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Abstract

Identity fraud due to lost, stolen or shared information or tokens that represent

an individual’s identity is becoming a growing security concern. Biometric recognition - the

identification or verification of claimed identity, shows great potential in bridging some of

the existing security gaps. It has been shown that the human Electrocardiogram (ECG)

exhibits sufficiently unique patterns for use in biometric recognition. But it also exhibits

significant variability due to stress or activity, and signal artifacts due to movement. In this

thesis, we develop a novel activity-aware ECG-based biometric recognition scheme that can

verify/identify under different activity conditions. From a pattern recognition standpoint,

we develop algorithms for preprocessing, feature extraction and probabilistic classification.

We pay particular attention to the applicability of the proposed scheme in ongoing biometric

verification of claimed identity. Finally we propose a wearable prototype architecture of our

scheme.
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Chapter 1

Introduction

The goal of this thesis is the design, development and implementation of algorithms

to demonstrate the potential of the human electrocardiogram, combined with the additional

modality of accelerometry, to be used in robust, passive, ongoing biometric verification. This

is viewed as a pattern recognition problem and the data representation, feature extraction

and probabilistic matching are investigated in detail. The novelty of the approach is the

use of an additional modality to account for intra-subject variability thereby improving the

robustness of the system without loss of detail.

The term biometrics is used to refer to measurable physiological or behavioural

characteristics of a human subject that can be used to make a probabilistic decision about

his/her identity [41, 2]. Biometric recognition operates in one of two modes: the iden-

tification of a subject as one of those enrolled with the biometric system (a multi-class

classification problem) and verification of claimed identity (a binary classification prob-

lem). Enrollment of a subject involves the capture of biometric data, using one or more

sensors from that subject, to construct a reliable biometric template of unique descriptors

or features, derived from the subject’s data, that will serve as the digital representation of

1



Chapter 1: Introduction

the subject’s identity. Any subsequent data from that subject (or any other) presented for

verification (or identification) will be matched against the biometric template of the claimed

subject (or every subject enrolled with the system).

Biometrics schemes -what you are/do, offer several strategic benefits over tradi-

tional technologies such as passwords -what you know and ID cards - what you have. They

cannot be misplaced, forgotten or stolen and can be used to ensure physical presence at

the point of identification or verification and, thereby, are difficult to repudiate or forge.

However, they present some inherent shortcomings. In order to be useful, a biometric char-

acteristic must be sufficiently unique and permanent. How then would a user cancel a

compromised biometric? For instance, if an attacker obtains a copy of a subject’s finger-

print and proceeds to make moulds or even photocopies from these prints, he can potentially

use them in a vulnerable system that accepts fingerprints [37]. These concerns lower the

general acceptability of biometrics and any biometric system should take adequate mea-

sures to protect user privacy. Another cause for concern is that if recognition is performed

only once, an imposter can continue undeterred after he manages to circumvent it once. A

potential solution is to identify/verify repeatedly over time. But in the case of biometrics

that require active participation by the subject, this can be greatly frustrating. In this

proposal, we propose a ECG-based biometric scheme that presents many desirable features

to address these concerns.

2



Chapter 2

Motivation

A survey by the United States Federal Trade Commission suggests that approxi-

mately 10.1 million U.S. adults discovered that they were victims of some form of ID theft

in 2003 and a longitudinal update to the survey revealed that this number had dropped only

by a little more than a million in 2006 [21]. With growing concerns about falsification, the

collective interest in the use of biometric data as one’s digital identity continues to rake up

public fancy. Biometric identification/verification offer several benefits over other schemes

- most important of which is the convenience of use without having to, say, remember a

password or carry an RFID token. Since biometrics are constructed from physical and be-

havioural traits of a person they preclude the transferability of access. While giving away

a password or RFID token seems easy enough, transferring biometric data presents some

challenges. This desirable property of biometric data opens up several potential applica-

tions, such as remote health monitoring that is considered as a case study for this thesis.

Biometric identification/verification is not, however, a panacea for the security risks that

plague heavy reliance on ‘what one knows’ and ‘what one has’ and each biometric scheme

has its potential pitfalls.

3



Chapter 2: Motivation

The human ECG-based biometric offers several desirable properties. First, the

ECG is not strongly permanent nor easily falsifiable. It also inherently provides subject

liveness assurance. Being behaviour-based, the ECG biometric is coupled with the different

types of algorithms that process it and is not widely interoperable. Thus, there is very little

room for abuse of compromised biometric templates beyond the intended application scope.

Finally, the ECG, while sufficiently permanent and unique for use in biometric applications,

is also not as strongly permanent or unique as some other biometrics such as fingerprints,

iris scans and so forth [60, 25, 22]. However, due to the large intra-subject variability we

focus our efforts in developing an ECG-based biometric scheme for use in robust, ongoing,

passive verification. The fundamental drawback of such an approach is the intricate and

intrusive setup required to collect the ECG using the standard 12-lead procedure [58, 20].

Hence we demonstrate our approach using a single lead ECG collected from a wearable

sensing system (see Section 5.1).

Ongoing verification is very useful in several applications that could benefit from

subsequent checks after the point of verification to ensure that the claimed identity is still

the one under consideration. This problem has been recently explored using different types

of biometrics such as face, speech and gait [31, 32, 54, 15]. We describe in our next section,

one such application - remote health monitoring, where such a scheme would be easily

implemented and desirable using the modalities under consideration.

Health Monitoring - A Case Study: Remote health monitoring systems that gather

health data using wearable sensors have immense potential to improve the quality of life

of different kinds of people such as those suffering from chronic illnesses, those seeking to

change behavior such as smoking, those seeking diagnosis for specific medical conditions

etc. [33, 30, 40, 48, 34, 10]. A fundamental problem with remote health monitoring is the

4



Chapter 2: Motivation

issue of patient identification - do sensor data belong to the desired patient? We require that

the proof for user authentication is non transferable since the authentication mechanism

will not be reliable enough if based on something that the user knows or possesses since a

cheating user can potentially pass on both to someone else. Hence a reliable authentication

mechanism should be coupled with something the user is/does i.e., biometrics.

A one-time identification/verification step presents the risk of unauthorized use by

an authorized user, such as, a patient giving the sensor to someone else to wear. Another

potential risk involved is that an attacker can continue undisturbed if he manages to bypass

the initial identification/verification step. These risks may lead to incorrect medical or

financial decisions using the subsequent data. Ongoing biometric recognition is desirable

for all available samples of sensor data to ensure that subsequent data belongs to the desired

patient.

For usability we require that the biometric recognition process is unobtrusive or

passive and does not require active participation by the individual to be identified (such as

speech recognition), since it has to be performed often.

Unique, permanent and extensible biometric data such as that used to strongly

identify individuals (e.g., fingerprints) give rise to privacy concerns. User anxiety about

privacy can be mitigated if biometric data that is sufficiently unique for use in permanent

identification is not collected.

From the above design guidelines we have the problem of patient authentication

using ongoing biometric verification with passive, poor biometrics in order to make a nar-

row probabilistic judgement about the claimed identity of the participant. Our approach

is to investigate the potential of using multiple modalities of health data (ECG and ac-

celerometry) collected in the context of remote health monitoring for verifying the identity

of the sensor wearer. This follows from our hypothesis that a physiological signature can

5



Chapter 2: Motivation

be constructed from the patient’s sensor data to probabilistically verify whether subsequent

sensor data is representative of that physiological signature.

A physiological signature using these modalities can potentially pave the way for

an ongoing, passive biometric verification scheme that is not expected to be permanently

distinctive, but is sufficiently discriminatory over a short term. Such a physiological signa-

ture provides an assurance of vitality of the subject. Biometric systems that do not address

this are at risk of falsification by an intruder presenting biometric data of another subject

as if it were his own.

We summarize our goals for patient authentication as follows.

• (Non-transferable) the patient should be authenticated based on physiological or be-

havioural characteristics.

• (Ongoing) the patient should be authenticated throughout the duration of monitoring.

• (Passive) the patient should not be interrupted for repetitive authentications.

• (Privacy-aware) the authentication data should not be sufficiently unique to irrevoca-

bly identify the patient.

6



Chapter 3

Background

The human electrocardiogram reflects the specific pattern of electrical activity of

the heart throughout the cardiac cycle, and can be seen as changes in potential difference.

The ECG is affected by a number of physiological factors including age, body weight, and

cardiac abnormalities. A typical beat in an electrocardiogram (see Figure 3.1) consists of

1. A low amplitude P-wave, representing atrial depolarization,

2. The QRS complex of much higher amplitude than the P-wave, representing ventricular

depolarization

3. A T-wave of smaller amplitude and larger duration than the QRS complex, represent-

ing ventricular repolarization.

3.1 Acquisition

The non-invasive procedure to obtain the electrocardiogram is to record the body

surface potential using skin electrodes. Electrode-skin impedance is reduced using an elec-

trically conductive fluid, typically electrode gel and in some cases even water, for e.g., Polar

7



Chapter 3: Background

Figure 3.1: The normal clinical features of the electrocardiogram in terms of wave timings
and amplitudes. Each square on the grid represents a resolution of 0.04s×0.1mV. Adapted
from MIT Open Course Ware material c©2004 MIT-OCW.

Wearlink chest strap. The potential difference seen between a pair of electrodes constitute

a single lead of ECG. Different lead configurations are possible depending on the placement

of the electrodes leading to different correlated views of the electrical activity of the heart.

The choice of leads is based on different diagnostic needs. We refer the reader to Frank

et al. [20] and Welinder et al. [58] as a starting point for further consideration. For the

purposes of this thesis we assume a single chest lead in Lead I configuration (electrodes

placed on left and right arms).

3.2 Analysis

The human ECG exhibits different types of quasi-periodic trends as well as beat-

to-beat and interbeat abnormalities that may be responses to physiological stimuli, such

as, physical or mental stress or signal artifacts. A general methodology for ECG analysis

8



Chapter 3: Background

from a pattern recognition perspective consists of preprocessing, feature extraction and

classification. The ECG trace is, first, filtered to remove noise sources, then segmented

into heartbeats (a sequence of P-QRS-T waves) or conveniently sized windows. In the

former case morphology based timing and amplitude features can be extracted from the

sequence of beats and in the latter case spectral analysis reveals the significant trends

in the ECG trace. The extracted features are then used as inputs to different types of

diagnostic classifiers [28, 43, 46, 14]. For biometric identification/verification we need to

extract a set of features that describe the unique patterns found in the ECG of different

individuals.

3.3 Sources of Variability

We can view the intra-individual variability in two broad categories - acquisition

artifacts and arrhythmias. In comparison to different forms of invasive electrocardiography,

the surface ECG serves as a convenient and immensely useful diagnostic tool. But it also has

higher susceptibility to noise, particularly electrode contact noise and motion artifact in the

face of activity. Overlooking the possible biases and artifacts due to the signal acquisition

methods such as lead configuration, patient activity without activity annotations etc. leads

to erroneous analysis. The second category of variability is due to transient changes in

the underlying physiology such as activity induced heart rate increase, respiration induced

arrhythmia etc. It has been reported that several morphological characteristics vary with

increasing heart rate such as the QT interval, ST level, QRS width, P ,Q, and T - wave

heights etc [18, 36].

9



Chapter 3: Background

3.4 Potential as Biometric

The ECG signal from different individuals conforms to a fundamental morphology

and is also known to exhibit several personalized traits, such as relative onsets of the various

peaks, beat geometry, and responses to stress and activity. The persistent inter-individual

variability in the ECG is reported to be due to a variety of factors such as age, gender

and lifestyle choices (caffeine intake, BMI, physical exercise etc.) [25, 22, 24]. This inter-

individual variability frustrates clinical diagnostic algorithms but is manifested as unique

patterns that can be leveraged to discriminate individuals. However, changes in factors

causing long term variability in the ECG (for e.g., ageing, increased physical exercise),

prevents permanent and unique identification of a person. This is easily dealt with by

periodic update of biometric profiles and actually serves as an added benefit in mitigating

concerns about privacy and revocability of biometrics [45, 3].

The ECG, as a biometric, thus offers several clear benefits, such as universality,

difficulty of falsification, inherent liveness assurance, and robustness to environmental fac-

tors since the heart is well protected in the thoracic cavity. The short-term stability of

the ECG signal was reported by Wuebbeler et al., by collecting data from healthy subjects

over 1 to 118 days [60]. An ECG-based biometric system offers significant promise, there-

fore, but we need to understand and account for the sources of significant intra-individual

variability. These variations include physiological responses to stimuli such as stress and

activity, and signal artifacts due to movement. In this thesis, we introduce an additional

sensor – an accelerometer – to further investigate the effect of measurable body acceleration

on the ECG-based authentication of an individual. We construct a biometric profile that

contains more information than ECG-only approaches, build classifiers for identification or

verification of claimed identity, and finally evaluate the improvement in performance during

10
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various conditions and activities.
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Chapter 4

Related Work

Several recent studies have investigated the potential of using physiological signals

such as the Electrocardiogram (ECG), Photoplethysmograph (PPG), Electroencephalogram

(EEG) etc. for biometric identification and verification [15, 17, 9, 1, 23, 26, 44, 52, 57, 59,

11, 53, 44, 27]. The benefit of using such physiological biometrics is the difficulty of falsifi-

cation and assurance of liveness of the subject. Such systems, however, present significant

intrasubject variability and hold no promise of a reliable identification/verification scheme

in uncontrolled conditions unless provided with a means of accounting for the variability.

This section will introduce some of the significant papers in the realm of ECG based biomet-

ric identification/verification, thus establishing a context for the approach proposed in this

thesis. We highlight the following points in each approach - features extracted, experimental

setup, robustness to variability and reported results.

An initial review of related work reveals two broad categories of feature extraction

techniques for the ECG data depending on whether segmentation of the ECG trace into

heartbeats is required. In fiducial feature extraction, points of reference called fiducial-

points are marked along the time series. The fiducial points are derived from known mor-
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phological characteristics of the human ECG and the extracted features are typically some

combination of time and amplitude differences between these fiducial points. The problem

with the fiducial analysis is that errors in localization of wave boundaries lead to incor-

rect identification of fiducial points. Other non-fiducial approaches have been proposed to

mitigate this issue by using some form of spectral analysis.

Biel et al.’s work in automatic human identification was one of the earliest to in-

troduce an approach for using the human ECG as biometric [4]. A 12-lead ECG system, the

Siemens ECG Megacart was used to obtain the data from 20 subjects at rest over a period

of six weeks. The features extracted were a set of 30 standard clinical diagnostic charac-

teristics for each lead. The authors use correlation analysis to reduce the dimensionality of

the feature vector and finally classification of subjects was performed by a Soft Independent

Modeling of Class Analogy (SIMCA) classifier. Different combinations of features and leads

were studied with a best reported accuracy of 100% for 50 test samples. The approach, how-

ever, relies on the availability of standard diagnostic data from the ECG equipment rather

than a general feature-extraction procedure. This is a major drawback of the approach

since such computation is expensive for sensors that report only the ECG measurements

and is also superfluous since many diagnostic features are not useful as biometric features.

Israel et al. then proposed an approach for pre-processing, feature extraction and

classification of individuals based on their ECG traces[26]. The authors collected data from

29 individuals while performing seven tasks causing varying levels of mental stress. They

detect fiducial points and use normalized temporal distances between the fiducial points

as features. They then perform feature reduction by Wilk’s lambda and classify using

discriminant analysis. The authors set out to establish that the proposed ECG features are

invariant to state of anxiety with a 98% classification performance, and hence, constitute a

valid biometric. But the tasks involve 2 minutes of stressful activity with minimal physical
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movements and cannot be used in a scenario where other physical activities would introduce

further variability. The paper also does not address the issue of reliable fiducial point

detection and potential degradation of classification performance due to errors in localization

of heart beat boundaries. The authors also include an analysis of the effect of sensor

placement. In a subsequent paper by one of the authors, the proposed ECG features were

used together with face recognition in a multimodal biometric identification system [27].

For 35 individuals, voting fusion between face and ECG performed the worst with 60%

accuracy. The best performance was achieved using attribute level fusion and feature vector

concatenation with 99% accuracy. For decision level fusion only a marginal improvement

in accuracy was achieved over face recognition alone (94%).

Shen et al. proposed a biometric identification scheme using 7 features from the

most invariant part of the heartbeat, the QRS complex together with the T-wave [52]. The

scheme performed with an accuracy of 95% for a template matching classifier and 80% for

a DBNN over a group of 20 individuals from the MIT-BIH database [39]. By combining the

outputs of the two classifiers, the authors achieve an accuracy of 100%. The authors select

a set of representative heartbeats for each subject and test against a subset of remaining

heartbeats. The automatic segmentation of an ECG trace into heartbeats is, however, one

of the significant sources or error.

Wang et al. were the first to propose an approach that did not entirely rely on

fiducial based features by combining a set of analytic features’ derived from fiducial points

with ‘appearance features’ obtained using PCA and LDA for feature extraction and data

reduction [57]. The accuracy for 13 subjects was 84% using analytic features alone and 96%

using LDA with K-NN. The combination of the types of features was used to achieve 100%

accuracy.

Several non-fiducial approaches have been proposed that use some form of frequency-
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level analysis. Plataniotis et al. have proposed an approach that uses Autocorrelation analy-

sis coupled with Discrete Cosine Transform of the autocorrelated signal and does not require

segmentation of the ECG trace into heart beats [44]. The approach achieves close to a 100%

accuracy for a database of 14 subjects.

Chan et al. proposed another non-fiducial feature extraction framework using a set

of distance measures including a novel wavelet transform distance [9]. Data was collected

from 50 subjects using button electrodes held between the thumb and finger. The wavelet

transform distance outperforms other measures with an accuracy of 89%.

Studies investigating the variability of ECG traces due to activity indicate that the

reliability of the ECG based biometric scheme would degrade with varied conditions such as

activity or stress that causes intra-subject variance (physiological or artifact) [56, 47, 55, 19]

. Hence these approaches are unsuitable for the desired ongoing verification of identity when

the human subject is not at rest throughout the duration of monitoring. The goal of this

thesis is to address this gap by introducing the additional modality of accelerometry to

account for such variability and investigate the performance of ECG as biometric aided by

accelerometry.

Table 4.1 highlights the significant features of some of the related approaches with

our scheme. It should be noted that we cannot realistically compare the accuracy of different

schemes due to several interpretation issues such the number of test samples required to

identify a subject, experimental setup and data collection methodology.
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Reference Feature Method Subjects Activity Acc

Biel [4] Fiducial PCA 20 No 100%

Shen [52] Fiducial Template Matching+DBNN 20 No 100%

Israel [26] Fiducial LDA 29 No 98%

Wang [57] Both KNN+LDA 13 No 96%

Chiu [11] Non-Fiducial Wavelet Distance+LDA 35 No 100%

Chan [9] Non-Fiducial wavelet DM 50 No 89%

Ours Both KNN+Bayesian 17 Yes 88%

Table 4.1: Comparison of related work with our scheme. The accuracy values represent the
percentage of subjects who are correctly identified for a majority of their test samples.
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Methodology

Biometric recognition (identification or verification) is viewed essentially as a

pattern-recognition problem; in this section we outline the preprocessing, feature extrac-

tion, and classification steps. We seek to investigate the performance for two different kinds

of classifiers: the K-Nearest Neighbor (which classifies using a multimodal feature vector)

and the Bayesian network classifier (which separates the activity features from that of the

ECG features into 2 nodes).

Our approach is aimed at tackling intra-subject variability robustly for verification.

We begin our investigation by evaluating the identification performance to demonstrate the

potential of the proposed scheme and to establish a baseline for comparison with existing

approaches. We evaluate our method’s performance using data collected using wearable

sensors from 17 volunteers during varied activity sessions over different days as described

in Section 6.1.
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5.1 Sensors

We use the SHIMMER platform developed by Intel Digital Health Advanced Tech-

nology Group. The SHIMMER1 is a compact sensing platform with an integrated 3-axis

accelerometer. SHIMMER runs the TinyOS operating system and integrates (via custom

cabling) to a commercially available Polar WearLink Plus ECG chest strap2 . A 3-Axis

accelerometer is mounted on the SHIMMER’s base sensor board, and ECG sensing is avail-

able by means of a 20-pin internal expansion connector on the baseboard. The ECG add-on

board provides connectors for 4 standard leads and estimates the corresponding 2-channel

ECG vectors from which other vectors can be computed. We used the Polar Wearlink chest

strap and two compatible connectors to obtain a single lead of ECG (Lead I configuration).

The Polar Wearlink chest strap has electrode patches embedded into the fabric, which trans-

mit the differential voltage signal to the connectors plugged into the strap. The strap is

wet before wearing, with cold, running water, to reduce skin-electrode friction.

SHIMMER runs the TinyOS operating system. We developed a NesC application

to periodically read the available samples, prepare the packet as a delimited ASCII string

and forward it over a serial Bluetooth link. For our initial data collection we used the

BioMOBIUS software to send commands to and stream data from the SHIMMER [6].

5.2 Preprocessing and Feature Extraction

We segment the ECG and accelerometer traces into 400-sample windows (approx-

imately 4 seconds of data) to obtain the feature windows w1, w2, . . . , wn. We use wi(j) to

denote the jth sample of feature window wi.

1http://shimmer-research.com/

2http://polarusa.com/
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Figure 5.1: The ECG of a healthy subject at the beginning of exercise activity (above)
and signal distortions due to motion artifact introduced as the subject proceeds to perform
intense exercise activity (below).

We chose the size of the feature window so that multiple heart beats are present

within a given window (at least 4 in our case). We attempt to reduce the impact of

misclassified R-peaks by averaging beat features within the window rather than relying on

features extracted from a single beat. Although, this method introduces a time lag of 4s,

we can reasonably assume that change of activity or person takes longer than 4s. We use

the notation wa
i and we

i to denote the accelerometer data and ECG data respectively within

the ith feature window.

Any raw ECG trace collected using non-invasive surface electrodes usually has

several artifacts, notably a low frequency baseline drift due to respiratory effects, elec-

trode contact noise, and motion artifacts. Typically this noise is removed by high-pass or

moving-average filtering techniques [47, 38, 12]. Since we collect our datasets during exer-

cise, including durations of high-intensity activity, the ECG trace was also corrupted with

the more troublesome motion artifact noise whose spectrum overlaps the ECG band (see

Figure 5.1). The corresponding signal distortions cannot be easily eliminated by filtering.

We perform baseline correction before non-fiducial feature extraction. We employ
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an adaptive, beat-based linear interpolation approach to estimate the baseline from the line

joining the Q-minima. The estimated baseline is then subtracted to align all beats within

a window. Baseline correction introduces some sharp discontinuities within the window, so

before non-fiducial feature extraction we employ a high pass filter with coefficients adapted

from [42].
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Figure 5.2: Baseline wander in the ECG window (above) introduced due to respiration is
corrected adaptively by removing the estimated baseline formed by linear interpolation of
the Q-minima (below).

We adopt a combination of two commonly used analyses of the pre-processed ECG

trace to obtain a feature vector as shown in Table 5.1. We select the dimensions of different

features empirically. We extract a combination of the two types of ECG features, fiducial

and non-fiducial, from windows of the pre-processed signal. The final feature vector is

shown in Table 5.1.

5.2.1 Fiducial Analysis

Our procedure for beat segmentation and fiducial feature extraction is described

in Algorithm 1.

Spline Interpolation: The general morphology of the segmented beats can be rep-
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Algorithm 1 Detects the set of beats B and the sets of QRS markers, q,r,s, using an

existing QRS detector [12]
1: The detected R-peaks are denoted by a set r of sample index-amplitude pairs as

(rj , we
i (rj)), for the jth beat of the ith window of the ECG trace.

2: for all rj in r do

3: Search downhill from each R-peak to locate the Q and S minima as (qj , we
i (qj)) and

(sj , w
e
i (sj)). (The normal width of the QRS peak is known to be 100±20ms [12]. We

incorporate this fact by searching between ±6 samples of the detected R-peaks.)

4: Align beat along the detected R-peaks by extracting a sequence of samples of size

min((rj+1 − rj), (rj − rj−1)) so that the R-peaks are centered within the extracted

beat segments. Discard if current beat Bj is incomplete and cannot be centered.

5: Normalize the beat by clamping the R-peaks to 1 and the Q-minima to 0.

6: end for

7: Discard beats corresponding to poorly detected fiducials that do not contain Q and S

minima within the assumed search interval.

8: return {∀j Bj , (qj , we
i (qj)) , (rj , we

i (rj)) , (sj , w
e
i (sj))}
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Feature

F1-F20 First 20 normalized AC co-efficients

F21-F41 Spline interpolant

F42 Normalized slope QR
QR+RS

F43 Normalized slope RS
QR+RS

F44 R-R interval

F45-F50 Accelerometer X,Y ,Z means and variances

Table 5.1: Feature vector representing the biometric profile of an individual

resented by a set of features derived from the relative positions and heights of different

fiducial points. However, due to the presence of beats exhibiting subtle morphological vari-

abilities as well as erroneous waveforms showing marked deviation from normal waveform

(for e.g., physiological artifacts such as ectopic beats, signal artifacts such as noisy in-band

signals etc.) we employ piecewise polynomial approximation to represent the underlying

morphology. Thus, we seek to minimize our dependence on the localization of other fidu-

cial points which are more susceptible to noise as compared to the R-peaks. Our choice of

interpolant is the natural cubic spline, described below in further detail. The cubic spline

is commonly used in ECG morphological analysis for upsampling and smoothing of beats

[35, 16, 51, 29, 13]. For a given set of (n + 1) points (x0, x1 . . . xn), the ith ‘piece’ of the

cubic spline is defined by the polynomial function [49],

yi(t) = ai + bit+ cit
2 + di (5.1)

Where tε [0, 1] and i = 0, 1, . . . (n− 1).

yi(0) = xi = ai (5.2)
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(b) Normalized Autocorrelation for 4 different subjects over select samples (only

the tail portion shown)

yi(1) = xi+1 = ai + bi + ci + di (5.3)

By imposing the additional constraints that the second derivative at the endpoints are zero,

we obtain the y, the C2 continuous (continuous up to second derivative) natural cubic spline.
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Note that the normalized beats within a window have different periods since the

adaptive segmentation in step 4 of Algorithm 1 is based on the distance between the R-peaks

of the beats on either side of the current one. The underlying beat morphology is obtained

from the mean spline (cubic) interpolant (F21–F41) of the beats within the feature window.

In addition, we extract the mean R-R peak distances (F44) and the slopes QR

(F42) and RS (F43). The RR-interval is normalized using the equation x−l
u−l where x repre-

sents the current value and u and l represent bounds on the RR-interval (25 to 300 samples

representing a heart rate range of 20 to 240 beats per minute). The slope features are

normalized using the sum of the two slopes.

At the end of this stage we have a set of features that capture the underlying beat

geometry and the activity induced variations. In particular, feature F44 models the intra-

individual variations caused by physiological response to activity in the form of increased

heart rate. Our set of fiducial features is a subset of those found in literature [4, 26, 52]

with improved normalization and a novel adaptive beat-segmentation approach based on

activity induced heart-rate changes.

5.2.2 Non-fiducial Analysis

The presence of noise in the signal often leads to errors in beat segmentation of

the ECG trace. So we complement the feature vector with a set of non-fiducial features

that are less sensitive to the inaccuracies in beat segmentation [44, 9, 11].

Autocorrelation features have been used for their ability to extract redundancy

in the ECG signal without requiring preprocessing of the electrocardiogram to obtain the

significant points and segments. The Autocorrelation function of a signal represents how

well the waveform correlates with a time shifted version of itself i.e., its periodicity. The

maximum time-shift that is considered is denoted by MAXLEAD. For a sequence, x, of n
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samples representing the ith ECG window x = we
i , the autocorrelation function is defined

as

Rxx(m) =
n−|m|−1∑

i=0

x(i)x(i+m) (5.4)

where lags m = 0, 1 . . .MAXLEAD where MAXLEAD � n

For different types of time-series models, the maximum number of lags (or leads,

interchangeably) that are statistically relevant vary. Plataniotis et al. found that lags over

200ms (20 samples) give poor performances [44]. We further verified this using MAXLEADS

of 2s (200 samples) and observed that coefficients beyond, approximately, the first 20 sam-

ples, are not useful (See Fig. 5.2).

We use the normalized autocorrelation coefficients of each we
i as described by

Plataniotis et al. [44]:

R̃xx =
Rxx(i)
Rxx(0)

,where i = 1, 2 . . .MAXLEAD. (5.5)

We use the first 20 normalized coefficients (MAXLEAD=20) for each ECG window (n=400)

as our non-fiducial features (F1–F20).

R̃xx =
Rxx(i)
Rxx(0)

(5.6)

where i = 2, 3 . . .MAXLAGS.

5.2.3 Accelerometer

The triaxial accelerometer is a device that measures the acceleration along the

x, y, and z-axes (see Figure5.3). By measuring the dynamic acceleration of the device we

can make inferences about the activity of the person wearing the sensing device. We first

zero-mean the signal by subtracting the mean of the entire trace. Then for each axis, we
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compute the mean and variance of the window wa
i . The classifiers use these features to

discriminate between different activities.
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Figure 5.3: The x,y and z-axes acceleration for the various activities performed by subjects.

5.3 Classification

The goal of classification is to identify a subject or to verify an identity claim

from the sensor observations. We investigate the performance of two types of classifiers:

K-Nearest Neighbor (KNN) and Bayesian network (BN).

5.3.1 K-Nearest Neighbour

We first measure the benefit of incorporating activity information for identification

using simple KNN classifiers. We trained two KNN classifiers: an activity-aware classifier,

which uses the multimodal feature vector (F1–F50), and an activity-unaware classifier which

uses the unimodal feature vector (F1–F44). KNN typically uses Euclidean distance as its

distance metric. We combine estimated pairwise correlation distances for features F1–F20

and F21–F42 and Euclidean distances for all other features to obtain a modified KNN
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classifier.

Suppose we have n samples such that the ith sample is represented as fi =

(fi1, fi2, . . . , fim), i = 1, 2, . . . n and m be the number of features, i.e., 50. The distance, d,

between samples fi and fj is calculated as follows,

fia = (fi1, fi2, . . . fi20)

fib = (fi21, fi22, . . . fi42)

fic = (fi43, fi44, . . . fi50)

d1(fia, fja) = 1− (fia − f̄ia)(fja − f̄ja)′√
(fia − f̄ia)(fia − f̄ia)′

√
(fja − f̄ja)(fja − f̄ja)′

d2(fib, fjb) = 1−
(fib − f̄ib)(fjb − f̄jb)′√

(fib − f̄ib)(fib − f̄ib)′
√

(fjb − f̄jb)(fjb − f̄jb)′

where f̄i denotes the sample mean.

d3(fic, fjc) = (fic − fjc)(fic − fjc)′

d(fi, fj) = d1(fia, fja) + d2(fib, fjb) + d3(fic, fjc)

The additional correlation distance metric represents the similarity in the shapes

of two curves. We evaluated the performance of both the Euclidean-distance based KNN

and the modified-KNN (xKNN) classifiers.

5.3.2 Bayesian Framework

Our hypothesis is that explicit modeling of activity states will lead to better recog-

nition performance. We developed two Bayesian network classifiers to allow us to evaluate

that hypothesis (shown in Figure 5.6).
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Suppose we haveN persons whose identity P is given by the labels p = p1, p2, . . . , pN .

The biometric profile for a person pi is a set of m ECG feature vectors e = 〈e1, e2, . . . em〉

and the corresponding activity feature vectors a = 〈a1, a2, . . . am〉. We assume that the

ECG features are normally distributed, i.e., P (E | P,A) ∼ N(µ,Σ), and depends on the

person and the activity being performed. The problem of classification is now reduced

to that of estimating the parameters of the conditional distributions of Equation (5.7).

We discretize the accelerometer features, A, into distinct activity levels H and obtain the

Bayesian network (BN) shown in Figure 5.6(a). The joint distribution of the BN is defined

as

P (P,H,A,E) = P (E | P,H)P (A | H)P (H)P (P ) (5.7)

Activity Discretization

The activity levels that are of interest are those of different activity intensities

introducing corresponding variations in the ECG signal (see Fig. 5.4). These variations

may be due to physiological response to activity such as decrease in RR-interval (increase

in heart rate) as well as signal artifacts. The activity levels H were obtained in two ways:

from manual annotations and via unsupervised clustering. Manual annotations include

three activity levels: still, low-intensity, and high-intensity. We also tested three types of

unsupervised clustering techniques: K-means clustering with the Euclidean distance metric,

K-means using city block distance and Gaussian Mixture Model (GMM) with diagonal

covariance matrices. Ultimately, we chose the GMM which allows soft cluster boundaries

and resulted in better performance. Since the manual annotations contained significant

human error, there was no reliable ground truth for comparing the activity clustering. So

we visually compared the inferred cluster IDs with our manual annotations and found that

the inferences were close except for occasional discontinuities (see Figure 5.5).
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Figure 5.4: Unsupervised activity clustering.
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Figure 5.5: Example of unsupervised activity clustering using GMM clustering with 3 ac-
tivity levels.

Activity-Aware Classification:

During training, we assume that the BN is fully observed. In identification mode

the class labels are p = p1, p2, . . . , pN for N subjects and in verification mode, p = {legitimate,imposter}.

The hidden node H models the discrete activity labels from clustering (see Figure 5.6). We
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perform clustering independently for each subject during training. During testing both

nodes H and P were hidden. We used the Bayes Net Toolbox [8] for training and inference.

Inference is by a a junction-tree inference engine (exact inference).

During testing, we are interested in estimating the probability distribution of the

hidden variable P , conditioned on the accelerometer and ECG features A = a and E = e

respectively, i.e.,

P (P | A = a,E = e) =
|h|∑
j=1

P (P,H = hj | A = a,E = e) (5.8)

The predicted person label ppred is the one that maximizes the posterior probability.

ppred = argmax
P

|h|∑
j=1

P (P,H = hj | A = a,E = e) (5.9)

To evaluate the usefulness of the activity features, we also test an activity-unaware

the Bayesian classifier shown in Figure 5.6(b), which uses only the set of ECG features.

P 

E 

H 

A 

(a) The Activity-Aware Bayesian net-

work - BN and BN.

E 

P 

(b) The Activity-Unaware Bayesian net-

work BN(NA).

Figure 5.6: Nodes: Person ID p = 1, . . . , N for N subjects. The feature nodes A and E
are 6 and 44-dimensional Gaussians respectively. Node H represents the discrete activity
labels.
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Identification: During identification, the system selects the person with highest marginal

probability. The goal of the identification phase is to evaluate the biometric potential of

our dataset and processing algorithms.

Verification: During verification we are only interested in accepting or rejecting a

claimed identity. One possible approach is to compare the probabilities estimated during

identification against a threshold to obtain verification decisions.

Another approach is to perform binary classification using two class labels, p =

{legitimate,imposter} – which leads to a more compact probabilistic model and maybe

preferable when there are a large number individuals, especially by mobile inference systems.

To build a binary verification model, we need a representative set of imposters for

each individual. Selection of imposters has been the subject of much research in related

studies of person verification using speech, signatures and other modalities that exhibit

significant intra-subject variability [5, 50, 54]. Similarly, such work has also noted variability

caused by uncontrollable factors such as emotional state, health or recording conditions.

Hence there is a degree of mismatch between test and training data for an individual. We

adopt two principles from this body of work: the selection of subject-specific imposters and

the pooling of samples from multiple imposters. We describe our verification algorithm in

Algorithm 2, in which we denote the training data for persons p = {p1, p2 . . . pN} to be

D(p1),D(p2) . . .D(pN ).

Finally, the system uses the verification score, given as the ratio of true and im-

poster model likelihoods, to make a decision about a claimed identity pi:

P (pi is a legitimate claimant)
P (pi is an imposter)

(5.10)

Since both probabilities are obtained from the claimant’s model the proportional score sim-

ply serves to exaggerate differences in their probabilities for comparison against a threshold.
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Algorithm 2 Training the pooled imposter model for Verification
1: for all claimants pi ε p = {p1, p2 . . . pN} do

2: select a set of k most confused subjects as imposters p̂ = {p̂1, p̂2, . . . p̂k} such that

p̂j ε p and p̂j 6= pi for any j

3: obtain the legitimate claimant dataset T as D(pi)

4: for j = 1 to k do

5: add D(p̂j) the pooled imposter dataset F

6: end for

7: Randomly sample from the pooled imposter dataset such that T and F are of equal

sizes.

8: Estimate model parameters for pi, training data D̄ = [T ,F ]

9: end for

The potential to misclassify subjects who are not represented in the imposter pool

is one of the drawbacks of the proposed verification model. But the compact representation

and lower computational cost makes it a potentially appealing option. When we tested a

dataset of 20 samples on the identification model running on an Intel Core2 Duo machine,

it took approximately 0.6 seconds to predict all class labels. A verification decision on the

same dataset took around 0.2s.

Combining Multiple Predictions: We refer to the individual prediction for each

feature window as window identification/verification. A sequence of window identifica-

tion/verification decisions are used to make person identification/verification decisions by

majority voting. During identification, an entire test sequence is classified as belonging to

person pi if the majority of the predictions are for pi. During verification, an entire test

sequence is verified for a certain claim pi if the majority of the predictions are verified as
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legitimate. For ongoing verification, instead of majority voting over the entire dataset, we

evaluate the performance of the classifier as follows,

1. Divide test dataset in chunks of 10 feature windows each.

2. For each chunk if the majority of windows is classified as legitimate, the claimant is

considered legitimate. If not the claimant is an imposter.
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Experiments and Results

To test the feasibility of our approach, we collected data from 17 volunteers under

different activity conditions and across different days. To make it easier to compare with

related approaches, we present the identification performance of the classifiers in addition

to the verification results.

The goal of this thesis is to develop a robust ECG-based biometric scheme for use

in ongoing verification of claimed identity. We, therefore, cannot expect users to remain

at rest throughout the duration of monitoring or tolerate an elaborate system of electrodes

that impedes normal activity. Towards this end, we designed and implemented a simple,

reliable system architecture based on a wearable ECG sensing system using a single lead of

ECG. We describe the wearable prototype system that we built in Section 6.2.

6.1 Data Collection

Subjects were asked to exercise on the treadmill for 12–15 minutes (training dataset

DT) or 5–7 minutes (test dataset DX). We collected test and training data on different

days. The subjects were told to pace themselves and slowly work up to a jog; after at least
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2 minutes of brisk jogging they were asked to slow down gradually to a halt. The data is

manually labeled with annotations about the subjects pace and duration of exercise. We

collected sitting (DS) and recovery (DR) data immediately before and after the training

work-out.

To construct the training dataset (DT, DS, DR) we selected approximately 10000

samples from each of the following activity annotations – sit, walk, run, endure run and

recover. These are grouped into either three activity level annotations: sit+recover (la-

beled: still), walk (labeled: low intensity), run+endure run (labeled: high intensity) or two

activity levels annotations: sit+recover (labeled: still) and walk+run+endure run (labeled:

high+low intensity) for the supervised models. Some subjects had fewer than 10,000 sam-

ples per annotation due to noise. In aggregate the training dataset size for each subject

ranged between 40,000-50,000 samples. We tested our classifiers using samples from DX

(except Table 6.1).

6.2 Prototype Application

Figure 6.1: Prototype Architecture. The SHIMMER sensor board collects ECG and ac-
celerometer data, then sends data to Nokia N95 through Bluetooth. The mobile phone
forwards the data to the authentication server through Wi-Fi. MATLAB authentication
engine identifies or verifies the patient’s identity using machine learning algorithms.
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Figure 6.2: Prototype mobile application showing three channels of the triaxial accelerom-
eter (green) and one channel of the ECG data (red). Data is scaled down to very low
resolution before display. The mobile application forwards the sensor data to the authenti-
cation server for remote authentication.

To test the feasibility of our biometric verification approach, we implemented a

prototype application as shown in Figure 6.1. Our primary design goal for the prototype was

to set up a simple and reliable architecture to relay data from the sensor to an authentication

server that runs the pattern recognition algorithms. We implemented a NesC application

running on the SHIMMER to send ASCII packets of data, at the sampling rate, from the

onboard accelerometer and the add-on ECG sensor board over Bluetooth [7]. A thin-client

application running on a mobile phone (Nokia N95) wirelessly receives sensor data over

Bluetooth and forwards it to the remote authentication server over an IEEE802.11g (Wi-

Fi) link (see Figure 6.2). Our protocol forwards chunks of 4000 samples so that data is

sent to the authentication server every 40s. We implemented the analysis algorithms in

MATLAB. The authentication server periodically analyzed the sensor data and logged the

results. It is also possible to move the trained models and subsequent computation on the

phone. The current approach, however, scales better if more subjects are added. Although
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this approach works, significant development and evaluation still needs to be done to make

this application practical and usable.

6.3 Results and Discussion

To compare with related approaches, we first evaluate the performance of the

classifiers on data taken from subjects at rest (DS). The results are presented in Table 6.1

and are comparable to other existing approaches.

KNN xKNN BN

Precision 0.96 0.97 0.97

Recall 0.95 0.97 0.97

Table 6.1: Identification performance for the sitting session (DS). We randomly select 20
windows as the test dataset and the remaining data as the training dataset.

Next we tested the performances of the different activity-aware and activity-

unaware classifiers on the test dataset DX. Generally, the activity-aware classifiers out-

performed the activity-unaware classifiers (as shown in Table 6.2) by being able to explain

the intra-subject variability seen in the ECG signal. Among the activity-aware classifiers,

the KNN classifiers do not explicitly model the effects of different activity levels. Nonethe-

less, the simple inclusion of the additional accelerometer modality is clearly useful, as seen

by the improvement in performance. We use k=1 (one neighbour) based on our results from

cross-validation. The BN classifier makes better use of the accelerometer data by explicitly

modeling the activities, which leads to slightly better performance numbers even with the

manual activity annotations.

Manual annotations are inconvenient, unreliable, subjective and unsuitable for

fine-grained activity clustering (beyond a small number of levels). We used activity labels
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Activity-Aware Activity-Unaware

KNN xKNN BN KNN xKNN BN

|H| = 2 |H| = 3

Precision 0.8243 0.8278 0.8488 0.8252 0.7855 0.7677 0.8139

Recall 0.8039 0.7925 0.8326 0.8174 0.8035 0.7987 0.8140

Table 6.2: Identification performance of the activity-aware classifiers against the activity-
unaware classifiers. The activity-aware KNN classifiers use a concatenated feature vector
of activity and ECG features. The activity-aware BN is provided supervised activity labels
derived from manual annotations. An improvement is apparent even with just two activity
levels.

derived from unsupervised activity clustering using Gaussian mixture models. Table 6.3

shows the performance of the Bayesian classifier based on unsupervised activity clustering.

The case where |H|=1 corresponds to the activity-unaware classifier.

Window Identification Person Identification

No. of Activity Levels True Positive Rate False Positive Rate Accuracy

1 81.39 5.65 14/17

2 77.59 5.63 15/17

3 78.67 5.65 15/17

4 79.34 5.57 15/17

5 78.03 5.52 15/17

Table 6.3: Identification performance for the Bayesian network classifier using unsupervised
activity clustering for varying number of activity clusters. A test session consists of a
sequence of ECG feature windows extracted from dataset DT. The window identification
treats each feature vector as a separate test data point. The person identification decision
combines results from all the windows and selects the person predicted by majority of the
windows.

Table 6.4 shows the performance of verification with varying number of imposters.

Verification decisions are made according to Equation(5.9). We can view the false positive
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rate (FPR) as an indicator of the security of the system. As would be expected, FPR is

reduced as more imposters were added to the pool. It should be noted that we evaluate the

entire test dataset from all subjects against every combination of claimant and imposter to

obtain the results shown in Table 6.4. When the number of imposters is large, the random

sampling did not include sufficient samples from each activity and imposter combination.

This resulted in an increase in false acceptances possibly due to an ill-constructed pooled

dataset. With too few imposters the pooled dataset does not have enough information to

begin with.

Window Verification Person Verification

No. of Imposters True Positive Rate False Positive Rate Accuracy

3 81.68 12.72 16/17

7 81.14 11.72 16/17

8 79.31 11.13 16/17

11 81.7 12.19 17/17

15 79.85 12.06 16/17

Table 6.4: Verification performance for different sizes of imposter pools. The test dataset
consists of all windows from all persons tested for every possible claimant. A person is con-
sidered correctly verified if a majority of his samples are verified as legitimate, i.e.,TPR>0.5.

Figure 6.3 shows the ROC curve for the verification model. Depending on the

nature of application, we can choose to optimize for fewer false positives or more true

positives by selecting different operating points on the curve .

To help reduce the number of overall false rejection, we aggregate the window ver-

ification decision. As described in Section 5.3.2, we combine 10 window predictions in an

ongoing manner in our experiments. We use predictions from the 8 person imposter model.

The results in Table 6.5 show, for each person, how often his identity claims are correctly

accepted (legitimate claimant) and how often the claims made by the most confused im-
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Figure 6.3: ROC curve for the verification model (8 imposters). The thresholds used are
shown in the graph. We can see that with higher thresholds the system rejects too many
legitimate users and with lower thresholds too many imposters are accepted. The dotted
line shows y=x.

poster are accepted. The most confused imposter test provides the worst case verification

numbers. Fewer imposter claims are incorrectly accepted for the other imposters in the

dataset.
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Legitimate Claimant Imposter

p1 100.00 0.00

p2 88.24 75.00

p3 90.91 0.00

p4 100.00 0.00

p5 100.00 0.00

p6 100.00 27.27

p7 81.82 0.00

p8 100.00 70.00

p9 85.71 12.50

p10 80.00 0.00

p11 81.82 0.13

p12 93.75 83.3

p13 91.67 0.00

p14 100.00 0.00

p15 77.78 0.00

p16 100.00 0.00

p17 60.00 0.00

Table 6.5: Acceptance rates for person verification (8 imposters) by aggregating window
verification decisions. A person verification decision is made based on the most number
of verified samples within a chunk. The test dataset consists of data from the legitimate
claimant and imposter (most confused).
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Summary

In this thesis we introduce a biometric based on a novel combination of human

electrocardiogram (ECG) and accelerometer data, and investigated its performance on 17

healthy subjects. We described algorithms for data processing, classification and cluster-

ing schemes and developed a prototype architecture to demonstrate the feasibility of our

scheme. We implemented activity-aware Nearest-Neighbor and Bayesian network classifiers

and compared their performances to similar classifiers which used no activity information.

The findings from this work demonstrate that the human ECG coupled with activity in-

formation, is indeed a viable biometric, even in the face of activity-induced variability. In

general, Bayesian networks offer an efficient and elegant way of encoding observed dependen-

cies. Hence our proposed approach could pave the way for an ongoing mobile authentication

scheme that does not require frequent and active participation from the user. Future work

include a broader range of recognized activities, better approaches for combining or rea-

soning about classifier predictions, and addition of other sensors (for e.g., a galvanic skin

response (GSR) sensor can be used to classify emotional states of the subject). Results from

17 subjects indicate that the proposed approach shows potential for biometric recognition,
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however, more subjects must be added to understand the performance for a larger subject

pool. Other factors such as increased physical fitness, cardiological treatments etc., could

also affect the accuracy for an existing subject pool. Due to the long-term variability in the

human ECG, the system may also need to be re-trained after a certain period of time. Thus,

further investigation is required to understand the generality of the proposed approach.
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Plots

50 100 150 200 250 300 350 400
1.8

1.9

2

2.1

2.2

2.3

E
C

G
(m

V
)

0 50 100 150 200 250 300 350 400
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

50 100 150 200 250 300 350 400
1.9

2

2.1

2.2

2.3

2.4

2.5

E
C

G
(m

V
)

0 50 100 150 200 250 300 350 400
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Figure A.1: Windows of ECG from four different persons. We see that the ECG windows
from the different persons, while conforming to the fundamental morphology also exhibits
some unique patterns.
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Figure A.2: Example of a training dataset from a single subject across different activities.
Strips of ECG data are shown above and the corresponding strips of triaxial accelerometer
data are shown below. We can observe activity induced variability in the second, third and
fourth strips of 10000 samples each.
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Figure A.3: QRS detection algorithm processing steps for a single ECG window (a) zero-
meaned ECG signal. (detected R-peaks marked) (b) Output of differentiator. (c) Output
of squaring process. (d) Results of moving-window integration.
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Figure A.4: The output of the QRS detector for two examples of noisy beats from different
persons. We observe that the R-peaks can be located even in the presence of noise.
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Figure A.5: Steps involved in Autocorrelation feature extraction for a single window of
ECG data. The window is first baseline corrected, then high pass filtered. The resulting
Autocorrelation function (only tail portion) is then normalized by the zero-lag coefficient.
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Detailed Classification

Performance

Predictions

Actual p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 Total Samples

p1 98 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 99

p2 0 51 3 0 0 0 0 0 0 0 0 71 2 0 12 32 5 176

p3 0 1 92 0 0 0 0 0 0 0 0 16 0 0 0 0 1 110

p4 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50

p5 0 0 0 0 112 0 1 0 0 0 0 0 0 0 0 0 1 114

p6 0 0 6 0 0 43 0 0 0 0 0 0 0 0 0 0 0 49

p7 0 0 0 0 14 0 36 0 0 0 0 0 4 0 0 1 57 112

p8 6 0 0 0 0 0 0 25 1 0 0 0 0 5 0 0 0 37

p9 15 0 0 0 0 0 0 30 20 0 0 0 0 0 0 0 0 65

p10 0 0 0 0 0 0 0 1 3 31 0 0 0 4 0 0 6 45

p11 0 6 0 0 0 0 0 0 0 0 84 1 2 0 0 10 2 105

p12 0 2 0 0 0 0 0 0 0 0 0 160 0 0 0 1 0 163

p13 0 0 0 0 0 0 9 0 0 0 1 1 88 0 0 0 17 116

p14 0 0 0 0 0 0 0 0 0 0 0 0 0 77 0 0 1 78

p15 0 0 0 0 0 0 0 0 0 0 0 0 2 0 77 3 3 85

p16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 1 80

p17 1 0 0 0 0 0 0 0 0 0 0 0 2 6 0 1 37 47

Table B.1: Confusion Matrix - Activity-Unaware (|H| = 1).
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Predictions

Actual p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 Total Samples

p1 97 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 99

p2 0 81 1 0 0 2 0 0 0 0 0 49 3 0 16 16 8 176

p3 0 12 87 0 0 3 0 0 0 0 0 5 1 0 2 0 0 110

p4 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50

p5 0 0 0 0 113 0 1 0 0 0 0 0 0 0 0 0 0 114

p6 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 49

p7 0 0 0 0 3 0 32 0 0 0 0 0 7 0 0 0 70 112

p8 7 0 0 0 0 0 0 24 0 0 0 0 0 6 0 0 0 37

p9 26 0 0 0 0 0 0 25 14 0 0 0 0 0 0 0 0 65

p10 0 0 0 0 0 0 0 2 0 34 0 0 0 5 0 0 4 45

p11 0 4 0 0 0 0 0 0 0 0 87 0 2 0 0 9 3 105

p12 0 10 0 0 0 0 0 0 0 0 0 153 0 0 0 0 0 163

p13 0 0 0 0 0 0 10 0 0 0 1 1 88 0 0 1 15 116

p14 0 0 0 0 0 0 0 0 0 0 0 0 0 77 0 0 1 78

p15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 78 4 2 85

p16 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 77 1 80

p17 1 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 38 47

Table B.2: Confusion Matrix - GMM based activity clustering, 2 activity levels.

Predictions

Actual p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 Total Samples

p1 98 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 99

p2 0 88 3 0 0 1 0 0 0 0 1 62 0 0 6 8 7 176

p3 0 16 85 0 0 3 0 0 0 0 0 6 0 0 0 0 0 110

p4 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50

p5 0 0 0 0 112 0 1 0 0 0 0 0 0 0 0 0 1 114

p6 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 49

p7 0 0 0 0 3 0 43 0 0 0 0 0 4 0 0 0 62 112

p8 5 0 0 0 0 0 0 26 0 0 0 0 0 6 0 0 0 37

p9 12 0 0 0 0 0 0 32 21 0 0 0 0 0 0 0 0 65

p10 0 0 0 0 0 0 0 0 1 40 0 0 0 2 0 0 2 45

p11 0 1 0 0 0 0 0 0 0 0 91 4 1 0 0 5 3 105

p12 0 17 0 0 0 0 0 0 0 0 0 146 0 0 0 0 0 163

p13 0 1 0 0 2 0 32 0 0 0 4 1 66 0 0 0 10 116

p16 0 0 0 0 0 0 0 1 0 0 0 0 0 76 0 0 1 78

p17 0 2 0 0 0 0 0 0 0 0 0 4 0 0 71 2 6 85

p18 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 76 2 80

p19 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 1 37 47

Table B.3: Confusion Matrix - GMM based activity clustering, 5 activity levels.
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h = 1 h = 2 h = 3 h = 4 h = 5

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

p1 0.803 0.990 0.735 0.980 0.836 0.980 0.845 0.990 0.845 0.990

p2 0.850 0.290 0.757 0.460 0.716 0.443 0.639 0.483 0.704 0.500

p3 0.911 0.836 0.989 0.791 0.989 0.818 0.940 0.718 0.966 0.773

p4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

p5 0.889 0.982 0.974 0.991 0.902 0.974 0.974 0.991 0.957 0.982

p6 1.000 0.878 0.907 1.000 0.925 1.000 0.942 1.000 1.000 1.000

p7 0.783 0.321 0.744 0.286 0.569 0.259 0.544 0.330 0.566 0.384

p8 0.446 0.676 0.471 0.649 0.407 0.649 0.394 0.703 0.441 0.703

p9 0.833 0.308 1.000 0.215 0.955 0.323 0.947 0.277 0.955 0.323

p10 1.000 0.689 1.000 0.756 1.000 0.778 1.000 0.844 1.000 0.889

p11 0.988 0.800 0.989 0.829 0.968 0.876 0.969 0.886 0.948 0.867

p12 0.643 0.982 0.736 0.939 0.699 0.926 0.675 0.853 0.655 0.896

p13 0.880 0.759 0.846 0.759 0.866 0.612 0.857 0.569 0.904 0.569

p14 0.828 0.987 0.794 0.987 0.792 0.974 0.826 0.974 0.817 0.974

p15 0.865 0.906 0.812 0.918 0.906 0.906 0.846 0.906 0.922 0.835

p16 0.616 0.963 0.720 0.963 0.733 0.963 0.776 0.950 0.826 0.950

p17 0.282 0.787 0.268 0.809 0.266 0.809 0.279 0.766 0.282 0.787

Mean 0.80105 0.77369 0.80828 0.78407 0.79575 0.78172 0.7914 0.77884 0.80659 0.78952

Table B.4: Identification performance using the Bayesian network for 1 to 5 activity levels,
GMM-based activity clustering. The shaded boxes represent the activity level at which
maximum precision and recall occur. We try to highlight the same activity level for both
maximum values.
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Claim

Actual p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 Total Samples

p1 99 0 0 28 0 0 0 61 7 0 0 0 0 4 0 0 0 99

p2 0 113 1 0 0 1 0 0 0 0 1 126 0 0 62 37 2 176

p3 0 46 78 0 0 7 0 0 0 0 0 8 0 0 2 0 0 110

p4 7 0 0 50 0 0 0 50 0 1 0 0 0 0 0 0 0 50

p5 0 0 1 0 109 41 21 0 0 0 1 0 2 0 0 0 86 114

p6 0 0 30 0 1 49 0 0 0 0 0 19 0 0 0 1 1 49

p7 0 17 1 0 10 13 58 0 0 0 0 17 43 0 0 15 35 112

p8 25 0 0 25 0 0 0 32 14 0 0 0 0 32 0 0 0 37

p9 65 0 0 11 0 0 0 63 50 0 0 0 0 0 0 0 0 65

p10 0 0 0 0 0 0 0 4 2 27 0 0 0 0 0 0 0 45

p11 0 3 0 0 0 0 0 0 0 0 83 21 15 0 8 21 1 105

p12 0 113 0 0 0 0 0 0 0 0 15 156 0 0 85 44 0 163

p13 0 8 2 0 1 0 54 0 0 0 3 2 100 0 3 33 70 116

p14 2 0 0 0 0 0 0 4 1 0 0 0 0 75 0 0 0 78

p15 0 20 0 0 0 0 0 0 0 0 0 21 0 0 52 7 1 85

p16 3 16 0 0 0 0 0 0 0 0 6 23 0 2 0 76 3 80

p17 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 20 47

Table B.5: Confusion Matrix - Verification using 8 imposters and maximum likelihood esti-
mation. Values show the number of samples verified for a particular actual person/claimed
person combination.

51



Bibliography

[1] F. Agrafioti and D. Hatzinakos. Fusion of ECG sources for human identification.
In Proceedings of the 3rd International Symposium on Communications, Control and
Signal Processing, ISCCSP 2008, pages 1542–1547, March 2008.

[2] J. Ashbourn. Biometrics: advanced identity verification. Springer-Verlag London, 2000.

[3] Abhilasha Bhargav-Spantzel, Anna Squicciarini, and Elisa Bertino. Privacy preserving
multi-factor authentication with biometrics. In DIM ’06: Proceedings of the second
ACM workshop on Digital identity management, pages 63–72, 2006.

[4] L. Biel, O. Pettersson, L. Philipson, and P. Wide. ECG analysis: a new approach in hu-
man identification. In Proceedings of the 16th IEEE Instrumentation and Measurement
Technology Conference, volume 1, pages 557–561, 1999.

[5] Frédéric Bimbot, Jean-François Bonastre, Corinne Fredouille, Guillaume Gravier,
Ivan Magrin-Chagnolleau, Sylvain Meignier, Teva Merlin, Javier Ortega-Garćıa, Di-
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