4,031 research outputs found

    Analysis of IPV6 Transition Technologies

    Get PDF
    Currently IPv6 is extremely popular with companies, organizations and Internet service providers (ISP) due to the limitations of IPv4. In order to prevent an abrupt change from IPv4 to IPv6, three mechanisms will be used to provide a smooth transition from IPv4 to IPv6 with minimum effect on the network. These mechanisms are Dual-Stack, Tunnel and Translation. This research will shed the light on IPv4 and IPv6 and assess the automatic and manual transition strategies of the IPv6 by comparing their performances in order to show how the transition strategy affects network behaviour. The experiment will be executed using OPNET Modeler that simulates a network containing a Wide Area Network (WAN), a Local Area Network (LAN), hosts and servers. The results will be presented in graphs and tables, with further explanation. The experiment will use different measurements such as throughput, latency (delay), queuing delay, and TCP delay.Comment: pages 19-38, Online link: http://airccse.org/journal/cnc/6514cnc02.pd

    ANALYSIS OF IPV6 TRANSITION TECHNOLOGIES

    Get PDF
    ABSTRAC

    Case Study - IPv6 based building automation solution integration into an IPv4 Network Service Provider infrastructure

    Get PDF
    The case study presents a case study describing an Internet Protocol (IP) version 6 (v6) introduction to an IPv4 Internet Service Provider (ISP) network infrastructure. The case study driver is an ISP willing to introduce a new “killer” service related to Internet of Things (IoT) style building automation. The provider and cooperation of third party companies specialized in building automation will provide the service. The ISP has to deliver the network access layer and to accommodate the building automation solution traffic throughout its network infrastructure. The third party companies are system integrators and building automation solution vendors. IPv6 is suitable for such solutions due to the following reasons. The operator can’t accommodate large number of IPv4 embedded devices in its current network due to the lack of address space and the fact that many of those will need clear 2 way IP communication channel. The Authors propose a strategy for IPv6 introduction into operator infrastructure based on the current network architecture present service portfolio and several transition mechanisms. The strategy has been applied in laboratory with setup close enough to the current operator’s network. The criterion for a successful experiment is full two-way IPv6 application layer connectivity between the IPv6 server and the IPv6 Internet of Things (IoT) cloud

    Analysis of IPv6 through Implementation of Transition Technologies and Security attacks

    Get PDF
    IPv6 provides more address space, improved address design, and greater security than IPv4. Different transition mechanisms can be used to migrate from IPv4 to IPv6 which includes dual stack networks, tunnels and translation technologies. Within all of this, network security is an essential element and therefore requires special attention. This paper analyses two transition technologies which are dual stack and tunnel. Both technologies are implemented using Cisco Packet Tracer and GNS3. This work will also analyse the security issues of IPv6 to outline the most common vulnerabilities and security issues during the transition. Finally, the authors will design and implement the dual stack, automatic and manual tunnelling transition mechanisms using Riverbed Modeler simulation tool to analyse the performance and compare with the native IPv4 and IPv6 networks

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad

    Temporal and Spatial Classification of Active IPv6 Addresses

    Full text link
    There is striking volume of World-Wide Web activity on IPv6 today. In early 2015, one large Content Distribution Network handles 50 billion IPv6 requests per day from hundreds of millions of IPv6 client addresses; billions of unique client addresses are observed per month. Address counts, however, obscure the number of hosts with IPv6 connectivity to the global Internet. There are numerous address assignment and subnetting options in use; privacy addresses and dynamic subnet pools significantly inflate the number of active IPv6 addresses. As the IPv6 address space is vast, it is infeasible to comprehensively probe every possible unicast IPv6 address. Thus, to survey the characteristics of IPv6 addressing, we perform a year-long passive measurement study, analyzing the IPv6 addresses gleaned from activity logs for all clients accessing a global CDN. The goal of our work is to develop flexible classification and measurement methods for IPv6, motivated by the fact that its addresses are not merely more numerous; they are different in kind. We introduce the notion of classifying addresses and prefixes in two ways: (1) temporally, according to their instances of activity to discern which addresses can be considered stable; (2) spatially, according to the density or sparsity of aggregates in which active addresses reside. We present measurement and classification results numerically and visually that: provide details on IPv6 address use and structure in global operation across the past year; establish the efficacy of our classification methods; and demonstrate that such classification can clarify dimensions of the Internet that otherwise appear quite blurred by current IPv6 addressing practices
    • 

    corecore