1,570 research outputs found

    Transparent authentication: Utilising heart rate for user authentication

    Get PDF
    There has been exponential growth in the use of wearable technologies in the last decade with smart watches having a large share of the market. Smart watches were primarily used for health and fitness purposes but recent years have seen a rise in their deployment in other areas. Recent smart watches are fitted with sensors with enhanced functionality and capabilities. For example, some function as standalone device with the ability to create activity logs and transmit data to a secondary device. The capability has contributed to their increased usage in recent years with researchers focusing on their potential. This paper explores the ability to extract physiological data from smart watch technology to achieve user authentication. The approach is suitable not only because of the capacity for data capture but also easy connectivity with other devices - principally the Smartphone. For the purpose of this study, heart rate data is captured and extracted from 30 subjects continually over an hour. While security is the ultimate goal, usability should also be key consideration. Most bioelectrical signals like heart rate are non-stationary time-dependent signals therefore Discrete Wavelet Transform (DWT) is employed. DWT decomposes the bioelectrical signal into n level sub-bands of detail coefficients and approximation coefficients. Biorthogonal Wavelet (bior 4.4) is applied to extract features from the four levels of detail coefficents. Ten statistical features are extracted from each level of the coffecient sub-band. Classification of each sub-band levels are done using a Feedforward neural Network (FF-NN). The 1 st , 2 nd , 3 rd and 4 th levels had an Equal Error Rate (EER) of 17.20%, 18.17%, 20.93% and 21.83% respectively. To improve the EER, fusion of the four level sub-band is applied at the feature level. The proposed fusion showed an improved result over the initial result with an EER of 11.25% As a one-off authentication decision, an 11% EER is not ideal, its use on a continuous basis makes this more than feasible in practice

    ECG biometric authentication based on non-fiducial approach using kernel methods

    Get PDF
    Identity recognition faces several challenges especially in extracting an individual's unique features from biometric modalities and pattern classifications. Electrocardiogram (ECG) waveforms, for instance, have unique identity properties for human recognition, and their signals are not periodic. At present, in order to generate a significant ECG feature set, non-fiducial methodologies based on an autocorrelation (AC) in conjunction with linear dimension reduction methods are used. This paper proposes a new non-fiducial framework for ECG biometric verification using kernel methods to reduce both high autocorrelation vectors' dimensionality and recognition system after denoising signals of 52 subjects with Discrete Wavelet Transform (DWT). The effects of different dimensionality reduction techniques for use in feature extraction were investigated to evaluate verification performance rates of a multi-class Support Vector Machine (SVM) with the One-Against-All (OAA) approach. The experimental results demonstrated higher test recognition rates of Gaussian OAA SVMs on random unknown ECG data sets with the use of the Kernel Principal Component Analysis (KPCA) as compared to the use of the Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA)

    Individual identification via electrocardiogram analysis

    Get PDF
    Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations

    Human Identification Based on Electrocardiogram and Palmprint

    Get PDF
    In this paper, a new approach in human identification is investigated. For this purpose, we fused ECG and Palm print biometrics to achieve a multimodal biometric system. In the proposed system for fusing biometrics, we used MFCC approach in order to extract features of ECG biometric and PCA to extract features of Palm print. The features undergo a KNN classification. The performance of the algorithm is evaluated against the standard MIT-BIH and POLYU databases. Moreover, in order to achieve more realistic and reliable results, we gathered Holter ECG recordings acquired from 50 male and female subjects in age between 18 and 54. The numerical results indicated that the algorithm achieved 94.7% of the detection rate.DOI:http://dx.doi.org/10.11591/ijece.v2i2.29

    Activity-Aware Electrocardiogram-based Passive Ongoing Biometric Verification

    Get PDF
    Identity fraud due to lost, stolen or shared information or tokens that represent an individual\u27s identity is becoming a growing security concern. Biometric recognition - the identification or verification of claimed identity, shows great potential in bridging some of the existing security gaps. It has been shown that the human Electrocardiogram (ECG) exhibits sufficiently unique patterns for use in biometric recognition. But it also exhibits significant variability due to stress or activity, and signal artifacts due to movement. In this thesis, we develop a novel activity-aware ECG-based biometric recognition scheme that can verify/identify under different activity conditions. From a pattern recognition standpoint, we develop algorithms for preprocessing, feature extraction and probabilistic classification. We pay particular attention to the applicability of the proposed scheme in ongoing biometric verification of claimed identity. Finally we propose a wearable prototype architecture of our scheme
    corecore