28,075 research outputs found

    The Effects of Finger-Walking in Place (FWIP) on Spatial Knowledge Acquisition in Virtual Environments

    Get PDF
    Spatial knowledge, necessary for efficient navigation, comprises route knowledge (memory of landmarks along a route) and survey knowledge (overall representation like a map). Virtual environments (VEs) have been suggested as a power tool for understanding some issues associated with human navigation, such as spatial knowledge acquisition. The Finger-Walking-in-Place (FWIP) interaction technique is a locomotion technique for navigation tasks in immersive virtual environments (IVEs). The FWIP was designed to map a human’s embodied ability overlearned by natural walking for navigation, to finger-based interaction technique. Its implementation on Lemur and iPhone/iPod Touch devices was evaluated in our previous studies. In this paper, we present a comparative study of the joystick’s flying technique versus the FWIP. Our experiment results show that the FWIP results in better performance than the joystick’s flying for route knowledge acquisition in our maze navigation tasks

    Measurements of trackways as a method for assessing locomotion in dairy cows

    Get PDF
    The aim of this study was to assess whether locomotion parameters obtained by measurements of cow trackways are reliable and sufficiently sensitive to describe locomotion in non-lame and lame dairy cows on different floors. Thirty-two non-lame cows were used to study the reliability of the trackway measurements. The cows were tested twice over three weeks and measurements from four consecutive strides were used during each test session. To study the effect of different floors on locomotion, 25 non-lame cows and eleven cows with different lameness degrees were tested on five different surfaces: solid and slatted concrete, both with and without 20 mm thick elastic rubber mats, and wet, compacted sand. The reliability of the measurements varied from moderate to low, with measurements relating to inter-limb coordination being most inconsistent. The slippery slatted concrete floor caused restricted locomotion in so far as the strides were significantly shorter here than on all the other floors. Use of yielding rubber mats resulted in a locomotion more similar to that on the sand path. Lameness had an effect on shortening strides and steps, but in most cases the animals’ reaction to different floorings was similar in lame and healthy cows. Step asymmetry due to lameness was decreased when cows walked on the soft surfaces. It was concluded that a trackway measurement system is a suitable method to use in field locomotion studies and that the system is useful in identifying differences in kinematics on different floor types. Since there is a relatively high inconsistency in cow walking it is beneficial to use measurements of several strides to obtain a representative gait pattern

    Deep Reinforcement Learning for Tensegrity Robot Locomotion

    Full text link
    Tensegrity robots, composed of rigid rods connected by elastic cables, have a number of unique properties that make them appealing for use as planetary exploration rovers. However, control of tensegrity robots remains a difficult problem due to their unusual structures and complex dynamics. In this work, we show how locomotion gaits can be learned automatically using a novel extension of mirror descent guided policy search (MDGPS) applied to periodic locomotion movements, and we demonstrate the effectiveness of our approach on tensegrity robot locomotion. We evaluate our method with real-world and simulated experiments on the SUPERball tensegrity robot, showing that the learned policies generalize to changes in system parameters, unreliable sensor measurements, and variation in environmental conditions, including varied terrains and a range of different gravities. Our experiments demonstrate that our method not only learns fast, power-efficient feedback policies for rolling gaits, but that these policies can succeed with only the limited onboard sensing provided by SUPERball's accelerometers. We compare the learned feedback policies to learned open-loop policies and hand-engineered controllers, and demonstrate that the learned policy enables the first continuous, reliable locomotion gait for the real SUPERball robot. Our code and other supplementary materials are available from http://rll.berkeley.edu/drl_tensegrityComment: International Conference on Robotics and Automation (ICRA), 2017. Project website link is http://rll.berkeley.edu/drl_tensegrit

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters?

    Get PDF
    The extinct \u27sthenurine\u27 family of giant Kangaroos, up to three times larger than living Kangaroos, were able to walk on two feet, according to new research. Abstract Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These “short-faced browsers” first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the “normal” allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer a feasible form of more rapid locomotion

    Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons

    Get PDF
    Rehabilitation following spinal cord injury is likely to depend on recovery of corticospinal systems. Here we investigate whether transmission in the corticospinal tract may explain foot drop (inability to dorsiflex ankle) in persons with spinal cord lesion. The study was performed in 24 persons with incomplete spinal cord lesion (C1 to L1) and 15 healthy controls. Coherence in the 10- to 20-Hz frequency band between paired tibialis anterior muscle (TA) electromyographic recordings obtained in the swing phase of walking, which was taken as a measure of motor unit synchronization. It was significantly correlated with the degree of foot drop, as measured by toe elevation and ankle angle excursion in the first part of swing. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) in the TA. The amplitude of the MEPs at rest and their latency during contraction were correlated to the degree of foot drop. Spinal cord injured participants who exhibited a large foot drop had little or no MEP at rest in the TA muscle and had little or no coherence in the same muscle during walking. Gait speed was correlated to foot drop, and was the lowest in participants with no MEP at rest. The data confirm that transmission in the corticospinal tract is of importance for lifting the foot during the swing phase of human gait
    corecore