104 research outputs found

    CAD Tool for Burn Diagnosis

    Get PDF
    In this paper a new system for burn diagnosis is proposed. The aim of the system is to separate burn wounds from healthy skin, and the different types of burns (burn depths) from each other, identifying each one. The system is based on the colour and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. We use a perceptually uniform colour space (L*u*v*), since Euclidean distances calculated in this space correspond to perceptually colour differences. After the burn is segmented, some colour and texture descriptors are calculated and they are the inputs to a Fuzzy-ARTMAP neural network. The neural network classifies them into three types of burns: superficial dermal, deep dermal and full thickness. Clinical effectiveness of the method was demonstrated on 62 clinical burn wound images obtained from digital colour photographs, yielding an average classification success rate of 82 % compared to expert classified images

    Risk prediction analysis for post-surgical complications in cardiothoracic surgery

    Get PDF
    Cardiothoracic surgery patients have the risk of developing surgical site infections (SSIs), which causes hospital readmissions, increases healthcare costs and may lead to mortality. The first 30 days after hospital discharge are crucial for preventing these kind of infections. As an alternative to a hospital-based diagnosis, an automatic digital monitoring system can help with the early detection of SSIs by analyzing daily images of patient’s wounds. However, analyzing a wound automatically is one of the biggest challenges in medical image analysis. The proposed system is integrated into a research project called CardioFollowAI, which developed a digital telemonitoring service to follow-up the recovery of cardiothoracic surgery patients. This present work aims to tackle the problem of SSIs by predicting the existence of worrying alterations in wound images taken by patients, with the help of machine learning and deep learning algorithms. The developed system is divided into a segmentation model which detects the wound region area and categorizes the wound type, and a classification model which predicts the occurrence of alterations in the wounds. The dataset consists of 1337 images with chest wounds (WC), drainage wounds (WD) and leg wounds (WL) from 34 cardiothoracic surgery patients. For segmenting the images, an architecture with a Mobilenet encoder and an Unet decoder was used to obtain the regions of interest (ROI) and attribute the wound class. The following model was divided into three sub-classifiers for each wound type, in order to improve the model’s performance. Color and textural features were extracted from the wound’s ROIs to feed one of the three machine learning classifiers (random Forest, support vector machine and K-nearest neighbors), that predict the final output. The segmentation model achieved a final mean IoU of 89.9%, a dice coefficient of 94.6% and a mean average precision of 90.1%, showing good results. As for the algorithms that performed classification, the WL classifier exhibited the best results with a 87.6% recall and 52.6% precision, while WC classifier achieved a 71.4% recall and 36.0% precision. The WD had the worst performance with a 68.4% recall and 33.2% precision. The obtained results demonstrate the feasibility of this solution, which can be a start for preventing SSIs through image analysis with artificial intelligence.Os pacientes submetidos a uma cirurgia cardiotorácica tem o risco de desenvolver infeções no local da ferida cirúrgica, o que pode consequentemente levar a readmissões hospitalares, ao aumento dos custos na saúde e à mortalidade. Os primeiros 30 dias após a alta hospitalar são cruciais na prevenção destas infecções. Assim, como alternativa ao diagnóstico no hospital, a utilização diária de um sistema digital e automático de monotorização em imagens de feridas cirúrgicas pode ajudar na precoce deteção destas infeções. No entanto, a análise automática de feridas é um dos grandes desafios em análise de imagens médicas. O sistema proposto integra um projeto de investigação designado CardioFollow.AI, que desenvolveu um serviço digital de telemonitorização para realizar o follow-up da recuperação dos pacientes de cirurgia cardiotorácica. Neste trabalho, o problema da infeção de feridas cirúrgicas é abordado, através da deteção de alterações preocupantes na ferida com ajuda de algoritmos de aprendizagem automática. O sistema desenvolvido divide-se num modelo de segmentação, que deteta a região da ferida e a categoriza consoante o seu tipo, e num modelo de classificação que prevê a existência de alterações na ferida. O conjunto de dados consistiu em 1337 imagens de feridas do peito (WC), feridas dos tubos de drenagem (WD) e feridas da perna (WL), provenientes de 34 pacientes de cirurgia cardiotorácica. A segmentação de imagem foi realizada através da combinação de Mobilenet como codificador e Unet como decodificador, de forma a obter-se as regiões de interesse e atribuir a classe da ferida. O modelo seguinte foi dividido em três subclassificadores para cada tipo de ferida, de forma a melhorar a performance do modelo. Caraterísticas de cor e textura foram extraídas da região da ferida para serem introduzidas num dos modelos de aprendizagem automática de forma a prever a classificação final (Random Forest, Support Vector Machine and K-Nearest Neighbors). O modelo de segmentação demonstrou bons resultados ao obter um IoU médio final de 89.9%, um dice de 94.6% e uma média de precisão de 90.1%. Relativamente aos algoritmos que realizaram a classificação, o classificador WL exibiu os melhores resultados com 87.6% de recall e 62.6% de precisão, enquanto o classificador das WC conseguiu um recall de 71.4% e 36.0% de precisão. Por fim, o classificador das WD teve a pior performance com um recall de 68.4% e 33.2% de precisão. Os resultados obtidos demonstram a viabilidade desta solução, que constitui o início da prevenção de infeções em feridas cirúrgica a partir da análise de imagem, com recurso a inteligência artificial

    Mobile Wound Assessment and 3D Modeling from a Single Image

    Get PDF
    The prevalence of camera-enabled mobile phones have made mobile wound assessment a viable treatment option for millions of previously difficult to reach patients. We have designed a complete mobile wound assessment platform to ameliorate the many challenges related to chronic wound care. Chronic wounds and infections are the most severe, costly and fatal types of wounds, placing them at the center of mobile wound assessment. Wound physicians assess thousands of single-view wound images from all over the world, and it may be difficult to determine the location of the wound on the body, for example, if the wound is taken at close range. In our solution, end-users capture an image of the wound by taking a picture with their mobile camera. The wound image is segmented and classified using modern convolution neural networks, and is stored securely in the cloud for remote tracking. We use an interactive semi-automated approach to allow users to specify the location of the wound on the body. To accomplish this we have created, to the best our knowledge, the first 3D human surface anatomy labeling system, based off the current NYU and Anatomy Mapper labeling systems. To interactively view wounds in 3D, we have presented an efficient projective texture mapping algorithm for texturing wounds onto a 3D human anatomy model. In so doing, we have demonstrated an approach to 3D wound reconstruction that works even for a single wound image

    Design Assessment and Simulation of PCA Based Image Difference Detection and Segmentation for Satellite Images Using Machine Learning

    Get PDF
    It is possible to define the quantity of temporal effects by employing multitemporal data sets to discover changes in nature or in the status of any object based on observations taken at various points in time. It's not uncommon to come across a variety of different methods for spotting changes in data. These methods can be categorized under a single umbrella term.  There are two primary areas of study: supervised and unsupervised change detection. In this study, the goal is to identify the changes in land cover.  Covers a specific area in Kayseri using unsupervised change detection algorithms and Landsat satellite pictures from various years have been gleaned through the use of remote sensing. In the meantime, image differencing is taking place.  The method will be applied to the photographs using the image-enhancing process. In the next step, Principal Component Analysis (PCA) is employed.  The difference image will be analyzed using Component Analysis. To find out which locations have and which do not. As a first step, a procedure must be in place.  We've finished registering images one after the other. Consequently, the photos are being linked together. After then, it's back to black and white.  Three non-overlapping portions of the difference image have been created. This can be done using the principal component analysis method.  From the eigenvector space, we may get to the fundamental components. As a last point, the major feature vector space fuzzy C-Means Clustering is used to divide the component into two clusters, and then a change detection technique is carried out. As the world's population grew, farmland expansion and unplanned land encroachment intensified, resulting in uncontrolled deforestation around the globe. This project uses unsupervised learning algorithm K-means clustering. In a cost-effective manner that can be employed by officials, companies as well as private groups, to assist in fighting illicit deforestation and analysis of satellite database

    Enhancing Semantic Segmentation: Design and Analysis of Improved U-Net Based Deep Convolutional Neural Networks

    Get PDF
    In this research, we provide a state-of-the-art method for semantic segmentation that makes use of a modified version of the U-Net architecture, which is itself based on deep convolutional neural networks (CNNs). This research delves into the ins and outs of this cutting-edge approach to semantic segmentation in an effort to boost its precision and productivity. To perform semantic segmentation, a crucial operation in computer vision, each pixel in an image must be assigned to one of many predefined item classes. The proposed Improved U-Net architecture makes use of deep CNNs to efficiently capture complex spatial characteristics while preserving associated context. The study illustrates the efficacy of the Improved U-Net in a variety of real-world circumstances through thorough experimentation and assessment. Intricate feature extraction, down-sampling, and up-sampling are all part of the network's design in order to produce high-quality segmentation results. The study demonstrates comparative evaluations against classic U-Net and other state-of-the-art models and emphasizes the significance of hyperparameter fine-tuning. The suggested architecture shows excellent performance in terms of accuracy and generalization, demonstrating its promise for a variety of applications. Finally, the problem of semantic segmentation is addressed in a novel way. The experimental findings validate the relevance of the architecture's design decisions and demonstrate its potential to boost computer vision by enhancing segmentation precision and efficiency

    System Designs for Diabetic Foot Ulcer Image Assessment

    Get PDF
    For individuals with type 2 diabetes, diabetic foot ulcers represent a significant health issue and the wound care cost is quite high. Currently, clinicians and nurses mainly base their wound assessment on visual examination of wound size and the status of the wound tissue. This method is potentially inaccurate for wound assessment and requires extra clinical workload. In view of the prevalence of smartphones with high resolution digital camera, assessing wound healing by analyzing of real-time images using the significant computational power of today’s mobile devices is an attractive approach for managing foot ulcers. Alternatively, the smartphone may be used just for image capture and wireless transfer to a PC or laptop for image processing. To achieve accurate foot ulcer image assessment, we have developed and tested a novel automatic wound image analysis system which accomplishes the following conditions: 1) design of an easy-to-use image capture system which makes the image capture process comfortable for the patient and provides well-controlled image capture conditions; 2) synthesis of efficient and accurate algorithms for real-time wound boundary determination to measure the wound area size; 3) development of a quantitative method to assess the wound healing status based on a foot ulcer image sequence for a given patient and 4) design of a wound image assessment and management system that can be used both in the patient’s home and clinical environment in a tele-medicine fashion. In our work, the wound image is captured by the camera on the smartphone while the patient’s foot is held in place by an image capture box, which is specially design to aid patients in photographing ulcers occurring on the sole of their feet. The experimental results prove that our image capture system guarantees consistent illumination and a fixed distance between the foot and camera. These properties greatly reduce the complexity of the subsequent wound recognition and assessment. The most significant contribution of our work is the development of five different wound boundary determination approaches based on different computer vision algorithms. The first approach employs the level set algorithm to determine the wound boundary directly based on a manually set initial curve. The second and third approaches are the mean-shift segmentation based methods augmented by foot outline detection and analysis. These two approaches have been shown to be efficient to implement (especially on smartphones), prior-knowledge independent and able to provide reasonably accurate wound segmentation results given a set of well-tuned parameters. However, this method suffers from the lack of self-adaptivity due to the fact that it is not based on machine learning. Consequently, a two-stage Support Vector Machine (SVM) binary classifier based wound recognition approach is developed and implemented. This approach consists of three major steps 1) unsupervised super-pixel segmentation, 2) feature descriptor extraction for each super-pixel and 3) supervised classifier based wound boundary determination. The experimental results show that this approach provides promising performance (sensitivity: 73.3%, specificity: 95.6%) when dealing with foot ulcer images captured with our image capture box. In the third approach, we further relax the image capture constraints and generalize the application of our wound recognition system by applying the conditional random field (CRF) based model to solve the wound boundary determination. The key modules in this approach are the TextonBoost based potential learning at different scales and efficient CRF model inference to find the optimal labeling. Finally, the standard K-means clustering algorithm is applied to the determined wound area for color based wound tissue classification. To train the models used in the last two approaches, as well as to evaluate all three methods, we have collected about 100 wound images at the wound clinic in UMass Medical School by tracking 15 patients for a 2-year period, following an IRB approved protocol. The wound recognition results were compared with the ground truth generated by combining clinical labeling from three experienced clinicians. Specificity and sensitivity based measures indicate that the CRF based approach is the most reliable method despite its implementation complexity and computational demands. In addition, sample images of Moulage wound simulations are also used to increase the evaluation flexibility. The advantages and disadvantages of three approaches are described. Another important contribution of this work has been development of a healing score based mechanism for quantitative wound healing status assessment. The wound size and color composition measurements were converted to a score number ranging from 0-10, which indicates the healing trend based on comparisons of subsequent images to an initial foot ulcer image. By comparing the result of the healing score algorithm to the healing scores determined by experienced clinicians, we assess the clinical validity of our healing score algorithm. The level of agreement of our healing score with the three assessing clinicians was quantified by using the Kripendorff’s Alpha Coefficient (KAC). Finally, a collaborative wound image management system between the PC and smartphone was designed and successfully applied in the wound clinic for patients’ wound tracking purpose. This system is proven to be applicable in clinical environment and capable of providing interactive foot ulcer care in a telemedicine fashion

    Wound Healing Assessment Using Digital Photography: A Review

    Full text link
    • …
    corecore