauma, rather than degeneration. Rim 

lesion data shows 30% incidence at age 30 and 90% at age 80 (Vernon-Roberts, 

Moore et al. 2007). Schmorl’s nodes are herniations of the disc into the VB (Resnick 

and Niwayama 1978). Reported frequency in the literature is varied (Hilton, Ball et 

al. 1976, Hansson and Roos 1983, Hamanishi, Kawabata et al. 1994, Stabler, Bellan 

et al. 1997). 
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Figure 4: Pfirmann grading scale displaying degenerative changes visualized in MR 

(Pfirrmann, Metzdorf et al. 2001). 

The degenerative IVD structural and compositional changes can be visualized 

with MR imaging. Images illustrate a decrease in signal intensity, disc height narrowing, 

and osteophytes on the vertebral bodies (Pfirrmann, Metzdorf et al. 2001). Pfirrmann et 

al. established a qualitative graded scale (Figure 4) of increasing degeneration, where 

non-degenerate discs are grades I-II, moderately degenerate are grades III-IV, and 

severely degenerate grade V (Pfirrmann, Metzdorf et al. 2001). 

 

Figure 5: T2 correlations to T1ρ and Pfirrmann from Elliot Lab lumbar spine database 

collected over several years for a multitude of studies 

Since degeneration is a continuous process, quantitative MR mapping techniques 

(T1ρ and T2) have been linked to degeneration through changes in water and 
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proteoglycan content (Blumenkrantz, Zuo et al. , Borthakur, Maurer et al. , Marinelli, 

Haughton et al. , Takashima, Takebayashi et al. , Welsch, Trattnig et al. , Zuo, Joseph et 

al. , Blumenkrantz, Li et al. 2006, Johannessen, Auerbach et al. 2006, Perry, Haughton et 

al. 2006, Watanabe, Benneker et al. 2007, Nguyen, Johannessen et al. 2008, Marinelli, 

Haughton et al. 2009). T2 mapping will be used within this study because it is more 

repeatable and is correlated to both Pfirrmann grade and T1ρ score (Figure 5) 

(Blumenkrantz, Zuo et al.). 

2.5. Internal Deformations 

Internal deformations of IVD strains have been measured through various optical 

and radiographic techniques (Seroussi, Krag et al. 1989, Meakin and Hukins 2000, 

Kusaka, Nakajima et al. 2001, Meakin, Redpath et al. 2001, Tsantrizos, Ito et al. 2005, 

Ho, Kelly et al. 2006, Costi, Stokes et al. 2007). Physical markers were inserted to track 

displacements within the disc. Markers included metal beads (Seroussi, Krag et al. 1989), 

thin wires (Tsantrizos, Ito et al. 2005, Costi, Stokes et al. 2007), or nylon rods (Kusaka, 

Nakajima et al. 2001). These markers offered limited accuracy since they were able move 

separately from the structure of the disc. This limitation was improved by the use of 

Alcian blue stain dots to track the displacements of a sagittaly bisected disc against 

transparent Plexiglas (Meakin and Hukins 2000, Meakin, Redpath et al. 2001, Ho, Kelly 

et al. 2006); however, bisection depressurizes the disc. The recent application of the 

commercial texture correlation software Vic2D (Correlated Solutions Inc: Columbia, SC) 

to MR images has permitted non-invasive internal deformation measurements to be made 
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in 2D within the sagittal and coronal plane of the disc (O'Connell, Malhotra et al. , 

O'Connell, Vresilovic et al. , O'Connell, Johannessen et al. 2007).  

O’Connell et al. utilized a turbo spin echo (TSE) with TR/TE = 3000/113 ms 

respectively, producing T2-weighted 2D mid-sagittal/coronal MR images with in-plane 

resolution of 234 μm/pixel and 3mm slice thickness on a 3T clinical MRI scanner 

(O'Connell, Johannessen et al. 2007). Spin-echo based sequences have been widely used 

for MR imaging of the intervertebral disc (Haughton 2004) because they are less 

susceptible to inhomogeneity’s in the magnetic field. T2-weighting an image with a long 

echo time (TE) and long repetition time (TR) provides brighter signal for high water 

content soft tissues and darker for fat predominant tissues. Texture correlation strain 

measurements (resolution of 1/20
th

 pixel = 11.7μm) were validated against displacement 

measurements across the entire disc and also against finite element studies (O'Connell, 

Johannessen et al. 2007). Under axial compression it was found that compressive and 

radially tensile strains increased with degeneration (O'Connell, Vresilovic et al.). The 

posterior AF experienced the highest regional strain and did not correlate with 

degeneration, indicating that the posterior region undergoes high loads throughout life 

(O'Connell, Vresilovic et al.). The use of MRI to measure internal deformations permits 

the study of clinical treatments such as nucleotomy, which increases compressive AF 

strains while decreasing radial strain (O'Connell, Malhotra et al.). Despite significant 

technical improvements, these studies are limited to 2D strain measurements for a 3D 

structure. It is difficult to limit out of plane motion; the 3D techniques developed in this 

thesis will mitigate these limitations. Texture correlation has been shown to produce 

strain inaccuracies due to the in-homogeneity of the IVDs native texture as visualized in 
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MR images (Gilchrist, Xia et al. 2004). Recognition of such limitations has directed the 

implementation of image registration to perform strain analysis on medical images 

(Phatak, Sun et al. 2007). This process produces comparable results to texture correlation 

(Hardisty, Akens et al. , Villemure, Cloutier et al. 2007). A non-rigid image registration 

method was employed by Reiter et al. to calculate mid-sagittal strain after creep loading 

(Reiter, Fathallah et al. 2012). Displacement encoded MRI, an image tagging method that 

enables direct displacement measurements from MR data, was used by Chan and Neu to 

calculate strain across the entire disc under cyclic loading (Chan and Neu 2013). These 

studies utilized MR phantoms (Chan and Neu 2013) or computer generated deformations 

(Reiter, Fathallah et al. 2012) to verify strain measurements. However, experimental 

specific verification can provide a better sense of what is actually occurring within the 

disc (ground truth). Image registration and the application of overlap statistics with 

segmentations will provide strain analysis of the entire disc and accurate disc-specific 

reportable strain resolution in Chapter 6-8. 

2.6. Medical Image Analysis and Registration Applications 

Quantitative image analysis including texture correlation, digital volume 

correlation and image registration (Liang, Zhu et al. , O'Connell, Malhotra et al. , 

O'Connell, Vresilovic et al. , Tustison, Cook et al. , Weiss, Rabbitt et al. 1998, Bay, 

Smith et al. 1999, Bay 2001, Veress, Weiss et al. 2002, Tustison, Davila-Roman et al. 

2003, Veress, Gullberg et al. 2005, Tustison and Amini 2006, Chandrashekara, 

Mohiaddin et al. 2007, Liu and Morgan 2007, O'Connell, Johannessen et al. 2007, 

Phatak, Sun et al. 2007, Phatak, Maas et al. 2009, Tustison, Avants et al. 2009) has been 
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extensively used to measure strain from various biomedical imaging modalities. Texture 

correlation is a pattern-matching algorithm that compares random patterns of pixel 

intensities between two images, calculating displacements between individual pixels in 

corresponding images. Digital volume correlation is an adjunct to digital image 

correlation, a form of texture correlation utilizing 3D images to track microstructural 

feature movement within specimens (Bay, Smith et al. 1999, Bay 2001, Liu and Morgan 

2007). Image registration is the process of finding a transformation (warp field) which 

can map points from a reference image (original) to a different image (deformed) (Ng and 

Ibanez 2004), this technique has been widely applied to medical images.  

Image registration permits various imaging modalities, including X-Ray, CT, and 

MRI which can be spatially aligned to correlate data (Maintz and Viergever 1998). The 

wide applicability of image registration enables physicians to quantitatively detect subtle 

changes between images, facilitate identification and localization of brain lesions for 

surgical guidance (Ng and Ibanez 2004), assess treatment effectiveness pre- and post- 

intervention and tumor/disease development (Maintz and Viergever 1998, Ng and Ibanez 

2004), hippocampus disease valuation via template building for population studies 

(Avants, Yushkevich et al.), and measuring ligament, pulmonary, and cardiovascular 

tissue mechanics (Liang, Zhu et al. , Tustison, Cook et al. , Weiss, Rabbitt et al. 1998, 

Veress, Weiss et al. 2002, Tustison, Davila-Roman et al. 2003, Veress, Gullberg et al. 

2005, Tustison and Amini 2006, Chandrashekara, Mohiaddin et al. 2007, Phatak, Sun et 

al. 2007, Phatak, Maas et al. 2009, Tustison, Avants et al. 2009). Parameter selection is a 

critical process when performing image registration in a new tissue, in Chapter 6-7 these 

techniques will be applied to the intervertebral disc. 
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2.7. Advanced Normalization Tools Image Registration Parameters 

Registrations are performed using either features or image intensity. Features 

include specific points and landmarks or binary structures within the native anatomy, 

which can be segmented as curves, surfaces, or volumes. Image intensity refers to the 

image grayscale patterns. Landmark- and segmentation- based registration methods align 

images, minimizing the distance between features. Intensity-based registrations minimize 

a cost function that measures the similarity of the intensity between corresponding 

images (Ng and Ibanez 2004). Advanced Normalization Tools (ANTs) is a multi-

resolution approach encompassing landmark-, segmentation-, and intensity- based 

registration techniques. 

The registration process is guided by 3 main parametric variables: transformation 

model, regularization technique, and the similarity metric to define the resultant warp 

field (Figure 6). The transformation model determines how one image is mapped into or 

aligned with another image. Multiple transformation models exist to account for varying 

degrees of differentiation between the images registered. During registration, ANTs has 

the ability to account for rigid translation and rotation to align one image with another. 

Deformable or non-rigid models (Diffeomorphic or Elastic) are more flexible, modeling 

and deforming the image as a continuum (e.g. elastic material, viscous fluid, etc.) (Avants 

and Gee 2004). During registration, the transformation model deforms the images on an 

overlaid grid or warp field. Generally, points that fall along gridlines are matched directly 

to points in the second image, and thus the grayscale intensity is known. The 

regularization technique interpolates the pixel intensity of points mapped between 

gridlines (Ng and Ibanez 2004). ANTs primarily uses Gaussian and B-spline (Lehmann, 
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Gonner et al. 1999, Tustison, Avants et al. 2009) interpolators, which use Gaussian 

distributions and basis functions respectively, to assign intensity values. The choice of 

regularization as well as its measures (e.g. size of variance and number of splines) affects 

the smoothness of the mapping. Similarity metrics are statistical measures used to 

quantify the resemblance between the pixel intensity patterns in both images. Different 

statistical measures should be used if pixel intensities and patterns are consistent or vary 

across images. The metric choice is thus dependent on whether one or multiple imaging 

modalities are used. ANTs offers several similarity metrics and is capable of both mono- 

and multi- modality registrations. Mean squared difference (MSQ) and fast cross 

correlation (CC) are ideal for mono-modality registrations, which are employed in this 

work. 

 

Figure 6: Graphical overview of image registration 
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CHAPTER 3 Cartilaginous Endplate Geometry 

3.1. Introduction 

The intervertebral disc has three distinct anatomical regions: the central nucleus 

pulposus (NP), the surrounding annulus fibrosus (AF), and centrally positioned 

cartilaginous endplates (CEP). These CEPs are distinct from the adjacent vertebral 

endplates, which are composed of cortical bone (Francois, Bywaters et al. 1985, Roberts, 

Menage et al. 1989, Raj 2008). The CEP is an approximately 600 μm thick layer of 

hyaline cartilage positioned between the vertebral endplate and NP (Roberts, Menage et 

al. 1989). It functions both as a mechanical barrier between the pressurized NP and the 

vertebral bone, as well as a gateway for nutrient transport into the disc from adjacent 

blood vessels (Crock and Goldwasser 1984, Roberts, Menage et al. 1993, Moore 2000, 

Urban and Roberts 2003). 

Intervertebral disc degeneration causes the CEP to become sclerotic, lose vascular 

contact, and exhibit decreased permeability (Nachemson, Lewin et al. 1970, Bernick and 

Cailliet 1982, Roberts, Urban et al. 1996, Grignon, Grignon et al. 2000, Bibby, Jones et 

al. 2001, Benneker, Heini et al. 2005, Accadbled, Laffosse et al. 2008). This process is 

considered to contribute to degeneration by reducing diffusion of nutrients to cells of the 

NP (Ariga, Miyamoto et al. 2001, Martin, Boxell et al. 2002, Adams and Roughley 2006, 

Raj 2008).  

The literature is replete with cadaveric studies using histology or gross sections 

depicting CEP thickness (Roberts, Menage et al. 1993, Vernon-Roberts, Fazzalari et al. 

1997, Videman and Nurminen 2004, Bae, Statum et al. 2013). However, even multiple 

histological sections cannot reconstruct the complex 3D CEP geometry; as a result, no 
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accurate quantitative techniques for characterization of the 3D human CEP. Magnetic 

resonance imaging (MRI) is a non-invasive, non-ionizing imaging modality well known 

for its superior soft tissue contrast, making it ideal for disc applications including 

anatomy, composition, and stage of degeneration through a number techniques (e.g., T1ρ- 

and T2-weighted images) (Lyons, Eisenstein et al. 1981, Pfirrmann, Metzdorf et al. 2001, 

Antoniou, Mwale et al. 2006, Johannessen, Auerbach et al. 2006). Application of MRI to 

the study of the intervertebral disc has to date focused predominantly on the composition 

of the NP and AF. Few studies have examined the CEP, therefore the objective of this 

chapter is to develop MRI techniques to visualize and quantify the CEPs geometric. In-

order to visualize the thin CEP and accurately measure is thickness, a sufficiently high 

resolution (small voxels) and appropriately matched MRI parameters are required. 
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3.2. Materials and Methods 

3.2.1. Intervertebral disc MRI parameter measurement 

 In this chapter, a T1weighted 3D FLASH (fast low-angle shot) sequence was 

chosen for CEP imaging. In the FLASH sequence, transverse magnetization is spoiled 

and the steady-state longitudinal magnetization depends on T1 and the flip angle. Flip 

angle is the angle at which the net magnetization is rotated relative to the primary 

magnetic field (B0) by application of an excitation pulse. The sequences parameters 

repetition time (TR) and flip angle thus determine the T1 contrast in the FLASH 

sequence and were optimized in this study using an analytical model. Repetition time 

(TR) is the amount of time between successive pulses applied during image acquisition. 

Optimized sequence parameters TR and flip angle will yield sufficient image contrast to 

distinguish the CEP from its adjacent tissue. 

 The first step in MR image sequence optimization involves determining the MRI 

tissue specific properties. To achieve a T1 weighted image, the T1 relaxation time must 

be determined. T1 relaxation time (measured in milliseconds) known, as longitudinal 

relaxation time is a measure of the time required for a tissues protons to realign with B0. 

T1 values of NP, CEP, and AF lamellae were measured in a representative healthy and 

degenerate cadaveric lumbar disc (Grade = 2.3/5) (Pfirrmann, Metzdorf et al. 2001) at 7T 

magnetic field strength. T1 was measured using a fully relaxed (TR = 5100 ms) 2D spin 

echo inversion recovery pulse sequence with ten inversion times (TI = 33 – 5000 ms). T1 

maps were generated (Figure 7) by fitting data on a pixel-by-pixel basis to its respective 

exponential decay function (Equation 1 
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Equation 1). Averaging 900 or more pixels within center of the NP, anterior and posterior 

AF, and CEP determined representative T1 values of each disc substructure. 

Equation 1:              
   

     

 

Figure 7: Representative T1 parameter maps at 7T: (A) T1 healthy, (B) T1 degenerate 

3.2.2. Optimization of CEP image contrast 

 In order to attain pulse sequence parameters with optimized contrast in the CEP, 

MRI signal intensity and image contrast were simulated using an analytical MRI pulse 

sequence equation prior to imaging. The T1 contrast of the FLASH sequence is a 

function only of TR and flip angle in the limit of a short echo time (TE), and the 

dependence of MRI signal intensity upon flip angle, TR, and T1 is given by Equation 2 

where A is the equilibrium magnetization reduced by T2 relaxation and α is the flip angle 

(Helms, Dathe et al. 2008, Dathe and Helms 2010). Echo time (TE) corresponds to the 

time between RF pulse and the peak in signal. T2 relaxation time known, as transverse 

relaxation is a measure of time required for a tissues protons to dissipate energy to their 

surrounding nuclei perpendicular to B0. 

Equation 2:                
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This equation was used to analyze the signal dependence on flip angle and TR, the 

primary adjustable imaging parameters in this application. Using the experimentally 

determined mean T1 and I0 values for NP and CEP, normalized MRI signals ( 

Equation 2) for each substructure were plotted versus flip angle and TR. The image 

contrast (signal difference) between NP and CEP ( 

Equation 3), normalized to maximize the signal intensity of CEP, was plotted versus flip 

angle and TR for the full range of possible parameter values according to ex vivo MR 

imaging 

Equation 3:       
                  

           
  

3.2.3. Cartilaginous Endplate Imaging 

Specimens for CEP imaging were prepared from 11 cadaveric human lumbar spines 

(n = 17 discs, age: 57.7 ± 13.3). While for some subjects 2–3 levels were used from a 

single spine, consistent with common practice in the literature (O'Connell, Vresilovic et 

al. , Iatridis, Setton et al. 1997, Rodriguez, Slichter et al. 2011), these discs were assumed 

to be independent samples and post hoc statistical analysis confirmed no subject 

dependence on CEP height. Each whole spine was first scanned with a mid-sagittal T2- 

weighted turbo spin echo imaging sequence for routine grading of degenerative state 

(Pfirrmann, Metzdorf et al. 2001, Johannessen, Auerbach et al. 2006). The integer grade 

from five individual examiners was averaged (Grade: 2.8 ± 0.7). Lumbar spines were 

then dissected into bone-disc-bone segments with posterior elements removed and sealed 

in airtight freezer bags to avoid dehydration during imaging. The sealed segments were 

then embedded in 2 % agarose gel for immobilization and to reduce image distortion at 

tissue edges due to the tissue/air mismatch in magnetic susceptibility (Schenck 1996). 
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For protocol optimization, the flip angle and TR that provided the best optimal NP-

CEP contrast was selected using the analytical model simulation. All imaging was done 

in a Siemens Magnetom 7T scanner (Siemens Medical Solutions, Erlangen, Germany) 

using a 4-channel ankle coil (Insight MRI) (Wright, Lemdiasov et al. 2011). Due to the 

thinness of the endplate, a voxel size of 200 μm
3
 was chosen. Imaging parameters were 

TR = 9 ms, TE=3.7ms, flip angle=20°, (0.2 mm)
3

 isotropic resolution, matrix = 320 x 

320, and fat suppression. Scan time was 3 min per disc. 

3.2.4. CEP Histology and endplate thickness quantification 

Histological analysis was performed to confirm that the structure visualized using 

MRI was indeed the CEP and to compare CEP thickness measurements with 

measurements from site-matched MR images. Two adjacent 8 mm biopsy punches, 

comprising vertebral bone, the CEP and the NP, were taken from a disc (63 years, male, 

L2L3, Grade: 2.6), which had previously been imaged as described above, and an optical 

image of the specimen was taken. These 200 μm
3
 isotropic MRI data and photograph 

were later co-registered to confirm the location of the punches. Both punches were fixed 

in buffered 10% formalin overnight. One punch was then decalcified overnight in formic 

acid/EDTA. Twenty-micron sections were cut on a cryostat, and double stained with 

Alcian blue and picrosirius red to demonstrate glycosaminoglycans and collagen, 

respectively, and imaged using bright field microscopy. The other punch was sectioned in 

a similar way, but without prior decalcification. These sections were then stained using 

the von Kossa method to demonstrate calcium deposits and imaged using differential 

interference contrast microscopy (Eclipse 90i; Nikon; Tokyo, Japan). 
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To compare MRI-based CEP measurements with a histological standard, three 4 

mm diameter CEP samples were punched within the inferior endplate for a single disc 

(75 years, male, L2L3, Grade: 2.0), sectioned on a cryostat, and the CEP thickness 

measured at three evenly spaced intervals across the plug. Virtual plugs were generated 

from the MR data by co-registering with an optical image of the vertebral surface and 

site-matched CEP thickness measurements were made. 

Images were imported into OsiriX software and evaluated for CEP contrast in 

comparison to the surrounding structures, for morphology three dimensions thickness. 

MRI data had isotropic resolution and, therefore, could be viewed in arbitrary image 

planes using multi-planar reformatting. The CEP thickness was measured for the superior 

and inferior CEP along the mid-sagittal plane at five locations (center, 5 and 10 mm off 

the center towards anterior and 5 and 10 mm off the center towards posterior). Average 

thicknesses across specimens were measured by hand within OsiriX for each location and 

each disc level. 

The CEP thickness measurements were evaluated using a two-way ANOVA with 

repeated measures, where the factors were disc level (L1L2, L2L3, L3L4, L4L5, L5S1) 

and anterior-posterior disc location (center, 5 and 10 mm off the center towards anterior, 

and 5 and 10 mm off the center towards posterior). Significance was set at  p < 0.05. A 

post hoc Bonferonni test was performed when significance was detected resulting in 

significance at p < 0.005. 
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3.3. Results 

Average T1 values (±standard deviation) from the T1 parameter map (Figure 7) of 

each disc substructure obtained at 7T are presented for a representative healthy and 

degenerate disc substructures in Table 1. These T1 values were used in Equation 2 and 

Equation 3 to calculate signal intensity and determine optimal pulse sequence parameters 

for NP-CEP image contrast (DCEP) (Figure 8). Figure 8a shows a contour plot of DCEP 

covering the exhaustive range of flip angles (0–180°) and TR values (0–6,000 ms). 

However, only a small region corresponding to short TR (dotted box in Figure 8a), where 

scan time is reasonable for future in vivo applications, was considered in selecting the 

optimal sequence parameters (Figure 8b), and the optimal flip angle and TR were 

identified (asterisk in Figure 8b). 

Grade Region T1 

Healthy 

AF 1270 ± 80 

NP 1510 ± 50 

CEP 775 ± 75 

Degenerate 

AF 1100 ± 43 

NP 1300 ± 65 

CEP 840 ± 32 

Table 1: Average (±standard deviation) T1 values for a healthy and degenerate disc 

substructures. 
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Figure 8: Computed MRI signals and image contrast at 7T: (a) NP-CEP image contrast 

(ΔCEP) according to Equation 3, over the full range of the parameters flip angle and TR. 

(b) Close-up 3D view within the small dashed box in (a). Asterisk (*) indicates the point 

chosen as optimal. (c,d) Computed NP (dashed) and CEP (dotted) MRI signals, and 

image contrast (ΔCEP, solid) versus flip angle at optimal TR (9 ms) (c) and versus TR at 

optimal flip angle (20°) (d). 

A flip angle of 20° with a TR of 9 ms yielded the highest contrast between the CEP and 

NP (Figure 8c, d). Note that even though a flip angle of 3° yields higher signal difference 

between the NP and CEP; this was not chosen because for angles less than 5° the MR 

signal changes rapidly, resulting in a smaller range of optimal image contrast. 

Furthermore, at 5° or less the absolute signal intensity of the CEP is lower than it is at 

20°. 

The optimized T1-weighted 3D FLASH sequence yielded good contrast between the 

NP and CEP (Figure 9). The images showed clear distinction of the CEP (arrows). Multi-
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planar reformatting was done to elucidate the three-dimensional extent and overall shape 

of the CEP. Mean projections of an axial slab (1.3 mm) of the CEP showed that the shape 

and size of the CEP can vary considerably between specimens (Figure 9). 

 

Figure 9: MRI images of four different specimens with 200 μm isotropic resolution 

acquired at 7T. Three-plane views reformatted from the same isotropic dataset of each 

specimen clearly demonstrate the CEP’s (arrows) clearly, which are located between the 

vertebral body and the NP. Axial views show that the shape and size of the CEP can vary 

considerably for different subjects and levels: (a) 47 years, female, L1L2; (b) 63 years, 

male, L2L3; (c) 53 years, female, L3L4; (d) 53 years, female, L4L5. Scale bar = 1 cm 

Histology confirmed that the structures observed in MR images were indeed CEP 

(locations of histological samples are shown in Figure 10a, b). Alcian blue and picrosirius 
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red histology successfully illustrated different anatomic regions (i.e., trabecular bone, 

bony endplate, CEP, and NP) (Figure 10c). Von Kossa staining showed calcification of 

the adjacent vertebral trabecular bone and a very thin layer of cortical bone; however, 

with the exception of a very small number of cell lacunae at the bony interface, there was 

no calcification within the CEP itself (Figure 10d). To address accuracy of our MRI-

based CEP thickness quantitative measurements of CEP thickness made from histological 

sections were 0.42 ± 0.69 mm. These CEP dimensions were of the same magnitude to 

those measured using MRI on site-matched virtual plugs, which were 0.45 ± 0.12 mm. 

 

Figure 10: MRI and histology images of the same specimen (63 years, male, L2L3, Grade 

2.6). Axial (a) and coronal (b) FLASH MRI of the whole disc, showing approximate 

locations of biopsy punches used for histological analysis. (c) Representative histology 

section of the CEP stained with Alcian blue (glycosaminoglycans) and picrosirius red 

(collagen) showing adjacent NP and vertebral bone. (d) Von Kossa staining of an 

undecalcified section, showing regions of bone distinct from CEP and minimal CEP 

calcification. (Scale bars in (a) and (b) = 1 cm and in (c) and (d) = 0.5 mm) 
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The thickness of the CEP at the mid-sagittal plane and its correlation with disc level and 

anterior-posterior location were evaluated in the specimen MRI data. Across all disc 

levels and locations, the mean CEP thickness was 0.77 ± 0.24 mm similar to that of 

(Roberts, Menage et al. 1989) 0.62 ± 0.29 mm. 

No significant difference in CEP thickness was observed across disc levels (Figure 

11a). There were significant effects of anterior–posterior location on CEP thickness 

(Figure 11b), where the minimum thickness was at the center of the disc (0.54 ± 0.12 

mm, averaged across all lumbar levels). The thickness at the center was 23% less than the 

0.5 cm anterior–posterior location and 44% less than the 1.0 cm anterior–posterior 

location (p<0.005), resulting in a ‘‘V’’ shaped pattern across the disc (Figure 11b). There 

was no statistical interaction between level and anterior-posterior location for the CEP 

thickness measurements. 

 

Figure 11: CEP thickness in specimens, as measured on mid-sagittal MRI slices: (a) at 

different disc levels (b) at different anterior-posterior locations (C-center, A5, and A10 = 

5 and 10mm off the center towards anterior, P5, P10 = 5 and 10 mm off the center 

towards posterior). Letters on top of error bars indicate significance (p<0.005) between 

measured locations. 
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3.4. Discussion 

This study visualized the CEP morphology in three dimensions and quantified CEP 

thickness using an MRI 3D FLASH sequence. Optimal sequence parameters were 

selected by utilizing high-resolution T1 mapping along with an analytical MRI signal 

model to maximize the signal contrast between the CEP and NP. In addition, histology 

was performed which confirmed that the MRI FLASH sequence successfully detected the 

CEP and provided an accurate measurement of CEP thickness. Our MRI FLASH 

microstructural observations are consistent with recent ultrashort echo time MR imaging 

of uncalcified and calcified CEP (Bae, Statum et al. 2013), although that study did not 

measure CEP thickness. The CEP thickness measured in the mid-sagittal plane showed 

no effect of level, but the CEP becomes thinner toward the center of the disc. This study 

demonstrates the potential of MRI FLASH imaging for structural quantification of the 

CEP geometry, which may be a developed as a technique to evaluate changes in CEP 

with disc degeneration in future applications. 

T1 mapping and an analytical model of image contrast proved valuable in selecting 

parameters for FLASH imaging to emphasize the CEP. The high-resolution T1 map 

showed significant differences in T1 values between the NP and CEP, allowing these 

structures to be distinguished using appropriate sequence parameters. However, the T1 of 

the annulus fibrosus was closer to that of the CEP than to that of the NP; thus, careful 

choice of scan parameters would be needed to distinguish the CEP from the annulus 

fibrosus. Although only one representative disc was used to obtain the T1 map for the 

simulations to select the flip angle and TR, the selected optimal parameters resulted in 

excellent contrast for most of the specimens. The NP–CEP contrast using optimized 
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parameters from the analytical model would vary as T1 and T2 are expected to vary 

depending upon the subject’s disc health. 

The MRI FLASH images using optimized parameters yielded complete and detailed 

3D morphology of the CEP, and its axial, sagittal, and coronal views were shown for the 

first time. The size and shape of the CEP varied considerably among subjects and disc 

levels. In particular, the circumference of the CEP as seen in the axial sections often had 

an irregular edge, and this may be an indication of CEP calcification associated with disc 

degeneration. Additional work is needed to evaluate this, as the histological samples 

prepared in this study did not contain calcification within the CEP. While preliminary, 

and of small sample size, the results suggest CEP morphology may be related to disc 

level and disc health. However, more samples across a large range of degeneration will 

be required before such correlations can be tested. 

The measured CEP thicknesses agree well with previous literature, as does the V-

shaped pattern along the anterior-posterior axis of the disc (Figure 11b) (Roberts, Menage 

et al. 1989). Furthermore, there was no effect of disc level on CEP thickness. Future 

studies will develop a semi-automated analysis programs that will give measurements 

with less user input. It is clear that due to both the thinness and curvature of the CEP 

voxel size should be minimized to avoid artifacts such as Gibbs ringing and partial 

volume averaging. 

In conclusion, this study demonstrated CEP three-dimensional visualization using 

MRI, showing the three-dimensional CEP morphology and quantifying the CEP 

thickness in specimens. The CEP thickness was not related to disc level, but the CEP was 

significantly thicker in the periphery compared with the central location of the disc. This 
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work thus establishes a methodology for CEP MR imaging. With the relatively short scan 

time, the technique will provide a new tool for non-invasive assessment and 

quantification of disc health with potential in-vivo applications. 
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CHAPTER 4 Annulus Fibrosus Lamellar Structure and 

Defects 

4.1. Introduction 

The intervertebral disc substructures consist of a fiber-reinforced annulus fibrosus 

(AF) that surrounds a central gelatinous nucleus pulposus and cartilaginous endplates 

(CEP) positioned attachment regionly. The AF is made up of highly organized concentric 

lamellae that range in thickness from 140 – 520 μm (Marchand and Ahmed 1990) 

attaching to the vertebrae near the disc periphery while the inner AF merges with the 

CEP. Adjacent lamellae have alternating fiber orientations above and below the 

transverse plane (Marchand and Ahmed 1990) and are made up of collagen bundles that 

are embedded in a matrix of proteoglycans and non-fibrillar collagens. 

Intervertebral disc degeneration leads to proteoglycans breakdown, resulting in 

a pressure loss and the ability to maintain hydration within the NP. The resultant loss 

of NP pressure causes the AF to bear increased load within the IVD (Tsantrizos, Ito et al. 

2005) leading to inward bulging of the AF (Brinckmann and Grootenboer 1991), 

disorganization, and thickening which increases collagen cross-linking (Pokharna and 

Phillips 1998). The inner AF undergoes an increase in collagen content, with type II 

collagen fibrils becoming type I (Weidenbaum and Iatridis 2006) resulting in a less 

apparent distinction between the NP and AF. These structural changes to the AF can lead 

to annular tears (Thompson, Pearce et al. 1990, Adams 2004) and ultimately disc 

herniation linking this change to low back pain (Videman and Nurminen 2004, Peng, 

Hou et al. 2006). 
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Annular defects have been categorized into classic tear categories: radial, 

circumferential, perinuclear (Osti, Vernon-Roberts et al. 1992, Vernon-Roberts, 

Moore et al. 2007) and other defects: rim lesions and Schmorl’s nodes. Radial tears 

typically initiate at the NP and radiate outward occurring primarily in the posterior 

AF and are closely associated with NP degeneration and increased age (Osti, 

Vernon-Roberts et al. 1992, Vernon-Roberts, Fazzalari et al. 1997). Circumferential 

tears are the separation of lamellae occurring equally in the anterior and posterior 

AF, often concentrated in the outer regions (Osti, Vernon-Roberts et al. 1992, 

Vernon-Roberts, Fazzalari et al. 1997). Perinuclear tears are the separation of the 

NP from the AF resulting in a cleft (Vernon-Roberts, Moore et al. 2007). The literature 

is replete with cadaveric studies using histology or gross sections depicting AF anatomy 

and high incidence of AF tears (Osti, Vernon-Roberts et al. 1992, Vernon-Roberts, 

Fazzalari et al. 1997, Videman and Nurminen 2004, Vernon-Roberts, Moore et al. 2007). 

However, even multiple histological sections cannot reconstruct these complex 3D 

geometries. As a result, no accurate quantitative techniques for characterization of the 

human AF anatomy and defects in 3D exist. 

Magnetic resonance imaging (MRI) is a non-invasive, non-ionizing imaging 

modality well known for its superior soft tissue contrast, making it ideal for disc 

applications including anatomy, composition, and stage of degeneration through a 

number techniques (e.g., T1ρ- and T2-weighted images) (Lyons, Eisenstein et al. 1981, 

Pfirrmann, Metzdorf et al. 2001, Antoniou, Mwale et al. 2006, Johannessen, Auerbach et 

al. 2006). Application of MRI to the study of the intervertebral disc has to date focused 

predominantly on the composition of the NP and AF, not anatomic structure. Few studies 
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have examined the structure of the AF, therefore the objective of this chapter is to 

develop MRI techniques to visualize the AF lamellae and quantify its structure defects. 

To accurately visualize the thin concentric rings of the AF lamellae and quantify the 

dimensions of defects within the disc a sufficiently high resolution (small voxels) and 

appropriately matched MRI parameters is required. The imaging techniques developed in 

this chapter will be applied throughout this thesis to track internal deformations of the 

intervertebral disc with image registration in-order to measure internal strain. 
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4.2. Materials and Methods 

4.2.1. Intervertebral disc MRI parameter measurement 

 In this chapter, a T2 weighted 3D TSE (turbo spin-echo) sequence for AF lamellar 

visualization. Defect visualization with the 3D TSE sequence was verified with the 

optimized T1 weighted 3D FLASH (fast low-angle shot) MR sequence from Chapter 3 in 

conjunction with discography. The T2 weighted TSE sequence is characterized by the 

successive rapid application of 180 rephasing pulses and multiple echoes where repetition 

time (TR) is sufficiently greater than T1 and T2 less than that of the tissue of interest. 

Repetition time (TR) is the amount of time between successive pulses applied during 

image acquisition. T1 relaxation known, as longitudinal relaxation time is a measure of 

the time required for a tissues protons to realign with the primary magnetic field B0. T2 

relaxation time known, as transverse relaxation is a measure of time required for a tissues 

protons to dissipate energy to their surrounding nuclei perpendicular to B0. Optimized 

sequence parameters will yield sufficient image contrast to distinguish each substructure 

from its adjacent tissue. 

 Similar to the steps outlined in Chapter 3, MR image sequence optimization 

involves determining the tissue specific parameters appropriate for the sequence of 

choice. T1 and T2 relaxation times are measured in milliseconds. T1 and T2 values of 

NP, CEP, and AF lamellae were measured from a representative (Chapter 3) healthy and 

degenerate cadaveric lumbar disc (Grade = 2.3/5) (Pfirrmann, Metzdorf et al. 2001) at 7T 

magnetic field strength. T1 was measured using a fully relaxed (TR = 5100 ms) 2D spin 

echo inversion recovery pulse sequence with ten inversion times (TI = 33 – 5000 ms). T2 
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was measured using a 2D spin echo pulse sequence with a TR = 4500 ms and ten echo 

times (TE = 12 – 60 ms). T1 and T2 maps were generated (Figure 7) by fitting data on a 

pixel-by-pixel basis to its respective exponential decay function (Equation 4 and 

Equation 5). Averaging 900 or more pixels within center of the NP, anterior and posterior 

AF, and CEP determined representative T1 and T2 values of each disc substructure. 

Equation 4:              
   

     

Equation 5:          
   

    

 

Figure 12: Representative parameter maps at 7T: (A) T1 healthy, (B) T1 degenerate, (C) 

T2 healthy, and (D) T2 degenerate 

4.2.2. Optimization of AF image contrast 

 An optimized AF inter-lamellar contrast was obtained prior to imaging through 

utilization of an analytical MRI pulse sequence equation for MRI signal intensity and 

image contrast. The T2 contrast is dependent upon repetition time (TR) being around 3X 

that of the annulus’s T1 value to reduce the tissues T1 affect and echo times (TE) 

between the tissues shortest and longest T2 value. Echo time (TE) corresponds to the 

time between RF pulse and the peak in signal. These parameters are implemented into 
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Equation 6, where A is the maximum signal amplitude at equilibrium magnetization, TR 

is the repetition time, TE is the echo time, and T1/T2 are the previously described MR 

parameters for the discs sub-structures.  

Equation 6:                
   

      
   

     

Based on the T1 and T2 maps Figure 7, it is apparent that adjacent AF lamellae have 

different values. These values were measured within each lamella and correspond to 

approximately ±2 standard deviations from the mean. To highlight these boundary 

distinctions the AF MR signal from Equation 6 was plotted vs. TR and TE. Adjacent 

lamellae were AF signal were defined as SignalAF_max = mean AF signal + 2 standard 

deviations and SignalAF_min = mean AF signal - 2 standard deviations. Inter-lamellar 

contrast (AF) was defined by was normalization to maximize the signal intensity 

between alternating AF lamellae (Equation 7). 

Equation 7:     
                        

 

               
 

4.2.3. Annulus Fibrosus Imaging 

Specimens for AF imaging were prepared from 8 cadaveric human lumbar spines 

(n=10 discs, age: 61.5 ± 11.1). While for some subjects 2–3 levels were used from a 

single spine, consistent with common practice in the literature (O'Connell, Vresilovic et 

al. , Iatridis, Setton et al. 1997, Rodriguez, Slichter et al. 2011), these discs were assumed 

to be independent samples. Each whole spine was first scanned with a mid-sagittal T2- 

weighted turbo spin echo imaging sequence for routine grading of degenerative state 

(Pfirrmann, Metzdorf et al. 2001, Johannessen, Auerbach et al. 2006). The integer grade 

from five individual examiners was averaged (Grade: 3.1 ± 0.7). Lumbar spines were 
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then dissected into bone-disc-bone segments with posterior elements removed and sealed 

in airtight freezer bags to avoid dehydration during imaging. The sealed segments were 

then embedded in 2 % agarose gel for immobilization and to reduce image distortion at 

tissue edges due to the tissue/air mismatch in magnetic susceptibility (Schenck 1996). 

For protocol optimization, the TR and TE that yielded the best inter-lamellar 

contrast between adjacent annulus lamellae were selected using the analytical model 

simulation. All imaging was done in a Siemens Magnetom 7T scanner (Siemens Medical 

Solutions, Erlangen, Germany) using a 4-channel ankle coil (Insight MRI) (Wright, 

Lemdiasov et al. 2011). Due to scan time constraints, a voxel size of 300 μm
3
 was 

chosen. Imaging parameters were TR = 3000, TE = 34, (0.3 mm)
 3

 isotropic resolution, 

matrix = 256 x 256, fat suppression. Scan time was 2.75 hours per disc. 

4.2.4. Annular tear detection 

Defects within the annulus structure will be visualized from the optimized 3D 

TSE sequence. These AF lamellae disruptions will be co-registered with the optimized 

3D FLASH sequence from Chapter 3 to verify they are not imaging artifacts. Through 

injection of radiographic dye into the nucleus pulposus under fluoroscopic guidance 

radial tears seen under MRI will be matched to fluoroscopic images. Tears will be 

categorized as radial, circumferential, perinuclear or a combination of these. 

OsiriX image analysis software was used to measure total disc volume (cm
3
), tear 

volume (mm
3
), disc perimeter length (cm), and tear path length (mm). Measurements 

were made by segmenting regions of interest (ROI) for the entire disc and tear in each 

slice throughout the entire image set (Equation 8). Disc perimeter was measured along 

the mid-axial disc height by tracing its outer kidney bean shaped circumference (cm). 
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Tear path length (mm) was measured by tracking the propagated length of the tear throughout 

the disc. 

Equation 8:                                       
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4.3. Results  

4.3.1. Annulus Fibrosus Lamellar Visualization 

A T1 and T2 map (Figure 7) and the average values (±standard deviation) of each 

disc substructure obtained at 7T are presented for a representative healthy and degenerate 

disc substructures in Table 1. 

Grade Region T1 T2 

Healthy 

AF 1270 ± 80 21 ± 1.4 

NP 1510 ± 50 25 ± 1.1 

CEP 775 ± 75 14 ± 0.8 

Degenerate 

AF 1100 ± 43 19 ± 1.6 

NP 1300 ± 65 21 ± 1.4 

CEP 840 ± 32 13 ± 1.0 

Table 2: Average T1 and T2 values for a healthy and degenerate disc substructures. 

These T1 and T2 values were used in Equation 6 and Equation 7 to calculate signal 

intensity and determine optimal pulse sequence parameters for interlamellar annulus 

fibrosus image contrast (DAF) (Figure 13). Figure 13a shows a contour plot of DAF 

covering the exhaustive range of TE (0–120 MS) and TR values (0–6,000 ms). The 

average annulus fibrosus T2 value was 1,185 ± 62 ms, to ensure a T2 weighted image a 

TR value of ≥4,000 ms would be ideal and achieve optimal image contrast (asterisk 

Figure 13). However, to maintain reasonable imaging times (< 3 hours) during 

acquisition of axial loaded discs 3,000 ms was selected and corresponding TE of 34 ms 

(dotted line, Figure 13b). 
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Figure 13: Computed AF MRI signals and image contrast at 7T. (a) Normalized AF 

signal intensity according to Equation 6 over the full range of parameters TR and TE. (b) 

AF image contrast based on Equation 7 utilizing the maximum and minimum AF signal 

intensities. (c,d) Computed AF max (dashed), AF min (dotted) MRI signals, and image 

contrast (solid) at optimal TE (34 ms) (c) and versus TE at optimal TR (3000 ms) (d). 

The small 13% change in annulus fibrosus T2 relaxation time with degeneration did not 

alter the effective patterns seen in Figure 13. Increased degeneration resulted in lower 

overall signal intensity and achieved maximal contrast at TR values ≥ 3,500 ms and an 

optimal TE range from 20 – 40 ms. 

4.3.2. Annulus Fibrosus Tear Detection 

Tears were present in all lumbar discs evaluated, however the sample size was small 

(n=10) and primarily comprised of degenerate discs (average grade = 3.1). A 

representative defect image for a radial, perinuclear, and circumferential tear are shown 
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in (Figure 14). Note, however, that even for these “classic” categories, the radial tear has 

additional tear offshoots in the perinuclear and circumferential orientations (Figure 14a) 

and perinuclear tear NP clefting extended outwards into radial tears (Figure 15c). A total 

of 4 radial, 4 circumferential and 2 perinuclear tears were visualized and quantified, 

geometry of these and other defects are provided in Table 3. 

Specimen Data Volume Length (cm) Location 

Fig 

Ref 

Type Age/Gender Level Pfirr. Disc 

(cm
3
) 

Tear 

(mm
3
) 

Disc 

Perimeter 

Path 

Length 

2A R, C 66/F L1L2 4 10.82 15.00 13.63 1.62 L 

1A R 53/F L2L3 3 16.22 18.90 13.85 5.65 L 

NA R 78/F L4L5 4 18.47 0.33 15.15 0.41 AL 

2D/E C 63/M L2L3 3 20.61 12.90 16.49 2.06 TL 

NA C 42/F L1L2 2 11.48 0.92 12.54 0.28 A 

1C C, R 70/M L4L5 3 25.30 14.10 16.57 0.79 PL 

2C PN, R 63/M L3L4 3 14.96 193.50 16.48 8.25 TL 

1B PN, R 63/M L4L5 4 13.90 58.90 16.48 5.84 TL 

NA C 47/F L1L2 3 11.61 15.22 13.53 0.08 L 

NA R 63/M L2L3 2 14.04 16.77 14.34 1.59 PL 

 

Table 3: Tear severity measurements. Type: R = radial, C = circumferential, PN = 

perinuclear. Location: L = lateral, TL = trans-lateral, A = anterior, AL = antero-lateral, 

PL = postero-lateral. 

The tears had varying ranges in volume and path length, respectively as: radial 0.33 – 

16.77 cm
3
 and 0.41 – 1.62 cm, circumferential: 0.92 – 15.22 cm

3
 and 0.08 – 2.06 cm, 

perinuclear: 58.90 – 193.5 cm
3
 and 5.84 – 8.25 cm.  
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Figure 14: Representative images for (A) Radial, (B) Perinuclear, and (C) 

Circumferential tears. Left column shows raw TSE images and right shows 3D fusion 

volume rendering for each tear, respectively 

The majority of tears present within this study were located in the lateral regions of the 

disc, with only 2 discs of 10 having a tear present in the postero-lateral region. The 

presence of Schmorl’s nodes and rim lesions were observed in two specimens, however 

dimensions were not quantified here. Imaging the same disc with three techniques 

indicated tear presence; injection of radiographic dye under fluoroscopic guidance, T2 

weighted MR image, and FLASH imaging (Figure 16) all depicted the same tear. Further 

histological and gross sectioning analysis is required to accurately validate the presence 

of tears within discs. 
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Figure 15: Volume renderings of tears: (A-B) Radial and (C) Perinuclear/Radial – 

coronal views; (D-E) Circumferential – axial and coronal views of the same specimen. 

 

 

Figure 16: Three matched images of a radial tear with different imaging: (a) fluoroscopic 

coronal view with radiographic dye, (b) T2 weighted TSE, and (c) T1 weighted FLASH 
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4.4. Discussion 

The annulus fibrosus morphology was visualized in three dimensions with a MRI 3D 

T2-weighted TSE sequence. High-resolution T1 and T2 mapping with an analytical MRI 

signal model enabled sequence parameter optimization to maximize signal contrast 

between adjacent AF lamellae. Clear AF lamellar distinction will enable the ability to 

internal displacements under axial compression with image registration in Chapter 6-8. 

This study will enable future studies to non-invasively assess the effects of degeneration 

AF lamellar structure, shape and orientation in three dimensions. 

Quantitative mapping of the discs substructures provided valuable data in sequence 

selection and parameter optimization to visualize the structure of choice. Although only 

one representative disc was used to obtain T1 and T2 maps, the selected optimal 

parameters yielded excellent inter-lamellar contrast for all specimens. This strong 

contrast enabled the ability to visualize and quantify defects within the disc. Improved 

image resolution and scan time will permit future analysis of strain patterns around such 

defects. 

Until now non-invasive detection of disc defects has been limited and detailed 

quantification of their characteristics was not possible without disturbing the native 

boundary conditions of the tissue. To date, tears have primarily been quantified by 

performing histological sections, which can lead to artifacts during sectioning and lack 

the ability to accurately portray and quantify tear complex and unique geometry. This 

method provides a non-invasive technique for 3D visualization, measurement, and the 

ability to precisely locate defect orientation within a disc. 
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The current clinical understanding of tears is that those radiating to the outer third of 

the AF may cause low back pain (Bogduk 1991). However, in-vivo detection of tears is 

difficult and quantification of their characteristics is not possible. High-intensity zones 

(HIZ) seen on clinical T2-weighted MRI are thought to be tears radiating outwards from 

the NP (Schizas, Kulik et al. , Peng, Hou et al. 2006, Gallucci, Anselmi et al. 2011, Wang 

and Hu 2012), however it is controversial whether these represent actual tears. Radial 

tears can be visualized under discography, however their location and orientation is 

difficult to determine (Bernard 1990). Additionally this is an invasive procedure and 

involves exposure to radiation. The MR imaging technique presented here suggests that 

MRI might provide an improvement from these procedures.  

This method is currently far from in-vivo implementation due to the long imaging 

time. Future work will focus on further quantification and more samples that better 

represent the population. This will allow for implementation of accurate tear positioning 

and location placement into finite element models to determine the functional 

implications of AF tears. The ability to see structure without disrupting the native 

boundary conditions of the intervertebral disc will lead to better understanding of 

degenerative changes. 
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CHAPTER 5 Design of a MRI Loading Device 

5.1. Design Objectives 

The objectives of this chapter are to develop methods for applying axial 

compression and torsion to the intervertebral disc. The design objectives for this device 

are: 

1. MRI safe, made up of non-magnetic materials, and not cause interference 

artifact with the chosen RF coil 

2. Integrate with a curved 4-channel RF coil array and fit within the bore (60 

cm) of a Siemens Magnetom 7T MRI 

3. Not alter the optimized [Chapter 4] imaging parameters: turbo-spin echo 

sequence (TR/TE = 3000/34 ms, matrix = 256 x 256, 0.3 mm
2
 resolution, 

fat suppression) 

4. Interface with an Instron 8874 enabling free range of motion along the 

primary axis of the spine 

5. Remove applied load from the Instron while maintaining fixed 

displacement during image acquisition 

6. Maintain hydration during mechanical testing and image acquisition 
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5.2. Design and Fabrication 

Material selection was based on minimizing magnetic susceptibility; the entire 

loading frame was made of either polyvinyl chloride plastic (PVC) or Delrin and secured 

with nylon screws. Similar nonmagnetic loading frames have been used in literature 

within a 3T MR (Chiu, Newitt et al. 2001, O'Connell, Johannessen et al. 2007, Reiter, 

Fathallah et al. 2012, Chan and Neu 2013) to perform in MRI loading, however only 2D 

strains were reported. A rectangular loading frame was designed to interface with an 

Instron 8874 (Figure 17) by bolts that attach to the Instron’s base plate, which positions 

the motion segment to undergo axial compression. 

 

Figure 17: MRI loading frame integration with Instron 8874 

Cylindrical PVC loading platens (Figure 17) and a custom mold for potting motion 

segments in polymethyl methacrylate (PMMA) were secured to the frame by threaded 

rods. These rods function to adjust motion segment position, aligning the disc’s center 

with the RF coil’s center to ensure maximum signal to noise ratio (SNR). One-rod screws 
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into the base, secured by a locking nut, while the opposing goes through the opposite 

frame wall, permitting axial compressive or torsional motion. Compression is secured by 

a series of locking bolts (Figure 17) placed on either side of the frame that, when 

tightened, remove load from the Instron and lock in the applied displacement. The 

application of torsion was designed but not fabricated for this thesis. A locking pin 

secures the driving rod to the Instron to enable torsional loading in a clock-wise direction, 

so as to not loosen any threaded connection. Torsion is secured through two steps; first 

tightening the locking bolts and then sliding a locking pin through aligned pre-drilled 

holes positioned between the locking bolts and loading frame. Once displacement is 

locked into place, all forces are transferred to the loading frame, which enables removal 

from the Instron. Hydration was maintained throughout experimentation by use of a 

sliding cylindrical tank (Figure 17). During mechanical testing, a lock nut keeps the tank 

flush to the motion segment grips to prevent phosphate buffered saline (PBS) leakage. 

Prior to image acquisition, the lock nut is loosened to drain PBS and then re-tightened to 

fill the tank with 2% agarose. The tank subsequently slides out of the way for image 

acquisition in order for the receive array of the RF coil to fit snuggly over the disc + 

agarose. 

 The disc was positioned so that the lateral side faced the top surface of the MRI 

bore and the disc axis was parallel with the MRI bore (Figure 18). The lateral positioning 

enabled axis of symmetry to be applied for strain measurements, accounting for the 

horseshoe shaped receive array of the RF coil (Figure 18).
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Figure 18: Effect of signal to noise ratio (SNR) on disc positioning within the MRI. Red 

arrow indicates the direction of lost signal within the RF coil. Clinically relevant 

anatomic orientation (Left Side) results in decreased posterior AF lamellar distinction 

(Orange Arrow). Lateral positioning of the disc (Right Side) enables the spine axis and 

B0 (Blue Circle: dot indicates spine axis and B0 direction) to be parallel, decreasing 

banding artifacts within the disc during image acquisition. 

 The spine axis was oriented parallel to the MRI bore (B0 – direction of primary 

magnetic field), as done during clinical diagnostic MR imaging (Takashima, Takebayashi 

et al. , Pfirrmann, Metzdorf et al. 2001, Johannessen, Auerbach et al. 2006, Lotz, 

Haughton et al. 2012) and due to coil and mechanical loading constraints (Figure 19). 

Additionally, banding artifacts occur around the periphery of the disc when the spine axis 

is not parallel to B0 (Saifuddin, Blease et al. 2003, Alyas, Connell et al. 2008). Once 

applied loading is removed from the Instron, PBS is replaced with agarose, and tank 

slides out of the way. The loading frame is positioned around of the transmit piece of the 

RF coil and the receive array is positioned directly over the disc (Figure 19). Slots were 

machined in the sides of the loading frame to permit RF coil cables to properly interface 

with the MRI (Figure 19). 
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Figure 19: Integration of loading device with MRI and RF coil:  (1) Placement of the 

transmit piece of the coil in the direction of B0 on the MRI patient table, (2) loading 

frame slides over the transmit piece, and the (3) receive array slides directly over the 

disc’s location. 

 The curved RF coil (Wright, Lemdiasov et al. 2011) was originally designed for 

study of trabecular bone within the distal tibia, and hence, required the transmit coil to be 

loaded with enough signal to fine tune shimming of the magnet. To supply enough signal 

for adequate loading of the transmit coil, bottles of 1X PBS were placed along the 

transmit coil base, positioned below the disc and receive array. 

5.2.1. Design Effectiveness 

 Design effectiveness was tested with two main criteria: the effect of loading frame 

+ RF coil integration on signal to noise ratio during image acquisition and repeatability of 

successful axial strain application. These two tests will confirm achievement of all design 

objectives and ensure functionality for planned experiments in [Chapter 7-8]. Two 

degenerative grade 3 (Pfirrmann, Metzdorf et al. 2001) lumbar L4L5 motion segments 

were selected to undergo image acquisition with [Figure 20A] and without [Figure 20B] 

the loading frame.  
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Figure 20: Representative mid-axial MR images with (A) and without (B) loading frame. 

Signal to noise ratio (SNR) was measured using a region selected within the agarose 

(Green) to represent signal, as these samples come from different lumbar levels (Noise – 

White). 

The sample with frame and sample without frame (embedded in 2% agarose within a 

plastic specimen cup) were scanned separately within the 7T MR scanner and integrated 

with a 4-channel RF coil. Utilizing optimum imaging parameters developed in [Chapter 

4], high-resolution 3D 300 μm isotropic MR images were acquired with a T2-weighted 

turbo-spin echo sequence (TR/TE = 3000/34 ms, matrix = 256 x 256, fat suppression).  

Equation 9:     
       

      
 

Signal to noise ratio (SNR) was measured [Equation 9] in each image along the mid-axial 

disc height. The signal to noise ratio is a measure of the signal intensity within the region 

of interest divided by the signal intensity of the image background. Average signal 

(Psignal) pixel intensity corresponds to the green circular region and average noise (Pnoise) 

pixel intensity corresponds to the white circular region [Figure 20]. The change SNR for 
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each image set and AF lamellar visibility were assessed to determine any interaction 

effects of the loading frame with RF coil. 

 A small sample size (n=3) of L4L5 lumbar motion segments underwent axial 

compression to test the loading frames ability to consistently apply and maintain axial 

compression. Thawed and hydrated bone-disc-bone segments with posterior elements 

removed were potted in polymethyl methacrylate bone cement. Mechanical loading 

followed by image acquisition was performed under two conditions: reference (50N 

preload) and 5% applied grip-grip compressive strain. The sample was placed in a PBS 

bath within the loading frame and installed in the Instron, which was used for load 

application. For the reference condition, a 50N pre-load was applied to ensure contact of 

the loading fixtures and held for 20 min. Locking bolts were then tightened to secure the 

position. The sample + frame was removed from the Instron. PBS was removed and 

replaced with agarose and then placed within in the 7T MR scanner and a 4-channel RF 

coil [Figure 19] for high-resolution MR images using the optimized image parameters.  

 After image acquisition the agarose was replaced with PBS and the sample + 

frame was returned to the Instron. The Instron crosshead was returned to the pre-load 

position and the locking bolts were then loosened. The average disc height was calculated 

by dividing the mid-sagittal/coronal disc space area by the anterior-posterior/lateral width 

from the pre-loaded reference image [Figure 21]. A 5% grip-grip compressive strain, 

based on mid-sagittal/coronal disc height, was applied at a slow rate of 0.1 mm/s 

(Holmes, Hukins et al. 1993) and held for 2.5 hours of relaxation within the Instron. The 

position was again locked, PBS replaced with agarose, and the sample + frame returned 
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to the MR scanner for imaging at the loaded condition using the same imaging 

parameters. 

 

Figure 21: Representative image depicting area and length measurements in the Coronal 

and Sagittal plane to determine an average disc-height across the entire disc volume. 

 Achieved axial compression was determined by measuring disc-height from the 

loading image set and calculating global disc strain [ 

Equation 10]. Average achieved axial compression was reported. 

Equation 10:      
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5.3. Results and Discussion 

 The loading frame successfully achieved all design objectives by integrating with 

an Instron, MRI, and curved RF coil. Loading frame incorporation resulted in a 50% 

SNR decrease when compared to imaging without the loading frame (

 

Figure 20). However, this apparent decrease in SNR still left a 20:1 ratio and strong 

lamellar contrast. Additionally, the loading frame was able to maintain disc hydration and 

hold an applied displacement throughout experimentation. The applied 5% axial strain, 

which was calculated from initial MRI mid-sagittal/coronal disc height measurements, 

achieved a successful average Ezz of  -4.88 ± 0.33%. The tight integration of the loading 

frame with MRI and RF coil enabled reliable positioning of the disc between scans, 

minimizing rigid body motion between image sets. The developed loading frame will be 

utilized in [Chapter 7-8] to apply incremental amounts of axial compression. 
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CHAPTER 6 Optimization of ANTs Image Registration 

Parameters – in 2D images and comparison to 

Vic2D 

6.1. Introduction 

Various non-invasive techniques have recently utilized magnetic resonance 

imaging (MRI) to enable 2D internal deformation measurements of the intervertebral disc 

(IVD) (O'Connell, Malhotra et al. , O'Connell, Vresilovic et al. , O'Connell, Johannessen 

et al. 2007, Reiter, Fathallah et al. 2012, Chan and Neu 2013). Chan and Neu applied 

displacement encoded MRI, an image tagging method that enables direct displacement 

measurements from MR data reporting strain across the entire IVD. This technique 

validated strain measurements through applied deformations to a non-biological 

phantom. O’Connell et al. utilized texture correlation to measure regional AF strain 

under axial compression. Thus, our laboratory was able to report the effect of loading 

position, degeneration, and nucleotomy. Strain could only be calculated in small 

rectangular areas of interest with Vic2D, missing regions at the bone–disc interface. 

Reiter et al. employed image registration, enabling a continuous map of the 

transformation between images. However, registration quality was verified with an 

artificial image that was not representative of the disc. In order to accurately assess an 

internal deformation measurement technique, it is important to verify deformations with 

the specific tissue of interest, ensuring boundary condition replication and native tissue 

movement. 

This chapter will establish Advanced Normalization Tools (ANTs), an image 

registration software that creates a continuous map of the transformation between images 
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as a non-invasive technique to measure internal IVD strain. The implementation of 

manual segmentation tools will enable registration accuracy verification and strain 

measurements across any user-defined regions. This approach will be applied to data 

from O’Connell et al., where the effect of nucleotomy was assessed on internal IVD 

strains. Nucleotomy is the removal of NP material through an AF incision to mimic the 

clinical procedure of discectomy. Discectomies are performed on a herniated (expulsion 

of nucleus pulposus through a tear in the annulus fibrosus) IVD to remove NP fragments. 

The removal of NP material and AF incision has been shown to accelerate disc 

degeneration (Hanley and Shapiro 1989, Brinckmann and Grootenboer 1991, Kambin, 

Cohen et al. 1995, Yorimitsu, Chiba et al. 2001, Weinstein, Lurie et al. 2006, McGirt, 

Eustacchio et al. 2009, Mariconda, Galasso et al. 2010) and alter native mechanics 

(Seroussi, Krag et al. 1989, Broc, Crawford et al. 1997, Frei, Oxland et al. 2001, Meakin, 

Redpath et al. 2001, Kuroki, Goel et al. 2004, Johannessen, Cloyd et al. 2006, Vresilovic, 

Johannessen et al. 2006, Cannella, Arthur et al. 2008, Heuer, Schmidt et al. 2008). 

Therefore, the objectives of this chapter were to optimize ANTs parameters for disc 

image registration, verify registration accuracy, and compare registration strain 

measurements before and after nucleotomy with Vic2D method of analysis (O'Connell, 

Vresilovic et al.). 
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6.2. Materials and Methods 

6.2.1. Mechanical Testing and Image Acquisition 

A sample set of n=5 (grade 1-3) from the work of O’Connell et al. (2007) was 

selected at random for 2D strain validation. Sample preparation and MR image 

acquisition is previously described in detail (O'Connell, Malhotra et al. , O'Connell, 

Vresilovic et al. , O'Connell, Johannessen et al. 2007). Intact fresh-frozen human lumbar 

motion segments were embedded in fixtures with polymethyl methacrylate (PMMA) 

bone cement. Each sample was placed in a custom-built, non-magnetic loading device 

and underwent axial compression inside a 3T MR scanner. Two mid-sagittal images were 

acquired using a high-resolution T2-weighted TSE sequence and a custom-built coil 

(resolution = 0.234 x 0.234 x 3mm). The IVD reference image was captured under a 20N 

pre-load. The deformed image was taken after 1000N was applied and 20 minutes of 

creep deformation was completed. 

6.2.2. Anatomic feature labeling 

Key anatomic features (AF lamellae, IVD defects, EP-NP border, and EP-VB 

border) that could be discerned in both images were manually labeled using segmentation 

software ITK-SNAP (Figure 22) (Yushkevich, Piven et al. 2006). 
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Figure 22: Representative (A) reference and (B) deformed labeled images. Labels cover 

the SVB, IVB, AF lamellae, and defects. Arrows indicate differences between reference 

and deformed images. 

Each set of labels was utilized throughout parameter optimization to assess registration 

quality. Applying the inverse warp field found in registration to the deformed image 

labels generates a reconstruction of the original reference labels. Overlaying the 

reconstructed labels on the reference (Figure 23) determined segmentation accuracy and 

registration quality with overlap statistics. 

 

Figure 23: Overlay of reference and reconstructed labels. Arrows indicate regions where 

individual pixels are not aligned. 

Labels were iteratively checked both visually and with an overlap statistic. Visual 

inspection compared reconstructed with reference label features by overlying labels on 

their respective image. The overlap statistic used, Hausdorff, (Equation 11) is an 
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indication of the maximal degree of mismatch between two labels. It is calculated as the 

maximal distance in all pixels of the reference label to the nearest point in the warped 

image. 

Equation 11:                          

Lower case ‘a’ and ‘b’ are individual points within images ‘A’ and ‘B’ respectively. 

Hausdorff was evaluated after registrations to confirm correct labeling; labels with a 

Hausdorff greater than 4 pixels were reviewed and updated. Image quality dictated the 

number of paired labels for each image set (26 to 37 label pairs); only features that can be 

clearly seen in both images were labeled. 

An ideal registration would produce Hausdorff and Average Housdorff equal to 

zero and a target overlap of 100%. Average Hausdorff (Equation 12) is the average of all 

pixel distances between both labels representing the mean degree of mismatch between 

two labels. 

Equation 12:           
 

   
                

Target overlap (Equation 13) is the ratio of the area contained in both the reference and 

warped image labels over the area of the reference image label.  

Equation 13:      
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6.2.3. Optimization of Image Registration Parameters 

 Advanced Normalization Tools (ANTs) provides numerous parameter options 

that guide the resultant warp field from two (reference  deformed) registered images 

(Table 4).  

Category Transformation Model Similarity Metric Regularization Technique 

Linear Rigid MI, MSQ  

Affine 

Elastic Deformable CC, PR, MI, 

MSQ, PSE 

Gaussian, DMFFD 

DMFFD 

Diffeomorphic Exponential CC, PR, MI, 

MSQ, PSE 

Gaussian, DMFFD 

Greedy SyN 

Geodesic SyN 

Table 4: Matrix of ANTs registration parameters (transformation models, similarity 

metrics, and regularization techniques). MI = mutual information, MSQ = mean squared 

difference, CC = fast cross correlation, PR = cross correlation, PSE = point set 

expectation, DMFFD = directly manipulated free form deformation. Adapted from 

Avants et al. 2011 

Rigid body motion was accounted for with an initial affine registration. A mean-squared 

difference (MSQ) similarity metric was employed, which is ideal for mono-modality 

(MRI only) registrations (Equation 14). 

Equation 14:             
  

    

Quantifying the degree of mismatch for image intensities can be problematic during 

registration for outlier intensity values due to the squared term in Equation 14. This is 

accounted for by defining an outlier term (X) when an intensity value in the reference 

image (I) and the intensity value of corresponding pixel in the deformed image (J) is 

greater than X. In this scenario, the MSQ equation is treated linearly. A directly 

manipulated free-form deformation (B-spline) regularization technique was chosen over 

Gaussian to control the amount of data smoothing within the registration processes. This 

technique has been widely used in medical imaging to measure soft-tissue deformations 
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with MR images (Tustison, Cook et al. , Tustison, Davila-Roman et al. 2003, Tustison, 

Avants et al. 2009) utilizing cubic B-splines. Preliminary work showed that a Gaussian 

regularization technique creates swirling artifacts within the registration (Figure 24). 

 

Figure 24: Reconstructed image displaying the effect of Gaussian (A) vs. B-spline (B) 

regularization technique. Note the unnatural swirling pattern within the NP and vertebrae 

in the Gaussian regularization. 

Parameter optimization was executed by varying transformation model (Elastic 

vs. Diffeomorphic), adjusting outlier value (X) within a MSQ similarity metric form 

0.001 or 0.1, and numbering the splines used (7 even increments from: 2x2 – 14x14) with 

a DMFFD regularization technique (Parameter Overview: Table 5). The value range for 

outliers was based on preliminary experiments that indicated strain values remained 

constant when less than 0.01 and decreased when greater than 0.1. Additionally, the 

spline range was limited to values up to 14x14 since larger ranges resulted in a decreased 

label Target Overlap and an increased Hausdorff and Average Hausdorff. 

Variable Parameters Comments 

Transformation 

Model 
Elastic vs. Diffeomorphic 

Small vs. Large deformation 

freedom 

Similarity Metric MSQ 

Radius 2 Defines pixel search radius 

Outlier 0.001 0.01 0.1 
Accounts for large pixel 

intensity variation 

Regularization 

Technique 
DMFFD 2x2  30x30 Controls data smoothing 

Table 5: Parametric analysis variable matrix used for registrations 
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Labels were grouped into anatomic regions: vertebral body (VB), annulus 

fibrosus (AF) and nucleus pulposus (NP). A global overlap statistic was reported for each 

region by taking the mean across all registered images. The overlap statistics were pooled 

for all number of splines because values remained constant for greater than 6x6. 

Transformation model versus outlier value was assessed by a series of nine two-way 

ANOVAs with replication for each region (VB, AF, and NP) and overlap statistic (Target 

Overlap, Hausdorff, and Average Hausdorff). Four post-hoc paired, two-tail t-tests (p ≤ 

0.05) determined significance between outlier values within and between a 

transformation model (i.e., Diffeomorphic/Elastic 0.001/0.01 vs. Diffeomorphic/Elastic 

0.001/0.01 and Diffeomorphic 0.001/0.01 vs. Elastic 0.001/0.01). 

Based on preliminary analysis, there was no significant difference between strain 

values using a Diffeomorphic or Elastic transformation models. Elastic was selected 

because it is ideal for small deformations. The optimal outlier value was set to 0.01 based 

on the best overlap statistics; target overlap (68.48%) was maximized while minimizing 

Hausdorff (2.25 pixels) and Average Hausdorff (0.39 pixels). The number of splines used 

in regularization was determined by measuring the effect of spline number on the mean 

and the standard deviation of strain within the superior (SVB – top of image) and inferior 

(IVB – bottom of image) vertebral bodies and the entire annulus fibrosus (AF). 

Anticipated results include nearly zero strain within the vertebral bodies, approximately 

7% axial strain (O'Connell, Malhotra et al.), maximal target overlap, and minimal 

Hausdorff and Average Hausdorff. Radial and axial annulus strains from the anterior and 

posterior (avg. ± st.dev.) were plotted against the number of splines. 
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6.2.4. Nucleotomy Strain Analysis and Validation 

Each disc (n=5) underwent mechanical loading in the MR after nucleotomy, which was a 

previously published study using Vic2D texture correlation (O'Connell, Malhotra et al.). 

Reference and deformed images of intact discs and discs after nucleotomy were 

segmented into regions: AAF and PAF in ITK-SNAP (Figure 25).  

 

Figure 25: Segmentation of AAF (red) and PAF (blue) using ITK-SNAP. Each region 

was defined based on visible lamellae within each IVD. 

The optimal registration (Section 6.2.3) was performed with ANTs. Axial and radial 

strains (avg. ± st. dev.) were calculated in each region and strain maps were generated 

using the ANTs. Paired two-tail t-tests were performed comparing strains in the AAF and 

PAF between intact vs. nucleotomy data and ANTs vs. Vic2D (O'Connell, Malhotra et 

al.) (p<0.05). 
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6.3. Results 

6.3.1. Optimization of Image Registration Parameters 

The optimal registration was determined to be an elastic transformation model, a 

directly manipulated free-form deformation (DMFFD: B-spline) regularization technique 

with 6x6 spines, and a mean squared similarity metric using a search radius of 2 and an 

outlier of 0.01. The effect of outlier value within a transformation model was only 

significant with regards to the vertebral body overlap statistics; target overlap (p=0.016), 

Hausdorff (p=0.009), and Average Hausdorff (p ≤ 0.001). Post-hoc analysis showed an 

outlier value of 0.01 yielded significantly lower Hausdorff (p=0.005) and Average 

Hausdorff (p=0.013). Hausdorff values within the AF were significantly different 

(p=0.012), however post-hoc analysis showed no differences (p=0.294). All analysis 

testing the correlation between transformation models and outlier value showed 

significance. Post-hoc testing resulted in the elastic mapping being optimal in four of the 

five image pairs and an outlier of 0.01 was optimal for all cases. This registration had 

68.90% target overlap, Hausdorff of 2.19 pixels, and Average Hausdorff of 0.36 pixels. 

Strain standard deviation increased with the number of splines, while the average 

strain remained relatively constant between registrations (Figure 26). The 6x6 splines 

were selected since the average was stable with a lower standard deviation. Additionally, 

from 6x6 onwards, the qualitative strain patterns remained consistent. 
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6.3.2. Nucleotomy Strain Analysis and Validation 

The effect on increased number of b-splines was found to be independent from 

nucleotomy (Figure 26).  

 

Figure 26: Representative plot on the effect of B-splines on AAF and PAF (A) Avg (B) 

St. dev. for axial and radial strain 

The axial compressive strain increased in the PAF (p=0.04) and radial strain tended to 

decrease (p=0.07) for intact compared to after nucleotomy (Figure 27). No significant 

difference in strain was observed for registrations using ANTs and Vic2D for any groups 

or regions (Figure 27, p=0.35). 
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Figure 27: Representative (A) radial and (B) axial strain maps generated in ANTs. (C) 

Radial strains and (D) Axial strains measured in the AAF, PAF, and IVD in ANTs (intact 

white, nucleotomy checkered) and Vic2D (intact black, nucleotomy striped), == p ≤ 0.05 

& — p ≤ 0.10. 
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6.4. Discussion 

This study optimized parameters in Advanced Normalization Tools (ANTs) 

image registration as a method to measure intervertebral disc mechanics. Manual 

segmentation tools enabled registration accuracy verification assessing overlap statistics 

and comparing strain measurements before and after nucleotomy with Vic2d method of 

analysis (O'Connell, Vresilovic et al.). A B-spline regularization model has been 

implemented in this work and previously used to quantify myocardial strain in the heart 

(Tustison, Davila-Roman et al. 2003). In the B-spline model, a higher number of splines 

resulted in less smoothing within the strain map. Increasing the number of splines caused 

the strain standard deviation to rise, while the strain averages remained relatively 

constant. When the optimal mapping and outlier was used, increasing numbers of splines 

caused the target overlap to vary by less than 2% and the Hausdorff by less than 0.1 

pixels. This result confirms that choosing 6x6 splines did not compromise feature 

detection. 

At a 234 μm/pixel image resolution, Hausdorff indicates a maximum shift of 500 

μm between reference and deformed labels (approximately the width of one lamella), 

while the Average Hausdorff reports an average shift of 80 μm. The reference and 

warped labels overlapped by approximately 70%; slight variances can be seen from 

reference to warped (arrows Figure 22). Ideally overlap would be 100%, but this was not 

achieved due to human error in visualizing and marking anatomic features. The MR 

images had poor contrast between certain structures and image artifacts. Key anatomic 

features became more or less prominent in deformed images as individual substructures 
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such as AF lamellae moved in and out of plane. Since these issues compromised the 

ability to create accurate labels, we conclude that ANTs accuracy is greater than indicated 

in the overlap statistics. 

 Strain measurements with ANTs image registration for the disc were verified by 

comparing results with those from Vic2D texture correlation (O'Connell, Malhotra et al.) 

before and after nucleotomy. Nucleotomy causes an increase in axial PAF strain when 

quantified with both Vic2D (O'Connell, Malhotra et al.) and ANTs (p=0.06). Strain 

values were comparable between both techniques. Vic2D yielded a 30% increase and 

ANTs a 24% increase in axial strain as a result of nucleotomy in the PAF. The effect of 

radial strain in the PAF post-nucleotomy was also similar to Vic2D, which found a 

decrease of 50% (p=0.01) while ANTS showed a decrease of 58%. There were no 

significant difference between ANTs and Vic2D. However, the observed slight variance 

between them is likely due to ANTs ability to measure strain across the entire region of 

interest, potentially including areas that underwent greater deformation.  

 The verification and image registration techniques established here will act as the 

foundation for 3D image registration and strain analysis. The ability to track out-of-plane 

motion will greatly enhance the validity and accuracy for non-invasive strain 

measurements within the intervertebral disc. 
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CHAPTER 7 Verification of Image Registration 

7.1. Introduction 

 The intervertebral disc functions to permit motion, distribute load, and dissipate 

energy in the spine. It performs these functions through its highly heterogeneous 

structural organization and biochemical composition consisting of several tissue sub-

structures: the central gelatinous nucleus pulposus (NP), the surrounding fiber-reinforced 

layered annulus fibrosus (AF), and the cartilaginous endplates (CEP) that are positioned 

between the NP and vertebral endplates (Buckwalter and Mow 2000).. Disruption of any 

of the disc’s tissues through aging, degeneration, or injury will not only alter the affected 

tissue mechanical properties, but also the mechanical behavior of adjacent tissues and, 

ultimately, the overall disc segment function. Thus there is a need to measure disc tissue 

and segment mechanics in the intact disc segment so that interactions between tissue 

structures are not disrupted. Such measurements would be valuable to study mechanisms 

of disc function and of disc degeneration, to design functional tissue engineered discs, 

and to develop and evaluate surgical procedures and therapeutic implants. 

Disc mechanical behavior has been quantified through a number of measures 

including external displacements (Shah, Hampson et al. 1978, Reuber, Schultz et al. 

1982, Stokes 1987, Holmes, Hukins et al. 1993) and internal pressure (Brinckmann and 

Grootenboer 1991, McNally and Adams 1992, Adams, McNally et al. 1996, Edwards, 

Ordway et al. 2001), however these do not fully establish internal tissue mechanics. 

Internal disc mechanics have also been measured through marker insertion or disc 

bisection (Seroussi, Krag et al. 1989, Kusaka, Nakajima et al. 2001, Meakin, Redpath et 
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al. 2001, Tsantrizos, Ito et al. 2005, Costi, Stokes et al. 2007). These studies have 

provided important data about disc mechanical function and how it changes with 

degeneration. Yet the disc is composed of soft hydrated, pressurized, and fibrous tissues 

that may deform separately from the inserted markers and may depressurize when 

bisected. Thus it has remained a challenge to quantify internal disc mechanics. 

Magnetic resonance imaging (MRI) before and after an applied load, combined 

with image registration, is a promising method to quantify internal disc mechanics. 

Important advances have been made using MRI to measure internal disc deformation in a 

2D plane (O'Connell, Malhotra et al. , O'Connell, Vresilovic et al. , O'Connell, 

Johannessen et al. 2007, Reiter, Fathallah et al. 2012, Chan and Neu 2013). Strains within 

several AF regions (e.g., anterior, posterior, lateral) were measured under applied axial 

compression and the effect of loading position, degeneration, and nucleotomy were 

determined (O'Connell, Malhotra et al. , O'Connell, Vresilovic et al. , O'Connell, 

Johannessen et al. 2007), demonstrating inhomogeneous strains across AF regions and 

differential effects of nucleotomy that depend on the initial state of degeneration 

(O'Connell, Malhotra et al. , O'Connell, Vresilovic et al. , O'Connell, Johannessen et al. 

2007). A non-rigid image registration method was employed by (Reiter, Fathallah et al. 

2012) to calculate mid-sagittal strain after creep loading. Displacement encoded MRI, an 

image tagging method that enables direct displacement measurements from MRI data, 

was used in (Chan and Neu 2013) to calculate strain across the entire disc under cyclic 

loading. While these are important advances, the 2D nature of recent MRI-based studies 

do not account for out-of-plane deformation nor provide the 3D strain components that 

are key to evaluating disc mechanical function. 
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The objectives of this study were to develop, validate, and apply a method to 

measure 3D internal deformations in intact human discs subjected to axial compression. 

This was achieved by using a custom-built loading device that permitted long relaxation 

times outside of the MRI scanner and maintained compression and hydration during 

imaging, by acquiring MR images at a high resolution (300 m isotropic), and by 

applying state-of-the-art image registration methods. 
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7.2. Materials and Methods 

7.2.1. Specimen Preparation 

Human lumbar spines were procured, thawed, and scanned intact in a 3T whole-

body MRI scanner (Trio, Siemens Medical Solutions) using the spine array RF coil. To 

assess degenerative grade, a T2-weighted mid-sagittal image was acquired (Pfirrmann, 

Metzdorf et al. 2001), and to determine the nucleus pulposus T2 relaxation time a T2-

mapping sequence was used (Marinelli, Haughton et al. , Welsch, Trattnig et al. , 

Watanabe, Benneker et al. 2007). To minimize anatomical and degenerative variability, 

grade 3 (Pfirrmann, Metzdorf et al. 2001) L4-L5 discs were selected (n=9), resulting in 

an average age of 57±12 years, an average NP T2 relaxation time of 88.1 ± 16.6 ms, and 

an even gender distribution (5 female and 4 male). The L4-L5 lumbar spine was then 

dissected into a bone-disc-bone segment, the posterior elements removed, and the 

vertebral bodies potted in polymethyl methacrylate bone cement. Each sample was 

hydrated in a refrigerated phosphate-buffered saline (PBS) bath overnight and 

equilibrated to room temperature prior to testing. 

7.2.2. Mechanical Loading and Image Acquisition 

 A custom-built non-magnetic loading frame (Figure 28A) was constructed to 

interface with an Instron 8874 for load application. The loading frame incorporated 

locking bolts to maintain axial compression applied using the Instron, a sliding tank to 

maintain hydration, and was designed to integrate with a two-piece RF coil (Helmholtz 

transmit, curved 4-channel receive array) (Wright, Lemdiasov et al. 2011) in a 7T whole-
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body MRI scanner (Magnetom, Siemens Medical Solutions) (Figure 28B). The loading 

frame was fabricated using polyvinyl chloride (PVC) and Delrin plastics.  

 

Figure 28: (A) Loading frame interfaced with Instron (red arrow), showing locking 

mechanism, segment grips, disc, and sliding tank (white arrows). (B) Loading frame 

integrated with RF coil (green arrows) in MRI. B0 = direction of magnetic field. 

A cylindrical sliding tank (diameter = 7.87 cm) made of acrylic held the disc and grips 

and allowed easy replacement of the PBS fluid (used while in the Instron) with 2% 

agarose gel (used while in the MRI scanner). The agarose gel maintained hydration 

during imaging and prevented image distortion at tissue edges due to the tissue-air 

mismatch in magnetic susceptibility (Schenck 1996). The disc-agarose unit was covered 

in plastic wrap throughout imaging to prevent dehydration. Sufficient space was 

maintained between the sliding tank and the outer walls of the frame in order for the coil 

array to be placed between them in the scanner and ports for wires were made within the 

outer frame walls (Figure 28B). 

Mechanical loading followed by MR image acquisition was performed under four 

conditions: reference (50 N pre-load), 5%, 10%, and 15% applied grip-grip compressive 
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strain, as follows. The sample was placed in a PBS bath within the loading frame and 

installed in the Instron, which was used for load application. For the reference condition, 

a 50N pre-load was applied to ensure contact of the loading fixtures and held for 20 min., 

after which locking bolts were tightened to secure the position. The sample + frame then 

was removed from the Instron, and the PBS was removed and replaced with agarose. 

The sample + frame was then placed within in the 7T MRI scanner and the 4-

channel RF coil array placed to wrap around the sample (Figure 28B). High-resolution 

(300 μm isotropic) MR images were acquired with a T2-weighted 3D turbo-spin echo 

sequence (TR/TE = 3000/34 ms, matrix = 256 x 256 x 32, turbo factor = 7, fat 

suppression). Scan time was 2.8 hours per disc per load.  

After acquisition of the pre-load images, the agarose was replaced with PBS and the 

sample + frame was returned to the Instron. The Instron crosshead was returned to the 

pre-load position and the locking bolts were then loosened. A 5% grip-grip compressive 

strain, based on mid-sagittal disc height, was applied at a slow rate of 0.1 mm/s (Holmes, 

Hukins et al. 1993) and held for 2.5 hours of load-relaxation within the Instron. Average 

disc height was calculated by dividing the mid-sagittal disc space area by the anterior-

posterior width from the pre-loaded reference image as previously described (O'Connell, 

Vresilovic et al. 2007). The position was again locked, PBS replaced with agarose, and 

the sample + frame returned to the MRI scanner for imaging under the loaded condition 

using the same imaging parameters as for the pre-load condition. These steps were 

repeated for 10% and 15% applied strain, always returning the Instron to the final 

displacement position of the previously applied load. 



79 

 

7.2.3. Image Processing and Registration 

 Image processing was performed prior to image registration. First, bone-disc-bone 

segmentations were generated for all images by masking out non-essential regions in the 

images, including agarose, and surrounding musculature, and most of the vertebral body.  

Because the imaging sequence was not optimized for bone contrast, deformation and 

strain analysis was not performed within the bone regions. This segmentation for each 

image set was performed using the 3D image edge-based snake tool in ITK-SNAP 

(Yushkevich, Piven et al. 2006), followed by manual correction of missed regions and 

sections that bled into the disc space. Second, to aid the alignment of similar features 

during registration, each image set was normalized to its maximum intensity value and 

the image sets were then histogram-matched. A representative resultant image set for a 

disc in the axial, coronal, and sagittal planes is shown in Figure 29A. 

 

Figure 29: Images (A – C) are oriented to show coronal (left), axial (top-right), and 

sagittal (bottom) planes. (A) Representative MRI data set. (B) The volume used for strain 

analysis (pink). (C) Annulus fibrosus regions of interest defined in the mid-axial plane: 

A=anterior (red), A-L=anterior-lateral (green), L=lateral (purple), P-L= posterior-lateral 

(yellow), P=posterior (aqua). 
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Registration between reference (pre-load) and deformed (5%, 10%, and 15% 

compression) disc image sets was performed with Advanced Normalization Tools 

(ANTs) (Avants, Epstein et al. 2008, Tustison, Avants et al. 2009, Avants, Tustison et al. 

2011, Tustison and Avants 2013). The resultant registration defines a warp field (Figure 

30), which prescribes how the reference image transforms into the deformed image, and 

consequently, the inverse warp field prescribes how the deformed image transforms into 

the reference image. 

 

Figure 30: Pictorial representation of the image registration process, resultant warp field, 

and displacement map. The reference image is registered to the deformed image defining 

a warp field that prescribes how structures within the reference image are mapped to the 

deformed image. The deformation gradient tensor is applied to calculate the Lagrangian 

strain tensor. 

Applying the warp field to the reference image creates a transformed-deformed image 

that appears identical to the deformed image; this approach can be applied in reverse 

using the inverse warp field. Lagrangian strain components were derived directly from 

the computed transformations (Tustison, Awate et al. , Tustison, Davila-Roman et al. 

2003, Tustison and Amini 2006). ANTs performance has been validated in human brain 



81 

 

MRI registration (Klein, Andersson et al. 2009) and lung mapping (Murphy, van 

Ginneken et al. 2011), achieving top ranking in open competitions. 

The procedure for using ANTs was as follows. An initial affine registration was 

applied which accounts for rigid body motion. A non-rigid registration was then 

performed using a symmetric diffeomorphic transformation model (Avants, Epstein et al. 

2008). This transformation model was selected because it is invertible and is able to 

preserve topology and local neighborhood relations. Mean squared difference (MSQ) was 

employed as the similarity metric in the registration because of mono-modality and 

strong pixel intensity resemblance between the reference and deformed images.  This 

metric performs the sum of the squared differences between corresponding intensity 

values between the reference (I1) and deformed (I2) image (Equation 15) such that φ is 

the iteratively updated warp field.  To account for outliers, the MSQ equation was clipped 

by treating the equation linearly for intensity differences between the reference and 

deformed image that were greater than 0.01. 

Equation 15: MSQ = 1/(n – 1) Σ (I1(X) – I2(φ(X)))
2
 

A directly manipulated free-form deformation (DMFFD) regularization technique was 

utilized based on prior successful experience with its use in MR images (Tustison, Avants 

et al. 2009, Avants, Tustison et al. 2011, Tustison and Avants 2013). Preliminary 

experiments yielded 6x6x6 as the ideal number of splines for DMFFD regularization 

based on overlap statistics. 
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7.2.4. Registration Verification 

 Registration was validated with three different assessments: disc volume, lamellar 

structure, and axial strain. Disc volume and lamellar structure were evaluated using 

standard statistical assessment methods (Klein, Andersson et al. 2009). Disc volume 

validation was performed to assess gross morphology, ensuring registrations captured 

volumetric changes between the reference and deformed images. Lamellar structure 

validation was performed to verify registrations tracked internal AF displacements. 

Finally axial strain validation was performed to verify the strains calculated from the 

registration were as expected. 

Disc volume and lamellar structure registration validation was performed by first 

identifying and “labeling” the matched features that are present in both the reference and 

deformed images – these labels are assumed to be the gold standard against which the 

registration is compared.  Labeling these features entails manual segmentation using ITK-

SNAP (Yushkevich, Piven et al. 2006). Labeling is highly labor intensive, therefore for 

these assessments a subset of samples was used for registration validation (n=3). 

 

Figure 31: (A) Generation of lamellar structure labels using Sobel edge detection (red), 

shown in three planes. A representative label is shown in green. (B-C) Five identified 

lamellar labels, shown in mid-axial view and as 3D projections, respectively. Labels 

identified by white arrow. 
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For disc volume, a label image representing the entire disc was created by manually 

removing all pixels containing bone from each image set. For lamellar structure, labels 

representing the boundaries between adjacent AF lamellae were identified in three 

dimensions. Sobel edge detection was performed in 3D with a custom Matlab script to 

first identify AF boundaries (Figure 31A). These boundaries were then used to guide the 

identification of matched labels in the reference and deformed image sets (Figure 31B 

and Figure 31C). Five lamellar labels were identified around the circumference of each 

disc. 

Once the five lamellar labels were identified in the reference and deformed images 

(5%, 10%, and 15% compression), the inverse warp field was applied to the deformed 

image labels to reconstruct the labels in the reference image. The reconstructed reference 

labels were then overlaid on the original reference labels to assess overlap statistics. Disc 

volume and lamellar structure were statistically evaluated for Target Overlap and 

Average Hausdorff (Klein, Andersson et al. 2009). Target overlap is the amount of 

overlap between the two images, where 100% represents a perfect registration. Average 

Hausdorff is the average pixel distance between matching label pixel boundaries, 

converted to length using 1 pixel = 300 μm image resolution, where 0 μm Average 

Hausdorff represents a perfect registration. For disc volume, 9 comparisons were made, 3 

compression levels (5%, 10%, and 15%) across 3 samples. For lamellar structure, 45 

comparisons made 5 labels per disc at 3 compression levels across 3 samples. 

Finally, the axial strain was validated using all samples (n=9). Axial strain within 

the entire AF was averaged from the registration at each applied compression level. 

Manual segmentation of change in disc height was used to determine the axial strain for 
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comparison to the axial strain from registration. The disc height was manually segmented 

in the mid-sagittal and mid-coronal planes in the reference and deformed images. Axial 

strain was calculated as the change disc height between the reference and deformed 

image divided by the reference image disc height. For each sample, the axial strain was 

the average of the mid-sagittal and mid-coronal strain. Comparison between the axial 

strain from the registration and manual segmentation was made using a Pearson’s 

correlation. Significance set at p ≤ 0.05 and a trend defined by 0.05 < p ≤ 0.10. 

The resultant applied strain measured from mid-axial disc was compared between 

groups, pre-load to 5%, 5% to 10%, and 10% to 15% compression. Difference between 

incremental strain groups was assessed by a one-way ANOVA with repeated measures 

and post-hoc comparisons with Tukey’s test. Significance set at p ≤ 0.05 and a trend 

defined by 0.05 < p ≤ 0.10. 

7.2.5. Strain Analysis 

 Strain was calculated on a voxel-by-voxel basis from the warp field, ϕ, as 

follows.   The warp field prescribes how features are mapped from the reference (X) to 

deformed (x) configuration (Tustison, Davila-Roman et al. 2003, Tustison and Amini 

2006) in Equation 16, where V is the displacement field. 

Equation 16: x = ϕ(X) = V(X) + X 

Next, the deformation gradient tensor (F) was calculated from the warp field ϕ(X) as, 

Equation 17: F = ∇ϕ(X) = ∇V(X) + ∇X 

Finally, the Lagrangian strain tensor (E) was calculated from the deformation gradient 

tensor.  All of these analyses are performed within the ANTs software package (Tustison, 
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Davila-Roman et al. 2003, Tustison and Amini 2006). The Lagrangian strain tensor is 

initially calculated in the Cartesian coordinate system.  These Cartesian strain 

components were then transformed into a local disc coordinate system and regional 

segmentation of the disc was performed, as described below. 

To transform the Cartesian coordinate system, a local disc coordinate system was 

established based on the disc’s outer contour (Figure 32). 

 

Figure 32: Transformation of Cartesian coordinates to local disc coordinates using the 

disc’s outer contour, scaled to intersect each voxel: (A) circumferential basis vectors 

defined by the contour’s tangent; (B) radial basis vectors defined by the contour’s 

normal. Note the complex vector directions imposed by the lamellar curvature. 

The outer contour was defined by tracing the projection of the disc into the x-y plane and 

its origin defined as the disc's centroid. For each voxel, the contour was scaled to find a 

similar contour that intersected the voxel's (x, y) position. The local coordinate system 

(B) is defined by the circumferential basis vector (e) was defined by the contour’s 

tangent, the local radial basis vector (err) was defined by the contour’s normal, and the 

local axial basis vector (ezz) remained unchanged from the primary spine axis. The 
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Cartesian strain tensor (E) at each voxel in the x-y plane was then transformed into disc 

specific strain tensor (E’) having components of circumferential strain (E), radial strain 

(Err), and axial strain (Ezz) using the transformation (Equation 18), 

Equation 18:          

The disc was next segmented to establish volumes of interest for averaging local strains. 

First, to eliminate artifacts that occur in the registration at the bone-disc boundary (Pech 

and Haughton 1985), the disc area was removed by two pixels depth (0.6 mm) at the 

superior and inferior boundaries using the image erosion function in Matlab maintaining 

the bone-disc boundary contour. Next, to remove any remaining strain outliers, the 

intersection of axial, circumferential, and radial strain values that were ± 2 standard 

deviations from the mean were eliminated, providing the final segmented disc for strain 

analysis (Figure 29B). Finally, the AF was defined by excluding regions where Sobel 3D 

edge detection did not locate lamellar edge boundaries. The AF segmentation outer 

boundary followed the outer disc contour and the AF inner boundary was defined by the 

inner most medially detected AF lamellar edge. To ensure no NP material fell within this 

segmentation, the NP region was defined to occupy 28% of the disc cross-section, 

positioned at the discs centroid with a 3% posterior translation, and mirrored the outer 

contour (O'Connell, Vresilovic et al. 2007). To achieve relatively homogenous strain 

regions, the mid-axial height, defined as the middle third of the disc height after 

segmentation, represented the AF region of interest. The AF was then divided into 

Anterior, Anterior-Lateral, Lateral, Posterior-Lateral, and Posterior (Costi, Stokes et al. 

2007) regions (Figure 29C). The lateral region furthest from the RF coil was excluded 

because of reduced image contrast. Mean axial, circumferential, and radial disc strain 
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values were calculated for each region at the mid-axial disc height. Variance between 

regions as assessed by a one-way ANOVA and post-hoc comparisons with Tukey’s test 

for 5%, 10%, and 15% compression. Significance set at p ≤ 0.05 and a trend defined by 

0.05 < p ≤ 0.10. 

7.3. Results 

 In this study three dimensional image registration of the human intervertebral disc 

in axial compression loading was performed, the registration was validated, and then 

strain analysis in compression was performed. The high-resolution isotropic MR images 

provided excellent visualization of the AF lamellar architecture (Figure 29 and Figure 

30), features essential for successful registration. 

7.3.1. Registration Verification 

 Registration was validated with three different assessments: disc volume, lamellar 

structure, and axial strain. Disc volume and lamellar structure were statistically evaluated 

for Target Overlap and Average Hausdorff. These are standard assessment methods and 

were compared against the previous successful registration of human brain (Avants, 

Tustison et al. 2011). The disc volume was registered with a Target Overlap of 94.4 ± 

0.92%. This target overlap is similar to the best registration achieved in human whole 

brain of 95.8% (Avants, Tustison et al. 2011). The disc volume was registered with an 

Average Hausdorff of 0.030 ± 0.006 mm. Excellent overlap was achieved internally 

between the original and reconstructed AF labels (Figure 33). 
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Figure 33: Registration of a representative lamellar label (green), shown in coronal (left), 

axial (top-right), and sagittal (bottom) views. Difference between original and registered 

label is small (red), demonstrating good registration. Scale bar = 1cm 

The lamellar structure was registered with a Target Overlap of 65.2 ± 12.4%. This Target 

Overlap is similar to the registration achieved in human brain subcortical structures of 

66.9% (Avants, Tustison et al. 2011). The lamellar structure was registered with an 

Average Hausdorff of 0.12 ± 0.06 mm. 

The axial strain was validated by comparing the axial strain calculated by ANTs, 

averaged across the entire AF, to axial strain measured directly from the change in disc 

height on the MR images. This validated not only the registration methods but also the 

strain analysis calculations. There was a linear correlation between the axial strain from 

the registration and the manually measured strain (R
2
=0.79, p<0.001, Figure 34). No 
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statistical difference was found between the each of the achieved applied strain 

increments between pre-load to 5%, 5% to 10%, and 10% to 15% compression (p = 

0.34). 

 

Figure 34: Axial strains for all discs obtained by manual measurement and by image 

registration, showing good agreement (r2=0.79, p<0.05). 

7.3.2. Strain Analysis 

 The three strain components under all applied axial compressions were 

qualitatively evaluated; a representative disc at 10% axial strain is shown in Figure 35. 
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Figure 35: Strain maps for 10% axial compression in a representative disc: (A) axial 

strain in coronal and sagittal views (left and right, respectively); (B) circumferential 

strain in axial view; (C) radial strain in axial view. Scale bar = 5 cm. 

Qualitative strain patterns described below were generally similar for all levels of applied 

strain across all discs. Axial strain (Ezz) had horizontal banding throughout the disc, as 

shown in the coronal and sagittal views (Figure 35A). Negative Ezz strains predominated, 

although bands of tensile Ezz strains occurred near the disc–endplate boundaries (Figure 

35A). Circumferential strain (E) was near zero at the endplates (not shown) and had 

high positive strain values occurring in the posterior and lateral regions, as shown in the 

axial view (Figure 35B). Radial strain (Err) decreased from the inner AF toward the 

periphery of the AF. The Err strains were positive in the inner AF regions and near zero at 

the AF outer boundary, as shown in the axial view (Figure 35C).  

The peak and equilibrium stress increased with each applied strain increment 

(Table 6). The magnitude of the strain components, averaged across the entire AF, also 
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increased with each applied increment (Table 6). The AF Ezz did not match the applied 

grip-grip strain (Table 6), however it did increase linearly with each strain increment 

(Figure 34). 

 Applied Compression 
5% 10% 15% 

Peak compression stress (kPa) 192 ± 29.1 307 ± 141 352 ± 222 
Equilibrium compression stress (kPa) 40.0 ± 18.3 110 ± 15.0 174 ± 27.1 
AF Ezz -3.30 ± 5.58% -7.59 ± 6.31% -13.17 ± 6.32% 

AF E 0.70 ± 1.02% 1.23 ±1.29% 2.75 ±2.07% 

AF Err 0.11 ± 1.86% 0.96 ± 2.44% 1.63 ± 2.93% 

Table 6: Mean ± standard deviation of stress and strain for each applied loading 

condition.   Note that Applied Compression represents grip-to-grip applied strains that are 

compressive and that these compressive boundary conditions induce negative axial strain.  

AF = annulus fibrosus, Ezz = axial strain, E= circumferential strain, Err = radial strain. 

Stress calculated as load divided by area from axial reference MR image. Strains 

averaged over entire AF volume for each disc. N= 9. 

Because the strains were expected to be inhomogeneous across the AF, separate 

AF regions were defined and strains averaged within these regions. To avoid boundary 

effects at the bone attachment, the middle third (Figure 29C) of the disc was considered 

as “mid-axial” with five AF regions delineated as: anterior (A), anterior-lateral (A-L), 

lateral (L), posterior-lateral (P-L), and posterior (P). Differences in strain across AF 

regions were evaluated for 15% applied axial compression (Figure 36).  

 

Figure 36: Mean (standard deviation) of AF regional strain at mid-disc height when 

loaded to 15% compression for (A) axial, (B) circumferential, and (C) radial strain. 

A=Anterior, A-L=Anterior-Lateral, L=Lateral, P=L=Posterior-Lateral, P=Posterior.  

Region locations are shown in Figure 2C. A solid line represents significance p<0.05 and 

dashed line a trend 0.05<p<0.10. 
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Axial strain (Ezz) was smallest in the anterior AF, significantly smaller compared to the 

lateral, posterior-lateral, and posterior AF (p < 0.03, Figure 36A). Circumferential strain 

(E) in the anterior-lateral AF was smaller than the posterior-lateral AF (p = 0.02, 

respectively, Figure 36B). Radial strain (Err) was lowest in the lateral AF, significantly 

lower than the posterior-lateral and posterior AF (p < 0.04, Figure 36C). In addition, the 

radial strain was highest in the posterior AF, higher than the anterior-lateral (p < 0.07) 

and lateral AF (p < 0.003, Figure 36C). 
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7.4. Discussion 

 In this study a method to measure 3D internal deformations within intact human 

discs under axial compression was developed, validated, and applied. Important technical 

advances included a custom-built loading device that permitted long relaxation times 

outside of the MR scanner and maintained compression and hydration throughout 

imaging, a high-resolution 300 m isotropic MR imaging sequence, and state-of-the-art 

image registration methods. There is a need to measure disc tissue and segment 

mechanics in the intact disc segment so that interactions between tissue structures are not 

disrupted. Such measurements established in this study are valuable to study mechanisms 

of disc function and of disc degeneration, to design functional tissue engineered discs, 

and to develop and evaluate surgical procedures and therapeutic interventions. In 

addition, finite element models used to study disc mechanics (Shirazi-Adl, Shrivastava et 

al. 1984, Goel, Monroe et al. 1995, Argoubi and Shirazi-Adl 1996, Fagan, Julian et al. 

2002), have to date only performed model validation with respect to overall deformation 

at outer boundaries. The experimental internal strain data achieved in this study will be 

valuable to validate the internal strains predicted by finite element models.  

The image registration was validated using both the disc volume and lamellar 

structure. Using standard statistical methods (Klein, Andersson et al. 2009), both the disc 

volume and lamellar structure had very good accuracy, strongly supporting the validity of 

the registration and the reported strain results. There are no directly comparable image 

registrations, but work has been published on whole brain registrations (Avants, Tustison 

et al. 2011). The disc volume validation can be compared to previous whole brain 
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registration, where the disc Target Overlap was 94% and brain was 96% (Avants, 

Tustison et al. 2011). Similarly, the lamellar structure validation, representing internal 

registration of fine detail, can be compared to brain cortical features, which are also 

internal. In this case lamellar structure Target overlap was 65% while brain cortical was 

67% (Avants, Tustison et al. 2011). It is likely that the apparently reduced accuracy 

inside the disc reflects the challenges and errors in visualizing and marking these internal 

anatomic features to create the labels. The use of 3D Sobel edge detection to locate the 

lamellar boundaries was helpful in identifying lamellar features. Although the 300 

μm/pixel resolution achieved in this study is outstanding for disc MRI, identification of 

lamellar labels for validation was quite difficult given the 140 – 520 μm range of AF 

lamellar thickness (Marchand and Ahmed 1990). Nonetheless, qualitative evaluation of 

overlap of lamellar labels shows excellent correspondence (Figure 33) and quantitative 

validation matches the current standard in the field. Moreover, the implementation of 

overlap statistics on manual segmentations provides registration accuracy that is specific 

to the experimental conditions, a distinct advantage over to utilizing MR phantoms (Chan 

and Neu 2013) or computer generated deformations (Reiter, Fathallah et al. 2012). 

Qualitative observations of the strain patterns were made. Axial strain horizontal 

banding was apparent (Figure 35A), similar to those observed in the 2D strain analysis by 

O’Connell et al. (O'Connell, Johannessen et al. 2007). Large tensile axial strains were 

observed at the boundary of the AF and vertebral endplate (Figure 35A), which was also 

consistent with previous work (O'Connell, Vresilovic et al. , O'Connell, Johannessen et 

al. 2007). The mechanism for axial tensile strain to occur when the disc is being 

compressed is not clear, however, we hypothesize that it may be related to tension in the 
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AF fibers at their insertion to the vertebrae, and/or the curvature of the endplate. Notably, 

compressive axial strains that were greater than the applied strain magnitude were 

observed in some regions, particularly in the mid-height region (Figure 35A), which 

makes some intuitive sense, when there is axial tension at the endplates. Integration of the 

axial strain across the disc in the z-direction at any fixed radial and circumferential 

coordinate would yield the total displacement in the z-direction, which ideally would be 

the same throughout the disc if the endplates where flat. The mechanical and biological 

affects these strain patterns have on local matrix and cells are a subject of future interest. 

Strain maps not only enable qualitative visualization of strain patterns, but also 

enable quantitative regional AF strain analysis. In this study small regions of relatively 

homogenous tissue at the mid-disc height were evaluated (Figure 29C) and the strains 

under applied axial compression compared in regions around the disc (Figure 35). Axial 

strain was lowest in the anterior AF (-8.8 ± 4.4%) and highest in the lateral AF (-15.8 ± 

7.5%), Figure 35A. This is likely related to the larger disc height in the anterior region. 

Since strain can be estimated as change in height divided by the reference height, if the 

anterior region has a higher reference height, it follows it would have a smaller strain for 

the same applied deformation. Circumferential strain was lowest in the anterior and 

anterior-lateral regions (2.2 ± 1.4%) and highest in the lateral region (4.1 ± 2.7%). 

Geometrically it is expected that circumferential ‘hoop’ strain would be highest at the 

largest radial distance from the disc center, which is the lateral AF. Radial strain was 

lowest and on average zero in the lateral AF and highest in the posterior AF. The low 

average strain in the lateral AF also had a very high standard deviation, suggesting a large 

degree of strain inhomogeneity that may be related to the steeper curve around the AF 
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contour at the lateral side. The higher radial strain in the posterior AF may be 

physiologically important for delamination and tears in the posterior regions of the disc, 

and may have important implications in this area where AF failure and disc herniation 

often occur. 

The axial stress associated with the applied compression strains were calculated 

(Table 6) and can be related to in vivo lumbar disc stresses measured in the nucleus 

pulposus with a pressure transducer (Wilke, Neef et al. 1999). The stress associated with 

the applied 5% compression is comparable to lying down, the 10% compression is 

comparable to the stress to lying prone with an extended back supported on elbows and 

sitting slouched in a chair, and the 15% compression is comparable to a large number of 

activities, including sitting down and relaxed standing (Wilke, Neef et al. 1999). Thus the 

compressions applied in this study have physiological relevance. While this study was 

not designed to study the disc stress-relaxation, we did observe a viscoelastic response 

(Table 1) consistent with previous studies (Johannessen, Vresilovic et al. 2004, 

Beckstein, Sen et al. 2008, O'Connell, Jacobs et al. 2011) and that suggests nonlinear 

response that was expected based on known nonlinear disc mechanics (Keller, Spengler 

et al. 1987, Holmes and Hukins 1996, Johannessen, Vresilovic et al. 2004, Perie, Korda 

et al. 2005).  

An advantage of this study is that 3D image registration was performed. Prior 2D 

image correlation experiments (O'Connell, Malhotra et al. , O'Connell, Vresilovic et al. , 

O'Connell, Johannessen et al. 2007, Reiter, Fathallah et al. 2012, Chan and Neu 2013) 

were designed to minimize out-of-plane deformations that could cause erroneous strains 

to be reported if the same tissue is not present in both the reference and deformed images. 
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To check this, the strains in this study were compared to previous 2D correlations 

(O'Connell, Johannessen et al. 2007). Although different samples and slightly different 

protocols were used (the present study applied 5% compression, the previous study 

(O'Connell, Johannessen et al. 2007) applied 1000 N compression), both studies achieved 

very similar applied axial disc strains, Ezz = -4.27 ± 1.48% and Ezz = -4.4 ± 1.3% strain, 

respectively. Therefore, the AF strains computed in 3D and mid-sagittal 2D can be 

compared with some confidence. This finding was not unexpected since axial 

compression was applied in both studies.  The average AF axial strains were Ezz = -3.6% 

and -4.7% and the average AF radial strains were Err = 2.2% and 2.1% in the present 3D 

study and the previous 2D study (O'Connell, Johannessen et al. 2007), respectively. This 

is excellent correspondence given the differences in protocols, human sample variability, 

imaging and registration methods, and strain inhomogeneity. This observation provides 

confidence in both the present work and the remaining validity of the previous 2D 

studies. The ability to quantify out-of-plane motion will enable future 3D disc strain 

analysis in other loading configurations, such as rotation and bending, where less uniform 

deformations are expected. 

The methods in this study are subject to some limitations. Long imaging times 

limit analysis to studies in which the disc is at steady state, and dynamic loading studies 

are not currently feasible with the described methods. Similar to other loading studies 

(Stokes 1987), the applied grip-grip compression overestimated the actual strain 

experienced by the disc: for applied 5, 10, and 15% grip-grip compression the manual 

segmentation averaged in the mid-sagittal and mid-coronal images were -4.3 ± 1.3%, -9.3 

± 0.9%, and -12.0 ± 0.9%, respectively. This is due deformation within the loading frame 
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fixtures and possibly deformation during locking of the loaded position prior to imaging. 

The loading frame’s driving rod’s thread pitch was comparable to the average applied 5% 

compression increment of 0.78 ± 0.07 mm. Additionally, it is likely that some 

deformation occurred within the vertebral bodies, as they are not rigid, particularly with 

osteoporosis (Hansson, Roos et al. 1980, McBroom, Hayes et al. 1985, Cheng, Nicholson 

et al. 1997, Ebbesen, Thomsen et al. 1999). The difference between grip-grip 

compression and actual strain is not itself problematic, however, it does increase 

variability when grouping samples for statistical analyses. 

This study was performed in cadaveric discs and is not currently available for in 

vivo applications. To achieve high-resolution isotropic images used in this study, 

significant improvements to current spine surface coils and MRI sequence development 

will be needed. Nonetheless, MR-based biomechanical studies have been performed in 

vivo, where disc volume changes have been quantified following axial loading 

(Danielson and Willen 2001) and simulated diurnal loading (Malko, Hutton et al. 1999). 

Thus, future imaging advances could be translated to in vivo study. 

In conclusion, key technical advances were made to develop and validate a new 

method to measure 3D internal strains in intact human discs. The 3D strain components 

were obtained for both qualitative and quantitative analysis and compared across AF 

regions. Three-dimensional spatial variation in the three strain components indicate 

complexities in the material mechanical properties and disc stresses not heretofore 

appreciated. Some of the variation in magnitude of axial and circumferential strain might 

be explained by disc geometry. Overall this study provided new methods that will be 

valuable in future work. The observed strain inhomogeneity may have implications for 
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both tissue mechanics and cell mechano-transduction, as nearby cells might experience 

wildly different mechanical environments. These techniques will be valuable in the 

design, the development, and the evaluation of surgical procedures and therapeutic 

interventions. Moreover this work should advance analysis of internal mechanics in other 

musculoskeletal joints to quantify strains in tendon, ligament, and meniscus within an 

intact joint. 
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CHAPTER 8 Regional Strain of the Annulus Fibrosus under 

Axial Compression 

8.1. Introduction 

 The intervertebral disc substructures, annulus fibrosus (AF), nucleus pulposus 

(NP), and cartilaginous endplates (CEP) work together to distribute multidirectional loads 

in compression, torsion, and bending. Degeneration alters the discs structural integrity 

and mechanics, affecting the mechanical interaction of these substructures. Data within 

the literature quantifying the effects of degeneration on 3D internal strain distributions in 

compression is limited. Experimental whole-disc testing is limited to providing global 

disc load and deformation details, not internal mechanics information. The ability to 

quantify regional internal disc mechanics through non-invasive measures would yield 

vital information regarding disc function aiding the study of disc degeneration, implant 

development, and surgical procedure evaluation. 

 The AF is a structured composite of alternating concentric lamellae that consist of 

collagen bundles embedded in a matrix of proteoglycans and non-fibrillar collagens. This 

organized structure exhibits regional heterogeneity within the IVD circumferentially and 

radially (Marchand and Ahmed 1990, Tsuji, Hirano et al. 1993). Fiber orientation 

alternates between each layer 28° - 43° above and below the transverse plane (Hickey 

and Hukins 1980, Marchand and Ahmed 1990), with fiber angle increasing from outer to 

inner AF. The distinctive outer AF predominantly comprises of Type I collagen and some 

Type II. Lamellae become less distinct along the radial direction from outer to inner AF 

toward the NP as a result of increased Type II and decreased Type I collagen content 
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(Eyre and Muir 1976, Eyre and Muir 1977, Buckwalter 1995). As a result, 40-80% of the 

inner AF lamellae are incomplete and interconnecting creating a less distinct structure 

(Marchand and Ahmed 1990, Tsuji, Hirano et al. 1993). Lamellar thickness varies by 

location (anterior / posterior / lateral) within the disc and becomes thicker toward the NP 

ranging from 140 – 520 μm (Marchand and Ahmed 1990). The fibers of the AF’s outer 

lamella are attached to the vertebra, while the inner lamellas merge with the CEP. These 

regional differences in composition, structure, and boundary conditions suggest regional 

internal heterogeneous mechanical behavior within the IVD. 

 The primary function of the AF is to aid the IVD in distributing multidirectional 

loads related to compression, torsion, flexion/extension, and lateral bending. An 

improved understanding of internal regional IVD mechanical behavior under native 

boundary conditions will provide critical information for understanding disc pathogenesis 

and design criteria for treatments that aim to restore mechanics. The AF exhibits 

anisotropic mechanical properties in tension (Skaggs, Weidenbaum et al. 1994, Acaroglu, 

Iatridis et al. 1995, Ebara, Iatridis et al. 1996, Elliott and Setton 2000, Elliott and Setton 

2001, O'Connell, Guerin et al. 2009), shear (Iatridis, Kumar et al. 1999, Fujita, Wagner et 

al. 2000, Jacobs, Smith et al. 2011), and compression (Perie, Maclean et al. 2006, Cortes 

and Elliott 2012, Cortes, Han et al. 2013). In-vivo boundary condition replication is 

challenging, particularly when attempting to imitate torsion and bending with shear ex-

vivo shear testing (Jacobs, Smith et al. 2011). Due to tissue dimension constraints in 

mechanical testing, IVD disc height is often not long enough to analyze differences in the 

axial direction. Ex-vivo mechanical testing has shown AF regional material property 

variability in the radial and circumferential direction. Along the radial direction 
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mechanical properties progressively increase from the inner to outer AF (Skaggs, 

Weidenbaum et al. 1994, Ebara, Iatridis et al. 1996, Fujita, Duncan et al. 1997, Fujita, 

Wagner et al. 2000), with the outer exhibiting shear and tensile modulus 3-5X greater 

than the inner AF (Ebara, Iatridis et al. 1996, Fujita, Wagner et al. 2000). Around the 

circumferential direction the anterior AF demonstrates stronger mechanical properties 

with tensile and shear moduli 2X greater than the posterior and posterior lateral AF 

(Galante 1967, Fujita, Duncan et al. 1997, Spera, Genovese et al. 2011). Circumferential 

variability is further highlighted though surface strain measurements of the outer AF 

under axial compression, exhibiting peak values in the posterior lateral region (Shah, 

Hampson et al. 1978, Stokes 1987, Heuer, Schmidt et al. 2008, Kawchuk, Kaigle Holm et 

al. 2009). Previous work has indicated that axial compression creates complex strain 

patterns to the AF(Shah, Hampson et al. 1978, Bruehlmann, Matyas et al. 2004, 

O'Connell, Johannessen et al. 2007, Heuer, Schmidt et al. 2008) within the IVD. Regional 

strain analyses have been limited to mid-axial ex-vivo tissue testing, surface strain 

measurements, and two-dimensional internal strain analysis (Galante 1967, Shah, 

Hampson et al. 1978, Stokes 1987, Skaggs, Weidenbaum et al. 1994, Acaroglu, Iatridis et 

al. 1995, Ebara, Iatridis et al. 1996, Fujita, Duncan et al. 1997, Iatridis, Kumar et al. 

1999, Elliott and Setton 2000, Fujita, Wagner et al. 2000, Elliott and Setton 2001, 

Bruehlmann, Matyas et al. 2004, Perie, Maclean et al. 2006, O'Connell, Johannessen et 

al. 2007, Heuer, Schmidt et al. 2008, Kawchuk, Kaigle Holm et al. 2009, O'Connell, 

Guerin et al. 2009, Jacobs, Smith et al. 2011, Spera, Genovese et al. 2011, Cortes and 

Elliott 2012, Cortes, Han et al. 2013). 
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 The heterogeneous composition and structure of the annulus fibrosus will result in 

regional strain differences along the discs principle directions (radial, circumferential, 

and axial). The objective of this chapter is to characterize the regional internal IVD strain 

under incremental amounts of axial compression. Utilizing techniques developed in 

Chapters 4-7, three-dimensional annular strain will be measured throughout the entire 

disc volume. Comparisons will be made along the radial (inner and outer annulus), 

circumferential (anterior: A, anterior-lateral: A-L, lateral: L, posterior-lateral: P-L, and 

posterior: P annulus), and axial (inferior, middle, and superior third annulus) direction. 
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8.2. Materials and Methods 

8.2.1. Specimen Preparation  

 Degenerative grade 3 (Pfirrmann, Metzdorf et al. 2001) human lumbar L4L5 

(n=9, T2=88.07±16.61 ms, age=57±12, gender=5F/4M) bone-disc-bone motion segments 

from Chapter 7 were analyzed for AF regional strain properties in this section. Samples 

were not retested; overlapping Chapter 7 methods will be discussed in brief. Bone-disc-

bone motion segments with posterior elements removed were potted in polymethyl 

methacrylate (PMMA) bone cement for mechanical testing. Samples were hydrated in a 

refrigerated, phosphate-buffered saline (PBS) bath overnight and equilibrated to room 

temperature prior to testing. 

8.2.2. Mechanical Testing and Image Acquisition 

 A custom-made, non-magnetic loading frame interfaced with an Instron 8874 to 

perform axial compression, as described in Chapter 5. The loading protocol from Chapter 

7.2 is described in brief. Potted samples were placed in a PBS bath within the loading 

frame and an initial 50N pre-load was applied for 20 min. Pre-load “reference” position 

was locked into place, PBS replaced with 2% agarose gel, and the loading frame was 

removed from the Instron for reference position image acquisition. High-resolution 3D 

300 μm isotropic MR images were acquired using imaging parameters from Chapter 

7.2.3. After image acquisition the loading frame was returned to the Instron, agarose 

replaced with PBS, and pre-load position returned. Based on the average disc height 

taken from a mid-sagittal image in the reference condition, a 5% grip-to-grip strain was 
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applied at a slow 0.1 mm/s ramp rate (Holmes, Hukins et al. 1993) and allowed to relax 

for 2.5 hours. These steps were subsequently repeated twice more to achieve 10% and 

15% applied strain. 

8.2.3. Image Registration 

 All image sets were pre-processed to remove non-essential information. 

Reference position and strained image grayscales were histogram-matched after 

normalization to their respective maximum intensity value [Figure 29B]. The pre-loaded 

image (reference) was then registered to the 5%, 10%, and 15% applied strain images 

respectively. An initial affine registration was performed to account for rigid body 

motion prior to a non-rigid registration with a symmetric diffeomorphic transformation 

model (Avants, Epstein et al. 2008), mean-squared difference similarity metric, and 

directly manipulated free-form deformation regularization technique (Tustison, Avants et 

al. 2009). The resultant registration defines a warp field, which prescribes how the 

reference image transforms into the deformed image. 

8.2.4. Strain Analysis 

 A local coordinate system was established [Ch5-Figure 4] based on the disc’s 

outer contour. Strain components were defined as follows; circumferential (E) is 

tangent to disc’s contour, radial (Err) normal to the contour, in-plane shear (Er), and the 

axial (Ezz) based on the primary axis of the spine. The local Cartesian strain tensor was 

transformed into these local coordinates [Chapter 7.2.6]. Utilizing techniques from 

Chapter 7.2.5-6, the disc was segmented by removing all pixels containing bone, then 
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eroding 2 pixels at the bone-disc interface with Matlab’s image erosion function. The 

final disc segmentation was defined by the volumetric intersection where mean ± two 

standard deviations of axial, circumferential, and radial strain values were located [Figure 

29C]. 

Annulus fibrosus segmentation was performed dividing the disc radially into 

inner/outer AF, axially into inferior/middle/superior AF, and circumferentially into five 

AF regions (anterior = A, anterior-lateral = A-L, lateral = L, posterior-lateral = P-L, 

posterior = P). Regional average ± standard deviation axial (Ezz), circumferential (E), 

radial (Err), and in-plane shear (E) strain for comparisons between the anatomic axial 

(middle vs. attachment region), circumferential (A, A-L, L, P-L, P) radial (inner vs. 

outer) direction. The segmented disc region [Figure 29C] was utilized to regionally 

segment the disc into inner and outer annulus. The outer contour was defined by tracing 

the discs projection into the x-y plane with its origin defined as the disc’s centroid. The 

outer/inner annulus and inner annulus/nucleus pulposus boundaries were assumed to be 

approximate scaled-down versions of the discs outer contour. All three contours, outer 

AF, inner AF, and NP were assumed to not vary in the z-direction. Based on the known 

nucleus – annulus proportions (O'Connell, Vresilovic et al. 2007), the NP occupied 28% 

of the disc axial area and the outer/inner AF transition occurred halfway between the 

outer disc boundary and NP. Placement of the NP contour accounted for the natural offset 

within the disc by a 3% posterior translation from the discs centroid [Figure 37A]. The 

disc was then divided into thirds in the axial direction defining inferior, middle, and 

superior [Figure 37B] zones. Each AF zone was then divided into Anterior (A), Anterior-
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Lateral (A-L), Lateral (L), Posterior-Lateral (P-L), and Posterior (P) (Costi, Stokes et al. 

2007) regions excluding the lateral region furthest from the RF coil [Figure 37C]. 

 

Figure 37: Representative segmentation process for defining disc regions: (A) Automatic 

NP (blue), inner AF (green), and outer AF (red), (B) Axial height division into superior, 

middle, and inferior disc regions, and (C) Subdivision into anterior: A, anterior-lateral: 

A-L, lateral: L, posterior-lateral: P-L, and posterior: P annulus within each axial height 

division. White scale bar = 1 cm. 

 Mean axial (Ezz), circumferential (E), radial (Err), and shear (Er) disc strain 

values were reported for each region and across the entire annulus [Figure 38]. 

Additionally, the location of peak mean strain values was identified. 

 

Figure 38: Representative middle third disc height anterior outer annulus axial strain 

histogram (left) and strain color map (right). Each region exhibited a normal strain 

distribution. Mean strain values (solid black line) were reported for each region. One 

standard deviation (dashed black line) is shown for reference. 
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Planned statistical comparisons were designed to test regional differences along the radial 

(inner vs. outer), circumferential (A vs. A-L vs. L vs. P-L vs. P), and axial (inferior vs. 

middle vs. superior) direction strain magnitudes for each disc’s specific strain coordinate 

system Ezz, E, Err, and Er at the 5%, 10%, and 15% axial compressions. To simplify 

the number of potential comparisons, the entire inferior and superior AF was compared 

with a paired two-tailed t-test for Ezz, E, Err, and Er at each strain level for a total of 12 

comparisons (adjusted p-value set significance at < 0.004). If the inferior and superior AF 

strain magnitudes are not found to be statistically different, these regions will be averaged 

in subsequent statistical analysis. 

Regional variability in mean strain magnitude along the axial disc height (inferior, 

middle, and superior) was determined by a two-way ANOVA with repeated measures 

applied along the axial direction (middle and attachment region = average of inferior and 

superior) and circumferential direction (A, A-L, L, P-L, and P); a Bonferroni post-hoc 

correction was applied.  

Radial and circumferential variability was determined by a two-way ANOVA 

with repeated measures along the radial (inner and outer AF) and circumferential 

direction (A, A-L, L, P-L, and P). Radial differences between the inner and outer AF 

within each circumferential region was analyzed with post-hoc comparisons with a 

Bonferroni correction factor. Circumferential variability between the A, A-L, L, P-L, and 

P within each radial region (inner/outer) was assessed with a post-hoc comparison using 

Tukey’s test.  

Each comparison (axial, radial, and circumferential) was made for each strain 

direction (Ezz, E, Err, and Er) and level of compression (5%, 10%, and 15%) resulting 
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in 36 total comparisons. Significance for each comparison was adjusted according the 

prescribed post-hoc correction factor setting significance at p ≤ 0.05 and trend at 0.05 ≤ p 

≤ 0.10. 
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8.3. Results 

 Qualitative visual strain patterns were consistent at all levels of axial 

compression. Axial compression resulted in predominantly negative Ezz and horizontal 

banding throughout the disc height. Peak negative axial strain occurred medially and 

small regions of tension located near the endplates [Figure 35A]. Circumferential strain 

exhibited values near zero at the bone-disc boundary, and positive peak values occurred 

in the posterior and lateral regions [Figure 35B]. Radial strain decreased from positive to 

near zero values out from the NP to the outer boundary of the AF [Figure 35C] with peak 

values in the posterior AF. 

The superior and inferior annular strain regions were not found to be significantly 

different at each level of axial compression and strain direction (p > 0.32) [Figure 39]. 

These regions were subsequently averaged and labeled ‘attachment region’ for further 

analysis of regional variability. 

 

Figure 39: Reported regional (average ± standard deviation) mean strain values for 

inferior (red) and superior (green) annulus fibrosus at 5%, 10%, and 15% axial 

compression for [A] – axial (Ezz), [B] – circumferential (E), [C] – radial (Err), and [D] – 

in-plane shear (Er). 

 Annulus fibrosus strain in the principle strain (Ezz, E, and Err) increased in 

magnitude with applied axial compression for all regions throughout the disc while in-
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plane shear strain (Er) remained relatively constant. Global AF strain values are reported 

in Table 7, sub-region values and all statistical comparisons for Ezz, E, Err, and Er can 

be found in Table 8, Table 9, Table 10, and Table 11 respectively. 

Axial 

Compression 

Strain Direction 

Ezz E Err Er 

5% -2.49±4.93% 0.72±1.08% 0.39±1.80% -0.0087±0.48% 

10% -6.39±5.63% 1.29±1.49% 1.48±2.32% -0.061±0.85% 

15% -11.28±5.91% 2.84±1.99% 2.88±2.89% -0.017±0.93% 

Table 7: Global annulus fibrosus strain values (average ± standard deviation). 

Peak reported mean AF strain values were located predominantly in posterior and lateral 

regions for each strain direction. Extreme axial strain values occurred largely within the 

inner annulus at the middle region disc height experiencing maximum negative (-28.42%) 

and peak positive (19.33%) values. Circumferential strain maximum strain values 

occurred within the inner annulus primarily at the attachment region exhibiting peak 

negative and positive values as follows -3.19% and 9.65%. Peak radial strain arose at the 

attachment region within the outer annulus undergoing peak negative values of -6.73% 

and positive values of 10.31%. In-plane shear strain peak values were more concentrated 

within the inner posterior-lateral annulus along the attachment region achieving peak 

negative and positive strain values of -3.91% and 3.16%. 

 For each statistical comparison analyzing variability in the axial, radial, and 

circumferential direction minimal regional variability occurred under 5% and 10% axial 

compression. Each subsequent results section will discuss regional differences under 15% 

axial compression, all statistical comparison results can be found in Table 8: Ezz, Table 9: 

E, Table 10: Err, and Table 11: Er. 



112 

 

8.3.1. Axial Disc Height Variance 

 Axial strain (Ezz) varied between the middle and attachment region disc height in 

both the inner and outer AF within circumferential AF regions at 15% axial compression 

(p < 0.016) with inner AF regions exhibiting interaction effects (p = 0.0694). Larger Ezz 

strain magnitudes occurred along the middle disc height in the anterior-lateral and lateral 

AF (p < 0.014) for both the inner and outer AF [Figure 40A]. The outer AF displayed the 

same trends in all regions except the anterior AF (p < 0.014) [Figure 40B]. 
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Figure 40: Regional strain bar charts (mean ± standard deviation) comparing the inner 

(left-hand side) and outer (right-hand side) attachment region (solid) vs. middle (dotted) 

AF regions under 15% axial compression for axial [A / B], circumferential [C / D], radial 

[E / F], and in-plane shear [G / H] at 15% axial compression. Regions: anterior (A – red), 

anterior-lateral (A-L – green), lateral (L – blue), posterior-lateral (P-L – orange), and 

posterior (P – turquoise) annulus. Significance: solid line p ≤ 0.05. Trend: dashed line 

0.05 ≤ p ≤ 0.10. 
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 Overall the disc experienced relatively uniform circumferential strain (E) along 

the middle region disc height for smaller degrees of axial compression [Table 9]. At 15% 

compression E showed significance in both the inner and outer AF regions (p < 0.05) 

and interaction effects were also observed within the outer AF (p = 0.021). All middle 

region disc inner annular regions [Figure 40C] were larger than the attachment region (p 

< 0.08) and larger within the posterior-lateral AF (p = 0.036) for the outer AF [Figure 

40D]. 

 Radial strain (Err) varied within the outer AF (p < 0.037) along the axial disc 

height at 10% and 15% compression (Table 10). Both the inner and outer AF (p < 0.022) 

radial strain varied along axial disc height at 15% axial compression and significant 

interaction between groups (p < 0.042). Middle disc height strain within the outer AF Err 

was significantly smaller than the attachment region disc height for all regions except the 

posterior-lateral [Figure 40F] at 15% axial compression. However, the middle region 

inner lateral, posterior-lateral, and posterior AF Err was greater than the attachment region 

disc height (p < 0.008) at 15% axial compression [Figure 40E]. No significance was 

found between regions for in-plane shear strain [Figure 40G/H] 

8.3.2.  Circumferential Regional Variance 

 Along the middle and attachment region disc height under 15% axial 

compression, axial strain (Ezz) varied between circumferential AF regions (p < 0.01) with 

interaction effect (p < 0.02). Within the outer and inner annulus middle disc height, the 

anterior AF Ezz exhibited smaller strains than all other regions (p < 0.002) and anterior-

lateral AF smaller than lateral AF (p < 0.034) [Figure 41A]. The outer anterior-lateral AF 
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was smaller than the posterior-lateral AF (p < 0.052) [Figure 41A]. Within the attachment 

region disc height significance occurred at both 10% and 15% (p < 0.07) compression 

with no interaction effects. Under 10% axial compression the anterior AF Ezz strain was 

smaller than the lateral and posterior-lateral regions [Table 8]. Anterior AF Ezz strain was 

smaller than the posterior-lateral and posterior regions within the outer and inner AF for 

15% axial compression (p < 0.076) [Figure 41B]. Within the inner annulus the anterior-

lateral was significantly different than the lateral, posterior-lateral, and posterior (p < 

0.019) at 15% compression [Figure 41B]. 

 Circumferential strain (E) varied between AF regions at 10% and 15% axial 

along both the middle (p < 0.036) and attachment region (p < 0.0001) disc heights with 

interaction effects (p<0.095). Within the middle disc-height the lateral AF E 

experienced more circumferential strain in the inner and outer AF than the anterior and 

anterior-lateral AF (p < 0.040) [Table 9, Figure 41C] and the posterior AF within the 

inner AF. The inner anterior AF experienced less Ethan all regions other than posterior 

AF (p < 0.040) [Table 9, Figure 41C]. For the attachment region disc height annulus 

within the inner posterior-lateral region experienced higher E strain magnitudes than all 

other areas at 10% (p < 0.0003) [Table 9]. At 15% compression the attachment region 

inner and outer lateral AF exhibited higher E strain magnitudes than the anterior, 

posterior-lateral, and posterior regions (p < 0.013) [Figure 41D]. 
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Figure 41: Regional strain bar charts (mean ± standard deviation) comparing the 

circumferential positions (A, A-L, L, P-L, and P) along the middle [left-hand side] and 

attachment region [right-hand side] disc height within the outer (solid) and inner (dashed) 

AF regions under 15% axial compression for axial [A / B], circumferential [C / D], radial 

[E / F], and in-plane shear [G / H] at 15% axial compression. Regions: anterior (A – red), 

anterior-lateral (A-L – green), lateral (L – blue), posterior-lateral (P-L – orange), and 

posterior (P – turquoise) annulus. Significance: solid line p ≤ 0.05. Trend: dashed line 

0.05 ≤ p ≤ 0.10. 
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 Regional analysis of variance illustrated significance only at 15% for both middle 

region (p = 0.006) and attachment region (p = 0.026) regions for radial strain (Err). Along 

the middle disc height of inner AF, the anterior Err was significantly smaller than the 

lateral AF (p = 0.006). The outer posterior AF Err was smaller than both the anterior-

lateral and posterior-lateral AF (p < 0.024) at the attachment region axial disc height. The 

inner AF Err was more uniform along the attachment region. No significance was found 

between regions for in-plane shear strain [Figure 41G/H] 

8.3.3. Inner vs. Outer Annulus 

 Overall the inner annulus (AF) exhibited higher strain magnitudes than the outer 

AF for the three principle strain components. Along the middle region disc height no 

significance was found in the radial direction between inner and outer AF axial strain 

(Ezz) at 5% and 10% axial compression. At 15% axial compression the middle region 

inner AF Ezz was higher compared to the outer AF strain (global inner/outer AF Ezz = -

14.91 ± 6.74% /-12.26 ± 5.98%), for all regions except the anterior AF [Figure 42A] (p < 

0.008). Within the attachment region the inner AF varied from the outer AF at both 10% 

and 15% (p < 0.07) axial compression with no interaction effects. The attachment region 

inner AF Ezz strain was greater in magnitude than outer AF (global inner/outer AF Ezz = -

10.55 ± 5.45%/-7.41 ± 5.33%) for all regions at 15% [Figure 42B](p < 0.019); except at 

10%, the anterior lateral region exhibited a trend [Table 8](p < 0.063).  
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Figure 42: Regional strain bar charts (mean ± standard deviation) comparing the middle 

[left-hand side] and attachment region [right-hand side] disc height outer (solid) and inner 

(dashed) AF regions under 15% axial compression for axial [A / B], circumferential [C / 

D], radial [E / F], and in-plane shear [G / H] at 15% axial compression. Regions: anterior 

(A – red), anterior-lateral (A-L – green), lateral (L – blue), posterior-lateral (P-L – 

orange), and posterior (P – turquoise) annulus. Significance: solid line p ≤ 0.05. Trend: 

dashed line 0.05 ≤ p ≤ 0.10. 
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Circumferential strain (E) between the inner and outer AF along the middle disc 

height region was significant at 10% and 15% axial compression (p < 0.018). The inner 

anterior-lateral and posterior-lateral AF experienced more strain than the outer AF at 10% 

[Table 9] in addition to the lateral AF at 15% axial compression [Figure 42C] (p < 0.032). 

Circumferential strain in the attachment region axial disc height depicted significance 

between the inner and outer AF (p < 0.053). Interaction effects occurred (p < 0.09) at 

10% and 15% axial compression. The inner AF had higher strain values than the outer 

AF in the posterior (p = 0.003) at 10% [Table 9] and in all lateral regions (p < 0.021) at 

15% [Figure 42D] axial compression. 

 Radial strain (Err) was significant at 15% axial compression for both middle 

region (p = 0.006) and attachment region (p = 0.026) regions between the inner and outer 

annulus. The inner AF had higher strain magnitudes than the outer AF along the middle 

and attachment region disc height in the anterior lateral and lateral AF (p < 0.019) [Figure 

42E/F]. The lateral region had the highest overall variability between inner and outer AF 

across the entire disc height. No significance was found between regions for in-plane 

shear strain [Figure 42G/H]. 
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Discussion 

 Internal intervertebral disc (IVD) regional axial (Ezz), circumferential (E), radial 

(Err), and in-plane shear (E ) strain properties for moderately degenerate (Pfirrmann, 

Metzdorf et al. 2001) discs (grade 3) was presented in this chapter. Comparisons were 

made along the primary axis of the spine, radially assessing inner vs. outer annulus (AF), 

circumferentially by five divisions (anterior, anterior-lateral, lateral, posterior-lateral, and 

lateral), and axially along the disc height (middle vs. attachment region). The AF 

anisotropic mechanical properties (Skaggs, Weidenbaum et al. 1994, Acaroglu, Iatridis et 

al. 1995, Ebara, Iatridis et al. 1996, Iatridis, Kumar et al. 1999, Elliott and Setton 2000, 

Fujita, Wagner et al. 2000, Elliott and Setton 2001, Perie, Maclean et al. 2006, O'Connell, 

Guerin et al. 2009, Jacobs, Smith et al. 2011, Cortes and Elliott 2012, Cortes, Han et al. 

2013), regional structural and composition heterogeneity (Eyre and Muir 1976, Eyre and 

Muir 1977, Hickey and Hukins 1980, Marchand and Ahmed 1990, Tsuji, Hirano et al. 

1993, Buckwalter 1995), and complex disc boundary conditions make no single ex-vivo 

test appropriate to quantify the AF mechanical properties. This work enables regional, 

non-invasive IVD strain measurement under incremental amounts of axial compression 

through high-resolution isotropic image acquisition (300μm/pixel) and image 

registration. As only moderately degenerate discs were tested, the proposed segmentation 

techniques are valid under the assumption that there is no presence of local bulging or 

herniation. Adjustments to this approach will be made for future studies testing 

degeneration where disc collapse has occurred. The division between the outer/inner AF 

and inner AF/ nucleus pulposus boarders was kept constant along the axial disc height; 
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additional anatomical studies are be required in-order to determine how these boundary 

proportions might vary with axial disc height. Under small strains (i.e. 5%) no regional 

statistical variances were found, and increased axial compression lead to differentiation 

between regions of the disc. The AF structure, composition, and regional heterogeneity 

within the IVD resulted in complex annular strain patterns under axial compression. 

 Variability in axial disc height due to vertebral body curvature caused regional 

strain variation throughout the disc under uniform axial compression. As a result of 

shorter disc height within inner AF and weaker material properties (Skaggs, Weidenbaum 

et al. 1994, Fujita, Duncan et al. 1997, Fujita, Wagner et al. 2000) resulted higher 

magnitudes of Ezz strain. Similarly, the large disc height within the anterior AF and stiffer 

material properties (Skaggs, Weidenbaum et al. 1994, Fujita, Duncan et al. 1997, Fujita, 

Wagner et al. 2000) created smaller strain magnitudes than the rest of the disc. As the 

disc undergoes compression, AF fibers attached to the vertebral body go into tension, 

producing decreased amounts of compression within the superior and inferior regions. 

This results in horizontal banding throughout the disc height with peak negative strain 

occurring medially. Middle region AF segmentations from Chapter 7 primarily align with 

the outer AF in this chapter, previous strain values are lower by ~1-2% as a result of 

partial inclusion of the inner AF. Outer AF strain values along the middle region disc 

height under 10% and 15% axial compression (-6.90 ± 6.18% and -12.26% ± 5.98%) 

correspond to previously published surface strains -10.4% under 500N axial load (Heuer, 

Schmidt et al. 2008, Heuer, Schmidt et al. 2008). 

 Circumferential strain was relatively constant throughout the disc, however 

regional differentiation was present under 15% axial compression. The lateral AF 
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exhibited 0.5X larger strains than the anterior and posterior regions. Similar to axial 

strain, geometry played a large role within the inner AF as it experienced more strain than 

outer AF. The smaller circumference of the inner AF proportionally displaced more than 

the larger outer AF under uniform axial compression. Compared to the inner AF, outer 

AF tensile modulus is greater, which could contribute to limiting deformation (Shah, 

Hampson et al. 1978, Stokes 1987). Additionally, AF fiber attachment to the vertebral 

bodies yielded smaller circumferential strain at these boundaries compared to the middle 

region disc height. The outer posterior AF at the middle region was 0.36X greater than 

the attachment region disc height. Along the attachment region the inner posterior-lateral 

AF underwent 0.51X more strain than all other regions under 10% axial compression. 

Large strains occurring in the lateral and posterior-lateral regions are indicative of 

regional sectors of weakness within the disc, where failure might occur. Experimental 

and clinical studies have shown these areas as weak points within the disc, often resulting 

in herniation of nuclear material through the AF (Resnick and Niwayama 1978, 

Brinckmann 1986, Yorimitsu, Chiba et al. 2001, Martin, Boxell et al. 2002, Weinstein, 

Lurie et al. 2006, Mariconda, Galasso et al. 2010). Outer AF circumferential strain was 

~0.18% less than values found in Chapter 7 as a result of partial inclusion of the inner 

AF. Circumferential strains found at the middle region disc height within the outer AF 

(3.16 ± 2.18%) under 15% axial compression correspond to previously measured surface 

strain -3.4% (Heuer, Schmidt et al. 2008, Heuer, Schmidt et al. 2008). 

 Similar to axial and circumferential strain, regional radial strain differentiation 

within the AF began to be more apparent under 15% axial compression. Within each 

region of the AF, radial strain had a wide range of values with standard deviation being 



123 

 

greater than the reported average. Peak negative values occurred (-4.95% to -6.73%) in 

the lateral AF across the entire disc height for all levels of axial compression. 

Additionally, the inner lateral AF exhibited the highest average radial strain values 

compared to rest of the AF. Within the lateral regions, the inner AF experience more 

radial strain than the outer AF. The more deformable inner AF enables even distribution 

of hoop stresses to dissipate energy uniformly throughout the disc (Best, Guilak et al. 

1994). Peak positive radial strain occurred within the outer posterior AF along the bone-

disc boundary (4.87% to 10.31%), however this region had the smallest overall average 

radial strain. The inclusion of inner AF in previous segmentations resulted in middle 

region outer AF values to be 0.55X smaller than values reported from Chapter 7. Large 

radial strain standard deviations and peak values occurring within the lateral and posterior 

regions of the AF are indicative of areas of potential failure leading to tears within the 

disc. It is well documented clinically (Resnick and Niwayama 1978, Brinckmann 1986, 

Yorimitsu, Chiba et al. 2001, Martin, Boxell et al. 2002) that the posterior-lateral region 

of the disc is a structural weak point based on increased interruptions in lamellar 

structure, lamellar thickness, and disc geometry (Marchand and Ahmed 1990, Tsuji, 

Hirano et al. 1993). High posterior Err may be due to nucleus placement closer to the 

posterior annulus and thinner lamellae creating more posterior strain as the nucleus 

bulges outwards. 

 Disc geometry contributes largely to the observed regional differences in disc 

strain, particularly in axial and circumferential strain. The large differences regional 

radial strain magnitude may contribute to separation of the AF lamellae potentially 

leading to annular tears. Overall, the inner AF experienced more strain than the outer AF. 
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This is a result of the weaker inner AF being constrained between the stiff outer AF and 

pressurized NP. The outer annulus has been shown to be more anisotropic than the inner 

annulus, potentially as a result of differences in fiber angle 60° vs. 45° inducing similar 

inner AF tensile strain leading to equal directional moduli (Ebara, Iatridis et al. 1996, 

Fujita, Duncan et al. 1997, Fujita, Wagner et al. 2000). Additionally, in the radial 

direction there are more drastic changes in biochemistry exhibiting changes in the ratio 

between type I and type II collagen, collagen, water, and proteoglycan content. 

 Work within this chapter establishes techniques to non-invasively study 3D 

internal intervertebral disc strain. The regional internal strain variability was 

characterized under incremental amounts of axial compression. Overall disc geometry, 

subcomponent architecture, boundary conditions, and biochemical composition are 

potential contributing factors to internal strain variability. Future studies will explore the 

effects various loading modalities, degeneration, and clinical treatments on the internal 

strain distributions within the intervertebral disc. 
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Applied 

Compression 

Axial/Radial 

Position 

Circumferential Position Regional Variance 

A A-L L P-L P Axial Circumferential Radial 

5% 

M 

O 
-0.21± 
2.22 

-2.02± 
4.76 

-4.38± 
6.21 

-4.31± 
5.63 

-3.26± 
6.27 

NS NS 

NS 

I 
-0.01± 

5.25 

-0.49± 

8.52 

-2.66± 

7.26 

-4.87± 

6.80 

-3.19± 

8.21 
NS NS 

S/I 

O 
-1.16± 
2.66 

-1.74± 
2.28 

-2.37± 
4.12 

-2.43± 
2.91 

-2.40± 
2.73 

 

NS 

NS 

I 
-1.66± 

4.94 

-2.89± 

3.32 

-2.80± 

4.00 

-3.33± 

4.20 

-3.62± 

4.36 
NS 

10% 

M 

O 
-4.78± 
4.55 

-5.61± 
5.00 

-7.85± 
5.18 

-8.52± 
5.18 

-7.75± 
9.02 

NS NS 

NS 

I 
-5.94± 

6.81 

-7.30± 

6.89 

-8.22± 

6.86 

-9.39± 

9.03 

-7.57± 

11.50 
NS NS 

S/I 

O 
-2.77± 
3.57 

-4.30± 
3.54 

-5.36± 
2.90 

-4.82± 
3.64 

-5.22± 
3.28 

 

A vs. L*, P-L*, 
P* A*, A-Lŧ, P-

L*, P* 
I 

-4.71± 

4.95 

-5.95± 

4.78 

-6.89± 

3.78 

-7.02± 

4.60 

-7.73± 

3.84 

A vs. L*,P-

L*,P* 

15% 

M 

O 
-7.65± 

3.88 

-

11.39± 
5.37 

-

14.62± 
7.45 

-

14.16± 
6.21 

-

13.51± 
4.68 

A-L*, L* 

,P-L*, P* 

A vs. A-L*, L*,  
P-L*, P* 

A-L vs. L*,P-

L*,Pŧ  A-L*, L*, P-
L*, P* 

I 

-

10.34± 
5.11 

-

15.64± 
7.03 

-

17.89± 
7.90 

-

16.70± 
6.61 

-

13.96± 
5.44 

A-L*,L* 

A vs. A-L*, L*,  
P-L*, P* 

L vs. A-L*, P* 

P-L vs. P* 

S/I 

O 
-6.13± 
4.41 

-6.40± 
4.66 

-8.06± 
4.81 

-8.51± 
3.25 

-7.95± 
6.34 

 

A vs. Lŧ, P-L*, 

Pŧ 

A-L vs. P-L* A*, A-L*, 
L*, P-L*, P* 

I 
-9.18± 
4.65 

-8.52± 
5.88 

-

10.71± 

5.95 

-

12.42± 

4.96 

-

11.92± 

5.20 

A vs. P-L*, P* 

A-L vs. L*, P-

L*, P* 

 

Table 8: Results for regional axial (Ezz) strain values (mean ± standard deviation) under 

5%, 10%, and 15% axial compression. Region definitions: axial disc height (M = middle 

region, S/I = attachment region), radial position (O = outer annulus, I = inner annulus), 

and circumferential position (A = anterior, A-L = anterior-lateral, L = lateral, P-L = 

posterior-lateral, P = posterior). Three comparisons were made along each axis to assess 

regional variance: 1. Axial column analyzed superior/interior vs. middle region disc 

height within the outer and inner annulus for each circumferential position (A, A-L, L, P-

L, and P). Circumferential column analyzed the differences between (A, A-L, L, P-L, P) 

within the outer and inner annulus for each axial disc-height position, and 3. Radial 

column analyzed inner vs. outer annulus within (A, A-L, L, P-L, P) for each axial disc-

height position. Significance (* = p < 0.05) and trend (ŧ = 0.05 < p < 0.10) 
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Applied 

Compression 

Axial/Radial 

Position 

Circumferential Position Regional Variance 

A A-L L P-L P Axial Circumferential Radial 

5% 

M 

O 
0.46± 
0.51 

0.09± 
1.07 

0.92± 
1.03 

0.67± 
1.52 

0.74± 
0.32 

NS NS 

NS 

I 
0.83± 

0.66 

0.46± 

1.81 

1.73± 

1.19 

1.26± 

1.74 

0.98± 

0.36 
NS NS 

S/I 

O 
0.33± 
0.51 

0.38± 
1.02 

0.74± 
0.87 

0.61± 
1.26 

0.53± 
0.33 

 

NS 

NS 

I 
0.59± 

0.63 

0.26± 

1.45 

1.10± 

1.07 

0.97± 

1.42 

0.78± 

0.55 
NS 

10% 

M 

O 
1.12± 
1.67 

0.50± 
0.95 

1.08± 
0.77 

1.59± 
1.65 

1.27± 
1.19 

NS A-L vs. P-Lŧ, Pŧ 
A-L*, P-

L* 
I 

1.49± 

2.00 

1.40± 

1.99 

1.56± 

1.66 

2.98± 

2.03 

1.71± 

1.23 
NS 

P-L vs. A*, A-

L*, L*, P* 

S/I 

O 
0.93± 
|1.40 

0.97± 
1.02 

0.87± 
0.74 

1.25± 
1.09 

0.78± 
0.84 

 

NS 

P* 

I 
1.01± 

1.69 

1.19± 

2.20 

0.86± 

1.38 

2.08± 

1.55 

1.06± 

0.90 

P-L vs. A*, A-

L*, L*, P* 

15% 

M 

O 
2.01± 
1.02 

1.86± 
1.24 

3.70± 
2.52 

2.74± 
2.39 

1.98± 
1.19 

P-L* 
L vs. A*, A-L*, 

P* 

A-L*, 

L*, P-L* 
I 

2.70± 

1.39 

4.34± 

2.80 

5.65± 

2.65 

4.07± 

1.63 

2.51± 

1.21 

A*, A-Lŧ, L*, 

P-L*, P* 

A-L vs. A*, P* 

P-L vs. A*, L*, 

P* 
L vs. A*, A-Lŧ 

S/I 

O 
1.58± 

0.98 

2.33± 

1.39 

3.23± 

1.72 

2.26± 

1.60 

1.26± 

0.98 

 

A vs. A-Lŧ, L*, 

P-Lŧ 
P vs. A-L*, L*, 

P-L* 

L vs. A-L*, P-
L* 

A-L*, 

L*, P-L* 

I 
1.88± 

1.29 

3.73± 

2.26 

4.30± 

2.24 

3.07± 

1.49 

1.57± 

1.07 

A vs. A-L*, L*, 

P-L* 
L vs. P-L 

P vs. A-L*, L*, 

P-L* 

 

Table 9: Results for regional circumferential (Eϕϕ) strain values (mean ± standard 

deviation) under 5%, 10%, and 15% axial compression. Region definitions: axial disc 

height (M = middle region, S/I = attachment region), radial position (O = outer annulus, I 

= inner annulus), and circumferential position (A = anterior, A-L = anterior-lateral, L = 

lateral, P-L = posterior-lateral, P = posterior). Three comparisons were made along each 

axis to assess regional variance: 1. Axial column analyzed superior/interior vs. middle 

region disc height within the outer and inner annulus for each circumferential position (A, 

A-L, L, P-L, and P). Circumferential column analyzed the differences between (A, A-L, 

L, P-L, P) within the outer and inner annulus for each axial disc-height position, and 3. 

Radial column analyzed inner vs. outer annulus within (A, A-L, L, P-L, P) for each axial 

disc-height position. Significance (* = p < 0.05) and trend (ŧ = 0.05 < p < 0.10) 
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Applied 
Compression 

Axial/Radial 
Position 

Circumferential Position Regional Variance 

A A-L L P-L P Axial Circumferential Radial 

5% 

M 

O 
0.42± 

1.51 

-0.02± 

1.12 

-0.73± 

2.79 

0.05± 

1.50 

0.07± 

2.65 
NS NS 

NS 

I 
0.37± 
1.21 

0.46± 
1.81 

0.95± 
2.31 

0.81± 
1.55 

0.83± 
2.24 

NS NS 

S/I 

O 
1.16± 

1.40 

0.49±  

1.31 

-0.03± 

2.02 

0.28± 

1.28 

0.23± 

2.21 
 

NS 

NS 

I 
0.42± 
1.47 

0.32± 
1.50 

0.58± 
2.39 

0.71± 
1.33 

0.42± 
1.74 

NS 

10% 

M 

O 
1.26± 

1.88 

0.27± 

1.19 

-0.33± 

3.52 

1.15± 

2.04 

2.13± 

2.96 

A*,A-

L*,L* 
NS 

NS 

I 
1.12± 
2.24 

1.48± 
1.84 

1.97± 
2.33 

2.34± 
1.90 

2.77± 
2.51 

NS NS 

S/I 

O 
2.27± 

1.91 

1.09± 

1.22 

0.84± 

3.09 

1.32± 

1.55 

2.35± 

3.17 
 

NS 

NS 

I 
1.48± 
2.25 

1.25± 
2.05 

1.53± 
2.79 

1.57± 
1.57 

1.79± 
2.31 

NS 

15% 

M 

O 
1.32± 

1.69 

0.99± 

1.80 

-0.97± 

4.00 

1.86± 

2.95 

3.06± 

3.26 

A*,A-

L*,L*,Pŧ 

L vs. Aŧ, P-Lŧ, 

P* 
A-L vs. P-Lŧ 

A-L*, 
L*, P-

Lŧ 
I 

2.78± 

2.78 

4.10± 

2.68 

5.77± 

2.07 

3.91± 

1.58 

4.29± 

2.41 

L*,P-

L*,P* 
A vs. L* 

S/I 

O 
3.18± 

2.43 

2.16± 

1.97 

0.73± 

3.28 

2.25± 

2.34 

3.89± 

3.40 
 

L vs. A*, A-Lŧ, 
P-L*, P* 

P vs. A-L*, P-

L* 
A-L*, 

L* 

I 
3.35± 

2.52 

3.75± 

2.24 

4.86± 

2.28 

3.03± 

1.71 

3.31± 

2.38 
NS 

 

Table 10: Results for regional radial (Err) strain values (mean ± standard deviation) under 

5%, 10%, and 15% axial compression. Region definitions: axial disc height (M = middle 

region, S/I = attachment region), radial position (O = outer annulus, I = inner annulus), 

and circumferential position (A = anterior, A-L = anterior-lateral, L = lateral, P-L = 

posterior-lateral, P = posterior). Three comparisons were made along each axis to assess 

regional variance: 1. Axial column analyzed superior/interior vs. middle region disc 

height within the outer and inner annulus for each circumferential position (A, A-L, L, P-

L, and P). Circumferential column analyzed the differences between (A, A-L, L, P-L, P) 

within the outer and inner annulus for each axial disc-height position, and 3. Radial 

column analyzed inner vs. outer annulus within (A, A-L, L, P-L, P) for each axial disc-

height position. Significance (* = p < 0.05) and trend (ŧ = 0.05 < p < 0.10). 
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Applied 
Compression 

Axial/Radial 
Position 

Circumferential Position Regional Variance 

A A-L L P-L P Axial Circumferential Radial 

5% 

M 

O 
-0.007± 

0.33 

-0.004± 

0.82 

-0.01± 

0.33 

-0.03± 

0.58 

-0.11± 

0.17 
NS NS 

NS 

I 
-0.17± 
0.67 

0.10± 
0.71 

0.13± 
0.30 

0.05± 
0.72 

-0.13± 
0.31 

NS NS 

S/I 

O 
-0.02± 

0.25 

0.07± 

0.39 

-0.07± 

0.61 

-0.15± 

0.39 

-0.007± 

0.254 
 

NS 

NS 

I 
-0.18± 
0.51 

0.03± 
0.43 

0.03± 
0.32 

-0.03± 
0.31 

0.07± 
0.21 

NS 

10% 

M 

O 
-0.05± 

0.18 

0.05± 

1.50 

0.10± 

0.30 

-0.14± 

1.67 

-0.02± 

0.43 
NS NS 

NS 

I 
-0.18± 
0.46 

-0.03± 
0.89 

0.06± 
0.47 

-0.25± 
1.63 

0.03± 
0.20 

NS NS 

S/I 

O 
-0.06± 

0.10 

-0.05± 

0.47 

-0.10± 

0.95 

-0.07± 

0.72 

0.07± 

0.27 
 

NS 

NS 

I 
-0.24± 
0.42 

-0.23± 
0.62 

-0.23± 
0.48 

-0.07± 
0.39 

0.05± 
0.27 

NS 

15% 

M 

O 
0.11± 

0.25 

0.23± 

1.69 

-0.04± 

0.63 

0.04± 

1.36 

-0.02± 

0.36 
NS NS 

NS 

I 
-0.02± 
0.66 

0.05± 
0.97 

-0.23± 
0.32 

-0.48± 
1.48 

0.11± 
0.31 

NS NS 

S/I 

O 
0.05± 

0.32 

0.001± 

0.79 

-0.03± 

1.44 

-0.09± 

0.95 

-0.06± 

0.47 
 

NS 

NS 

I 
-0.08± 
0.64 

-0.09± 
0.83 

-0.04± 
0.92 

-0.09± 
0.46 

-0.14± 
0.26 

NS 

 

Table 11: Results for regional radial (Eϕr) strain values (mean ± standard deviation) under 

5%, 10%, and 15% axial compression. Region definitions: axial disc height (M = middle 

region, S/I = attachment region), radial position (O = outer annulus, I = inner annulus), 

and circumferential position (A = anterior, A-L = anterior-lateral, L = lateral, P-L = 

posterior-lateral, P = posterior). Three comparisons were made along each axis to assess 

regional variance: 1. Axial column analyzed superior/interior vs. middle region disc 

height within the outer and inner annulus for each circumferential position (A, A-L, L, P-

L, and P). Circumferential column analyzed the differences between (A, A-L, L, P-L, P) 

within the outer and inner annulus for each axial disc-height position, and 3. Radial 

column analyzed inner vs. outer annulus within (A, A-L, L, P-L, P) for each axial disc-

height position. Significance (* = p < 0.05) and trend (ŧ = 0.05 < p < 0.10). 
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CHAPTER 9 Conclusion and Future Directions 

 The work presented within this thesis developed and validated methods to non-

invasively in three dimensions visualize and quantify intervertebral disc (IVD) 

substructure geometry and track internal deformations for intact human discs under axial 

compression. The role of the IVD is to support load, permit motion, and dissipate energy 

in the spine. Resultant techniques and measurements established in this thesis will make 

significant contributions towards the study of disc function and degeneration, design 

criterion for functional tissue engineered discs, and to develop and evaluate surgical 

procedures and implants. Experimental internal strain measurements from this work will 

provide valuable data for disc finite element model validation, which to date has been 

limited to overall disc height deformation (Shirazi-Adl, Shrivastava et al. 1984, Goel, 

Monroe et al. 1995, Argoubi and Shirazi-Adl 1996, Fagan, Julian et al. 2002). 

 This thesis presents some of the first high-resolution disc substructure 

visualization and tissue specific MRI parameters of the IVD. As a result of the discs 

highly heterogeneous structural organization and biochemical composition (Lyons, 

Eisenstein et al. 1981, Bernick and Cailliet 1982, Pearce, Grimmer et al. 1987, Marchand 

and Ahmed 1990, Buckwalter, Mow et al. 2000) visualizing its substructures with a 

single MR imaging sequence proved challenging. Disc MRI tissue specific parameters 

(T1, T2, T2*, and T1ρ) are well established for clinical grade scanners at 1.5T and 3.0T 

(Blumenkrantz, Zuo et al. , Welsch, Trattnig et al. , Pfirrmann, Metzdorf et al. 2001, 

Blumenkrantz, Li et al. 2006, Johannessen, Auerbach et al. 2006, Helms, Dathe et al. 

2008, Hoppe, Quirbach et al. 2012, Lotz, Haughton et al. 2012, Antoniou, Epure et al. 

2013) yet not well established at 7T. Increasing magnetic field strength allowed for an 
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increase in signal to noise ratio (SNR) improving overall image quality. To date 7T MRI 

spine research has been limited to pilot studies developing whole spine techniques (Wu, 

Wang et al. 2010, Cohen-Adad, Zhao et al. 2012, Dzyubachyk, Lelieveldt et al. 2013, 

Zhao, Cohen-Adad et al. 2013). Ideally, future development of a single imaging sequence 

would enable clear distinction between the discs substructure, however separate 

sequences were required to visualize the CEP and annulus fibrosus. Clear substructure 

visualization would permit tracking CEP and NP deformations under load. 

 The CEP morphology was visualized in three dimensions and thickness quantified 

using an MRI 200 μm
3
 isotropic 3D FLASH (fast low-angle shot) sequence (Moon, 

Yoder et al. 2013) in Chapter 3. The circumferential size and shape of the CEP was 

highly irregular and varied amongst subjects and disc levels. No correlation was found 

between CEP thickness and disc level; however the periphery was significantly thicker 

compared to central locations over the nucleus pulposus. The relatively short scan time of 

3 minutes per disc has shown potential in-vivo applications (Moon, Yoder et al. 2013). A 

semi-automated thickness measurement technique is currently in development providing 

less user input. This technique will permit an in-vivo population study looking at the 

effects of CEP size and shape with degeneration. Such studies will augment our 

understanding on substructure interactions, disc mechanics, and overall disc health as the 

CEP acts as a mechanical barrier between the pressurized NP and as a gateway for 

nutrient transport (Crock and Goldwasser 1984, Roberts, Menage et al. 1993, Moore 

2000, Urban and Roberts 2003). 

 Annulus fibrosus lamellae were visualized in three dimensions with an optimized 

MRI 3D T2-weighted TSE (turbo spin-echo) sequence in Chapter 4. The high-resolution 
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300 μm
3
 isotropic imaging sequence permitted distinction between adjacent lamellae. 

This clear distinction enabled annular tear detection, characterization, and detailed 

geometric quantification. Annular tears visualized in this work demonstrated their “non-

classic” classification through interconnecting radial, circumferential, and perinuclear 

formations. Future work will further validate this technique with MRI slice matched 

histological and gross sectioning of the disc. 

 The custom-built loading device from Chapter 5 permitted long relaxation times 

outside of the MR scanner and maintained compression and hydration throughout 

imaging. Several improvements will be made in the future to mitigate current limitations 

and enhance mechanical testing capabilities. The incorporation of a watertight tank will 

remove the need for agarose during image acquisition in conjunction with reduced 

imaging times will enable in-MRI loading. The loss of signal to noise ratio with 

integration of the loading frame and RF coil (Wright, Lemdiasov et al. 2011) may have 

been a result of insufficient signal loading to the transmit coil. Improved coil loading 

might improve SNR, which in-turn could permit increased image resolution and/or 

decreased image acquisition time. Mechanical testing capabilities will be increased by the 

addition of design for torsion and new loading platens to apply combined loading 

schemes such as torsion + compression and bending + compression. 

The long image acquisition time of 2.75 hours, loss of 2.33X signal to noise ratio 

on clinical scanners (3T), and the current strength of spine surface coils limits this 

approach to cadaveric work. The study of strain around such defects will require 

improved image resolution as the lamellar thickness ranges between 140 – 520 μm 

(Marchand and Ahmed 1990). Improved image resolution and lamellar contrast will 
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enable future work to study strain patterns around annular tears. In-combination with out 

of MRI cyclic loading there is potential to analyze how pre-existing tears propagate 

throughout the disc. 

This method did provide adequate lamellar detection for tracking internal 

deformations of the disc with image registration in-order to measure internal strain. 

Internal intervertebral disc strain measurements with Advanced Normalization Tools 

image registration in Chapter 6 had excellent correspondence to previously published 2D 

work (O'Connell, Malhotra et al. , O'Connell, Johannessen et al. 2007). In combination 

with high-resolution 3D images from Chapter 4 and the MRI safe loading device from 

Chapter 5, out-of-plane AF lamellar tracking with image registration enhanced the 

validity and accuracy for non-invasive strain measurements in Chapter 7 and 8. The 

ability to identify lamellar boundaries with 3D Sobel edge detection facilitated image 

registration parameter optimization yielding excellent registration correspondence. The 

ability to perform tissue and experimental specific verification of image registration is a 

distinct advantage compared to utilizing MR phantoms (Chan and Neu 2013) or computer 

generated deformations (Reiter, Fathallah et al. 2012).  

 Qualitative observations of strain patterns in Chapter 7 were similar to those 

observed in 2D by O’Connell et al. (O'Connell, Johannessen et al. 2007). Three-

dimensional strain map quantitative regional AF strain analysis in Chapter 7 and Chapter 

8 further emphasized the discs inhomogeneous nature and effect of native boundary 

conditions. Based on the work of Costi et al. (Costi, Stokes et al. 2007) the inner lateral 

AF regional segmentations were proportionally smaller than corresponding outer regions 

(Figure 37C). Projecting the circumferential (anterior, anterior-lateral, lateral, posterior-
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lateral, and posterior) boundaries diagonally out from the nucleus and/or normalizing data 

by volume would alleviate this issue.  

 Disc geometry and architectural composition appear to play a significant role in 

differences in strain magnitude between disc regions under axial compression. Annulus 

fibrosus fiber insertion to the vertebral body and endplate yielded large tensile axial 

strains while compressive strains were more than double the applied strain magnitude at 

the mid disc height where fibers were more free to move. Disc-height variability strongly 

dictated regional differences in axial strain, for instance the large anterior disc height led 

to smaller strain magnitudes in this disc region. The discs kidney bean shape created non-

uniform circumferential strain patterns with high strain in the lateral region being a 

product of the larger radial distance from the discs center. The weaker posterior annulus 

consists of fewer lamellae lessening its ability to counterattack the outward forces of the 

nucleus pulposus and experience greater radial strain magnitudes. Overall, the inner AF 

experienced more strain than the outer AF, which might be a result of the weaker inner 

AF being constrained between the stiff outer AF and pressurized NP. The creation of a 

template disc from each specimen within this study would account for geometric 

differences such as height, volume, and cross-sectional shape. Spatial mapping between 

each specimen and the template would enable the mapping of strain patterns to study both 

how an average population and degenerative grade responds to axial compression and 

how an individual differs from the norm. 

 Future work will focus on the internal degenerative effects on regional strain 

properties within the disc. Discs will be block segmented by degenerative grade 

(Pfirrmann, Metzdorf et al. 2001) and T2 value (Blumenkrantz, Zuo et al. , Marinelli, 
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Haughton et al. , Antoniou, Epure et al. 2013) so that no overlap occurs. Degenerative 

blocks will be defined as follows (degenerative grade and T2 value): Mild = (grade < 2 

and T2 > 120ms), Moderate = (2 < grade < 4 and 100 ms < T2 < 80 ms), and Severe = 

(grade > 4 and T2 < 60ms). Each specimen will undergo the same experimental protocol 

and strain analysis methods described in Chapter 8. Based on limited availability of 

lumbar spines, a total study size of n=18 have been collected with Grade 2 (n=6), Grade 

3(n=9), Grade 4 (n=2) and Grade 5 (n=1) to date. 

 The developed internal strain measurement technique will enable future studies to 

analyze loading modalities beyond axial compression. The addition of an angled loading 

platen will enable compression + flexion/extension or compression + bending similar to 

previous work by O’Connell et al. (O'Connell, Vresilovic et al.).  Torsional mechanics 

can be evaluated through the addition of strategically placed locking pins to the loading 

frame. To permit torsional strain, a locking pin is required at the loading frame – Instron 

interface bracket and applied in a counterclockwise direction so that the threaded driving 

and supporting rod (Figure 17) do not loosen. Two locking pins will traverse through the 

locking bolts and loading frame in order to secure applied torsional strain (Figure 17). 

Based on these preliminary design concepts both compression + 

extension/flexion/bending and torsion strains will be limited to a single degree of 

deformation. 

 High-resolution three-dimensional image acquisition and registration in 

combination with the ability to perform out of MRI loading will facilitate testing the 

mechanical effects of various treatments to the disc. Future work could assess the effects 

on internal disc strain with and without posterior elements. Additionally, the mechanical 
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affects for clinically relevant treatments such as nucleotomy (removal of nucleus 

pulposus) and nucleus pulposus replacements can be determined. Testing of restorative 

treatments will aid implant design by establishing their ability to restore disc mechanics 

to a healthy state. 

 Based on data from Chapter 7-8 healthy strain patterns will be defined for 

analysis on the effect of disc pressurization as an attempt to restore the IVD to a healthy 

state. A balloon catheter will be used to incrementally pressurize degenerate 

intervertebral discs and strain measured within each disc sub-region. Measured values 

will be compared to the individual disc’s intact strain measurements, to median strain 

values at varying levels of degeneration, and changes in disc height. A reference image 

will be acquired under a nominal pre-load of 0.5 BW (0.24MPa), which is the stress seen 

on the disc when laying in the supine position (Wilke, Neef et al. 1999). 

 

Figure 43: Proof of concept balloon loading placement: (A) Unpressurized placement in 

center of NP under fluoroscopic guidance, (B) Pressurized balloon, and (C) Securing of 

balloon. 

Deformed images will include the disc after insertion of a balloon catheter laterally into 

the disc under fluoroscopic guidance placing the midline of the balloon in the center of 

the NP unfilled (Figure 43) and after pressurization to 25 – 50 – 75 psi, based on 

pressures seen during discography (Nachemson and Morris 1964). The disc will be 
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allowed to relax for 30 minutes between incremental pressurizations and subsequently 

imaged. 

 

Figure 44: Proof of concept balloon visualization comparing an intact bovine motion 

segment to balloon pressurization: (A – B) Intact sagittal and coronal view and (C – D) 

Pressurized sagittal and coronal view. 

Preliminary experiments showed a visible change in disc height; change in disc height 

will be measured at each pressurization level (Figure 44). 

 In conclusion, the work presented here provides key technical advances to 

measure 3D internal strains in intact human lumbar discs. Regional strain inhomogeneity 

was observed qualitatively and quantitatively. Variation in strain magnitudes might be 

explained by geometry in axial and circumferential strain while peak radial strain in the 

posterior AF may have important implications for disc herniation. Overall new methods 

were developed to further study the development and evaluation of surgical procedures, 

design of implants to restore mechanics, and effects of degeneration on the intervertebral 

disc. 
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