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Abstract

Background: Artificial intelligence (AI) is an innovative field with potential for improving burn

care. This article provides an updated review on machine learning in burn care and discusses

future challenges and the role of healthcare professionals in the successful implementation of AI

technologies.

Methods: A systematic search was carried out on MEDLINE, Embase and PubMed databases for

English-language articles studying machine learning in burns. Articles were reviewed quantitatively

and qualitatively for clinical applications, key features, algorithms, outcomes and validation

methods.

Results: A total of 46 observational studies were included for review. Assessment of burn depth

(n = 26), support vector machines (n = 19) and 10-fold cross-validation (n = 11) were the most

common application, algorithm and validation tool used, respectively.

Conclusion: AI should be incorporated into clinical practice as an adjunct to the experienced burns

provider once direct comparative analysis to current gold standards outlining its benefits and risks

have been studied. Future considerations must include the development of a burn-specific common

framework. Authors should use common validation tools to allow for effective comparisons. Level

I/II evidence is required to produce robust proof about clinical and economic impacts.

Key words: Artificial intelligence, Machine learning, Computer vision, Burn, Neural networks

Highlights

• We present a review of articles using machine learning in burns-related applications and discuss the future implications for
the integration of AI into clinical practice.

• AI can assist clinicians in evaluating burn surface, diagnose burn depth, the need for surgery or other therapies, guide fluid
resuscitation and predict complications and prognosis with a high degree of accuracy.

• A burn-specific framework reporting tool should be developed to ensure transparent, reproducible and ethical studies,
including predictive accuracy in target setting.

• Randomised controlled trials and other forms of high-level evidence should be used to produce high-quality evidence about
the clinical and economic impacts of using AI, ensuring its superior efficacy to traditional working routines.

• This new technology as envisioned will require extensive AI education and training of the clinician workforce and the public
and the cultivation of a cross-disciplinary approach.
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Background

Burns are devastating injuries, representing a significant
health burden to both the individual and the healthcare
system. Victims of burn injuries present with consider-
able clinical, psychological and social sequelae. They are
characterised as one of the most challenging presentations
encountered in any trauma, necessitating input from
specialists providing a variety of expertise. As such, they
require specialist centers that can manage the provisions to
facilitate holistic care. With burns being the fourth most
common cause of trauma worldwide [1], artificial intelligence
(AI) has vast potential to advance burn care by enhancing
patient experience, improving population health, reducing
cost and improving provider experience [2].

For an injury that is considered systemic, there is sig-
nificant variability in its presentation and outcomes and
stratifying data to improve outcomes poses a challenge. Still,
unique to burns is that universally, large and frequently
recorded datasets are accessible. As technology has advanced,
there is an opportunity to bring about a paradigm shift
towards improving outcomes for burn patients. IBM esti-
mates approximately one million gigabytes of healthcare
data are accumulated over a patient’s lifetime, with the data
generated doubling every 2–5 years [3]. Electronic health
records (EHRs) facilitate new ways to acquire and process
meaningful information to inform clinical decision-making.
Unfortunately, the raw analysis of these datasets is beyond
the capabilities of traditional statistical methodology [4].

AI holds promise for the care of patients with burn injuries
and the interest in burn-related machine learning is growing
exponentially (Figure 1). This review aims to: (1) provide a
brief overview of the principal subfields of AI; (2) evaluate
updated literature on AI applications that address the various
aspects of burn care in the patient journey; (3) discuss the
important considerations of machine learning and its impli-
cations in practice; and (4) highlight the role of the burn care
professional in implementing successful AI technologies.

Artificial intelligence

AI refers to intelligence demonstrated by machines in per-
forming cognitive functions such as problem-solving, objec-
t/word recognition and decision-making [5]. Using statistical
algorithms, models can accurately dissect meaningful outputs
from large datasets [6]. The increasing power of computer
processors makes it an opportune moment for medicine to
embrace these novel technologies. In medicine, AI is starting
to have a positive impact for clinicians (predominantly via
rapid, accurate image interpretation), by improving work-
flow (to reduce medical errors), and for patients, by enabling
their data to promote their own health [7].

AI can be applied both physically or virtually [6]
(Figure 2). The virtual domain refers to machine learning,
neural networks, natural language processing and computer
vision. Herein we summarise the virtual techniques pertinent
to burns care.

Machine learning Machine learning is a subset of AI that
enables machines to make predictions by recognising patterns
in structured data without explicit programming, but by using
mathematical and statistical methods [8]. Machine learning,
as opposed to conventional statistical analysis, is particularly
useful for identifying subtle patterns in large datasets that
may not be readily apparent to the human eye. Machine learn-
ing models have three principally distinct functions: super-
vised, unsupervised and reinforcement learning (Figure 3) [5].
Common mathematical algorithms used for supervised and
unsupervised learning are defined in Table S1 (see online
supplementary material).

In supervised machine learning, an expert labels a training
dataset which then trains an algorithm to predict a known
output (Figure 3a) [8]. Supervised learning is often used for
classification or regression problems, hence it can be used to
predict from limited datasets of diagnoses or to estimate risk.

In contrast, unsupervised machine learning feeds unla-
beled data to the algorithm and there are no known outputs
to predict (Figure 3b) [8]. The objective is to find naturally
occurring patterns with shared similarities within the unla-
beled data.

Lastly, reinforcement machine learning is the process
through which a program attempts to accomplish a task
whilst learning from its successes and mistakes (Figure 3c)
[8]. At present, reinforcement learning approaches are rarely
employed in burn applications.

Neural networks Advancing computational power has led to
the creation of ‘deep learning’. Deep learning is a form of
machine learning that studies data features using a multi-
layered neural network. Neural networks are composed of
computational units inspired by the neuronal connections
that exist in animal brains. Artificial neural networks can be
divided into three layers of neurons: input, hidden, output
(Figure 4) [9]. The key differences between artificial neural
networks and machine learning are that, firstly, the former
requires significantly more data, and secondly, when fed
raw data they learn their algorithms independently with-
out the need for human intervention on which features to
use [10].

Artificial neural networks cover several architectures, one
of which is convolutional neural networks. A convolutional
neural network, by definition, has one or more layers of
convolution units. Therefore, convolutional neural networks
reduce computational complexity and ensure translational
invariance.

Computer vision Computer vision uses mathematical tech-
niques to analyse images or videos as quantifiable features
(e.g. color, texture or position). Image segmentation is one
of the major research areas in burns AI. The goal of image
segmentation is to extract the region of interest in an image
and disregard the background noise. This technique poten-
tially allows burn depth evaluation, thus guiding decision
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Figure 1. Trend of artificial intelligence burns-related publications on PubMed

Figure 2. Domains of artificial intelligence. Physical artificial intelligence relates to machines interacting with their physical environment whereas virtual artificial

intelligence is represented by machine learning

making or estimating the time to healing. Computer vision
has recently been integrated with machine learning tech-
niques such as neural networks [11]. These methods have
allowed computer vision to focus on higher-level concepts
such as image-based analysis of patient cohorts, longitu-
dinal studies and decision making within surgery [12]. In
addition, there has been dramatic improvement, exceeding
that of humans, in specific areas of image classification and
recognition systems based on convolutional neural networks
[13–16].

Natural language processing Natural language processing
focusses on the computer’s ability to analyse human
language and speech. To successfully achieve a human-level
understanding of language, natural language processing
must expand beyond simple word recognition to extract
meaning from texts into its analyses [17]. At present, natural
language processing is rarely employed in burn-specific AI
research. Still, this will undoubtedly play a fundamental
role in burns. Chatbots can be especially useful in the
follow-up and rehabilitation of burn patients to assess
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Figure 3. Illustration of different subtypes of machine learning. (a) Supervised

learning involves the feeding of labelled data allowing the computer to create

a predictive algorithm of a known output to correctly classify the depth

of the burns. (b) Unsupervised learning uncovers any patterns such as the

categorisation of burns depth from the unlabelled data. (c) Reinforcement

learning is the process to successfully match the input and output data while

learning from its successes and failures. It may share features of both a

supervised and unsupervised process

progress from a psychological, medical and administrative
perspective.

Algorithm validation The success of a machine learning algo-
rithm depends on the features selected (e.g. urea concentra-
tion) and the performance criteria for training and valida-
tion [18]. It is critical that the algorithm created is repro-
ducible and generalisable. Cross-validation processes allow
the building of empirical data on many possible models,
ultimately leading to the most generalisable algorithm. An
assessment based solely on an initial validation test does
not typically result in a generalisable model [19]. Hence, it
is essential to include secondary or even tertiary external
test sets (previously unseen by the model) to assess its true

generalisability, thus providing patients with robust and safe
models.

Methods

A comprehensive systematic search was carried out on Med-
line, Embase and PubMed to identify available literature
related to burn care-related AI in September 2020. A com-
bination of free text and medical subject headings terms were
used (Figure 5). Search criteria included artificial intelligence,
machine learning, neural network, deep learning, computer
vision, natural language processing and burns.

Any English-language burn-related AI articles were eligi-
ble. Further relevant articles were identified from the refer-
ences of published articles. Articles were excluded if the AI
technology was not directly aimed at burn care. Articles in
non-English language were excluded unless a valid English
translation was available.

One author screened titles and abstracts for eligibility.
All relevant full-text manuscripts were retrieved and studied.
Eligible articles were classified according to their application
in burn care.

Two authors independently collected data. Data collected
included application to burns, population studied, algorithms
and key features used, results (area under the receiver oper-
ating characteristic curve (AUC-ROC) and overall accuracy)
and the validation method.

Descriptive statistics were used to summarise the data.

Results

All original machine learning articles are summarised accord-
ing to their burn application: survival/mortality (Table 1)
[20–27]; assessment of burn depth (Table 2) [28–52];
estimation of body surface area (Table 3) [53,54]; antibiotic
response/sepsis (Table 4) [55–57]; other miscellaneous
applications (Table 5) [58–62].

Of 48 articles retrieved, three were review articles
[4,18,63] whilst the remaining 45 were original research
articles. Most articles provided mainly level 3 or 4 evidence
in the form of retrospective cohort studies [64]. There were
only two prospective cohort studies with level 2 evidence
[35,61]. All eligible studies were therefore prone to attrition,
confounding and selection biases inherent in these study
designs.

The most common applications of burn machine learning
research were assessment of burn depth (n = 26) and sur-
vival/mortality (n = 7) (Figure 6). A diversity of algorithms
were reported with the most frequent being support vector
machines (SVMs) (n = 19) (Figure 7). Artificial and convolu-
tional neural networks were increasingly described in recent
literature in 14 and 7 articles, respectively. Machine learn-
ing algorithms are commonly tested using a k-fold cross-
validation approach, with 10-fold being the most commonly
applied (n = 11) as higher values of k lead to a less biased
model (Figure 8) [18]. A significant proportion of articles did
not report the use of any cross-validation tool. For instance,
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Figure 4. Representation of artificial neural networks. Artificial neural networks can independently process signals in layers of simple computational units. At the

input level neurons receive information, perform a calculation and transmit output to the next neurone in the hidden layer. Within the hidden layers, calculations

are carried out to analyse and extract the complex patterns in the dataset. The data is then passed onto the output layer that provides the final step in the analysis

for interpretation. Deep learning involves the learning of more complex and subtle patterns than a simple one- or two-layer neural network

14 articles (31%) solely used a test-split approach in which
the complete data is divided into training and test data for
the model. The k-fold approach differs from the test-split
approach in that in the former data from the complete dataset
can appear in both training and test datasets.

Discussion

Applications of AI in burn care

AI has enormous potential to improve the experience of burn
injury victims throughout their patient journey (Figure 9)
besides improving the fundamental principles of burn care
education.

As access to data increases, AI is becoming increasingly
implicated in prevention, pre-/peri-/post-operative and reha-
bilitative care to guide procedural selection. It also has the
potential to detect early complications. Herein we review
some articles identified in the literature search pertinent to
the different stages of the burn patient journey.

Prevention Burn injuries are preventable. Advances in
knowledge around the management and prevention of burns
have led to a reduction in the mortality of burn injuries in
high-income countries [65]. In contrast, this has not been
applied satisfactorily in low- and middle-income countries. In
higher-income countries, in which AI is likely to be employed
first, this technology can allow patients to be risk-stratified
by occupation, substance abuse, self-harm or other socio-
economic factors that place patients at an increased risk
of sustaining a burn injury. An algorithm able to identify
this higher-risk group may prompt more regular community
review or workplace inspection to mitigate any given risk.

Aghaei et al. studied the factors related to unintentional
burns in children using data mining algorithms [60]. An arti-
ficial neural network-derived algorithm demonstrated better

performance compared to SVM, random forest and logistic
regression (Table S1). Most of the burn-related variables were
related to individual social welfare status and their environ-
ments. Therefore, lessening the effects of these factors could
reduce the incidence of pediatric burns. The same principles
using AI can be applied to adult populations.

Pre-hospital care Given the limited and expensive nature of
burn care resources, an automated system in local medical
centers would be desirable to identify patients with burns
requiring specialised input. AI technology can be useful to
improve the standard of burn care for patients where burn
experts may not be readily available. Despite several studies
using AI as a tool to gauge burn depth, only three have
specifically assessed treatment modalities [35,47,51]. Acha
et al. [47] and Serrano et al. [51] explored the problem
of burn color, image segmentation and classification using
machine learning techniques. Acha et al. [47] used a multi-
dimensional scaling approach to discover three discriminant
features, including the degree of pink, texture and colorful-
ness of the burn image. This study demonstrated a 66%
accuracy in classifying three varying depths of burns. Serrano
et al. [51] proposed image pre-processing, and segmentation
using color and texture features. A strict selection of texture
features of burn wounds accurately classified 80% of burns
healing ability. Martinez-Jimenez et al. combined infrared
thermography with random forest and k-means clustering in
a prospective study [35]. They report an accuracy of 85% in
the treatment modality of the burn injury. These promising
studies can be used to rationalise treatment and streamline
early wound closure.

Machine learning has been used to determine healing time.
Using reflectance spectrometry and artificial neural networks,
Yeong et al. developed a model to predict whether a burn
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Figure 5. Flowchart showing systematic literature attrition

Table 3. Research articles using machine learning to predict body surface area/open wound size

Author (year) Application Population Algorithm/tool Key features Results (accuracy) Validation
method

Liu et al. [53]
(2018)

Predict open
wound size

121 patients with
>20% TBSA burns

DT, ANN, square
regression

Multiple characteristics
but key features included
days since admission,
fluid volume, TBSA burn,
age

Combined ML models
using four key features
demonstrated >90%
goodness of fit
and < 4% absolute error

10-fold

Desbois et al.
[54] (2020)

BSA 16 burn patients DT, ANN Height and
circumferences of the
bust, neck, hips, and waist

No significant
difference between AI
and the gold-standard
(3D scans)

10-fold

AI artificial intelligence, ANN artificial neural network, BSA body surface area, DT decision tree, ML machine learning, TBSA total body surface area

would take more or less than 14 days to heal using burn
images, ultimately serving as a proxy for the assessment
of burn depth for surgical planning [66]. The investigators
reported an average predictive accuracy of 86%, suggesting

that this method may serve as a superior alternative to
direct visualisation. Although laser Doppler imaging (LDI)
works differently by using a red diode laser to measure the
extent of superficial dermal microvascular blood flow and
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thus estimate healing potential, combining LDI data with AI
algorithms may potentiate the efficacy of this tool.

Digital photography is the most used method to gauge
burn depth. To distinguish between burn wound/depth and
healthy skin, Acha et al. used fuzzy logic and artificial neural
network algorithms to extract hue-weighted saturation [29].
The use of digital photography for burn image segmentation
and classification yielded an accuracy of 82%. Yadav et al.
equaled this accuracy of depth using a SVM-based method,
even though their model was not cross-validated, reducing
its generalisability [39]. Tran et al. used a one-class SVM
instead of the traditional SVM for burn image classifica-
tion due to the imbalance degrees of burns data available
[67]. The best classification results achieved using one-class
SVM was 78% accuracy compared to 74% using traditional
SVM. Since then, more powerful fine-tuned convolutional
neural networks have been applied to burn depth. Tran et al.
reported feasibility research on the role of convolutional neu-
ral networks in the categorisation of burn depth by extracting
multi-color channels and converting these to binary values to
improve algorithm performance [68]. Cirillo et al. have since
described convolutional neural networks for image segmen-
tation that can extract effective luminance-color texture for
the classification of burn and non-burned areas [69]. Cirillo
et al. have demonstrated an impressive 91% accuracy when
analysing using deep convolutional neural network features
obtained from pediatric burn injuries using high-performance
digital cameras [41].

Multispectral imaging (MSI) techniques are remote sens-
ing technologies that absorb different wavelengths. They
have the ability to distinguish amongst varying severities of
partial-thickness burns, which may consequently dictate the
need for surgical intervention [70]. Li et al. combined a
machine learning algorithm with MSI-acquired data, report-
ing a 76% accuracy in diagnosing burn depth, matching
that of expert burn surgeons [50]. Similarly, another study
described capturing burn images using non-invasive optical
imaging (MSI, photoplethysmography, real image) to accu-
rately classify 76% of burn depths using a quadratic dis-
criminant analysis algorithm [36]. The same group used the
same feature extraction technique and applied a tool which
combined a supervised with an unsupervised classification
algorithm, resulting in a 24% improvement in non-viable
tissue detection [33].

Without uniquely relying on digital color differences,
other reports analysed different factors in assessing burn
depth. Ganapathy et al. assessed the skin thickness and
perfusion information of ex vivo skin using optical coherence
tomography and pulse speckle imaging [49]. Rangaraju
et al. utilised optical coherence tomography and Raman
spectroscopy to assess morphology and biochemical infor-
mation, respectively [37]. The information on the collagen
ratio classified burn depth with 85% accuracy. Badea et al.
were the first to propose an ensemble method built upon
the combination of standard classifiers and convolutional
neural networks using thermal and color images for the

purpose of burn severity assessment [52]. They reported an
average precision of 65%. However, their approach required
manual registration of images which would likely result in
time delays. Rowland et al. accurately predicted burn severity
(92.5% at 24 h) in animal burn models by combining SVM
with spatial frequency-domain imaging [42].

Chauhan and Goyal [44] have reported the combination
of standard digital photographs and machine learning to both
categorise burn depth and the site of the body involved.
The convolutional neural network algorithm outperformed
the generic method in determining burn severity by 11%.
Interestingly, Abubakar et al. [62] applied a fine-tuned con-
volutional neural network to distinguish burns from normal
skin in both African and Caucasian images with a recognition
accuracy of 97 and 99%, respectively. This research improves
the generalisability of these advances to different popula-
tions. These results demonstrate the feasibility of utilising AI-
assisted diagnosis in burn wounds.

Peri-operative AI technology can benefit patients requiring
definitive reconstructive surgery. Pre-operatively a patient can
be optimised for surgery by tracking weight, glucose and
exercise via mobile applications [71–73]. Automated analysis
of all pre-operative mobile and clinical data could provide
a more patient-specific risk score for operative planning and
yield valuable predictors for post-operative care.

Reliable diagnosis is supported by accurate estimation of
the total body surface area (TBSA) and wound depth assess-
ment, critical to treatment success. The precise quantification
of TBSA by traditional measures such as Lund and Browder
charts and ‘rule of palms’ have interobserver variability and
are challenging when faced with asymmetrical injuries [66].
Machine learning can address this issue. An algorithm could
rapidly and accurately predict TBSA by coupling burn images
with their relevant TBSA. Consequently, more accurate resus-
citation protocols could be generated in addition to surgical
planning strategies for skin grafting. Jiao et al. [43] employed
deep convolutional neural networks to automatically segment
burn wounds using smartphone digital photographs. The
results showed 84.51% accuracy in identifying varying
depths across different TBSAs. Desbois et al. highlighted
the importance of assessing the accuracy of morphology
modelling since it can greatly affect TBSA [74]. The same
research group then applied supervised machine learning
algorithms in identifying key anthropometric measurements
to build a 3D model showing good accuracy in estimating
TBSA when compared to gold standard 3D scans [54]. On this
note, it would be interesting to see how these results compare
to that of clinicians when making clinical assessments.

Equally important are prognostic tools. Estahbanati and
Bouduhi were one of the first to utilise artificial neural net-
works in predicting survival in burn patients with an accuracy
reaching 90% [21]. They demonstrated that non-linear tech-
niques are better suited to address complex questions regard-
ing prognosis due to their ability to observe real events rather
than evaluating the relative influence of variables on each
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Figure 6. Number of machine learning articles on the different applications on burn patient care. ML machine learning

Figure 7. Algorithms used in burn-related machine learning articles

other. Impressively, Huang et al. have published a successful
robust model that correctly classified with an AUC-ROC of
99.5% of survival prognosis according to the admission char-
acteristics [26]. In a slightly different application, Cobb et al.
used random forest and decision trees to demonstrate that

both patient and hospital factors are predictive of survival in
burn patients [27]. This could help inform decisions about
where burn patients should be treated. In contrast, only one
article reported no AI advantage compared to traditional
statistical methods, concluding that although some machine
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Figure 8. Methods of model validation used in burn-related machine learning articles.CV cross-validation

learning methods performed marginally better than LR, the
differences were seldom statistically significant in predicting
burn survival [25].

AI can be useful in pandemics (e.g. COVID-19). Data can
be rapidly collated, and an algorithm derived to identify how
such diseases impact survival and, as a result, how best to re-
allocate resources. However, there is a paucity of literature on
this topic at the current time.

Acute kidney injury (AKI) after burns has a significant
impact on short- and long-term outcomes; thus, it is crucial
to develop methods to identify patients at risk. Tran et al.
developed used a K-nearest neighbor algorithm to predict
AKI risk with 90–100% accuracy [75]. The same group [61]
later compared machine learning models for early recognition
of AKI using different laboratory findings in the predic-
tive model. Their models accurately predicted AKI 62 h in
advance.

Given the growing problems with antibiotic resistance,
Tran et al. [57] have most recently published an algorithm
with a 90% accuracy and an ROC-AUC of 0.96 in pre-
dicting sepsis secondary to large burns using key indicators
such as blood urea nitrogen and hemoglobin. Additionally,
Yamamura et al. [56] demonstrated the use of artificial neural
networks in predicting the response to aminoglycoside antibi-
otics against methicillin-resistant Staphylococcus aureus in
burn patients.

Post-operative AI may prove beneficial to the patient in the
post-operative period facilitating them in being at the center
of their care. This technology can help patients monitor their

progress regarding physiotherapy and set reminders to pro-
mote engagement and compliance. Likewise, machine learn-
ing can be useful to the healthcare team. For instance, pre-
dicting surgical site infections in the immunosuppressed burn
patient. Machine learning has outperformed conventional
statistics in the prediction of surgical site infections by build-
ing non-linear models that incorporate multiple data sources,
including diagnoses, treatments and laboratory values [76].
Consequently, this can influence subsequent treatments
including antibiotic therapy and dressing changes. Indeed,
virtual reality (VR) has been shown to have a positive impact
during change of dressings. Preliminary results demonstrated
a reduction in pain after combat-related burn injuries during
debridement using adjunctive immersive VR [77]. There
remains considerable room for research within this area.

Rehabilitation Rehabilitation after burn injuries can last
for many years and it is essential that a multidisciplinary
approach is sought. Rehabilitative programs play an essential
role in decreasing post-traumatic stress and optimising
functional independence. Patient-reported outcomes provide
important patient-centred data to capture subjective datasets
(impact of disease, treatment, quality of life measures).
Digital platforms that monitor patient-reported outcomes
could generate unique algorithms to screen symptoms, which
would then not only alert the healthcare team but also
automatically trigger a customised patient care plan. Merging
AI technology with patient-reported outcomes offers the
potential to improve outcomes and quality of care [78] as
well as evaluating the efficacy of treatments [79].
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Figure 9. Possible benefits of artificial intelligence at the different stages of a patient with a burn injury. AKI acute kidney injury, TBSA total body surface area

Natural language processing has been used to examine
EHRs to identify words and phrases in medical records that
predicted anastomotic leak after colorectal resections [80].
These findings can be translated to the care of burns patients.
Besides, the ability of algorithms to self-correct can increase
the utility of their predictions as datasets grow to become
more representative of a patient population.

Medical education The evolution of technology has meant
that reliance on memorising and retaining large volumes of
information could become more obsolete with effort steered
towards other skills. The system is likely to adapt, such that
competence is likely to have communication skills, emotional
intelligence and IT skills as part of its remit.

The use of VR in addition to real data-driven simulation
will be fundamental to train the next generation of burns
professionals. The acute nature of burn injuries generates

a stressful environment. A skilful, communicative and well-
coordinated team is key to managing such instances. Many
adverse events in burns emergency are a consequence of non-
technical skills, such as communication, leadership and team-
work. Thus, enhanced data from significant adverse events
has the potential to make an impact on the acquisition of non-
technical skills [81].

An example of innovation using AI to improve outcomes
in settings which lack specialised skillsets or in less resourceful
regions is Proximie. This is a secure, cloud-based augmented
reality platform enabling real-time collaboration between a
local (operating) surgeon and a remote (assisting) surgeon
[82]. Both local and remote teams can communicate employ-
ing a two-way audio stream, using several integrated aug-
mented reality features to further clarify the advice provided.

At present, there is no formal AI teaching curriculum.
Healthcare students and trainees should be offered the
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opportunity to learn AI-related skills during electives, as
part of leadership or business tracks, or in post-graduate
research schemes. A new infrastructure for learning must be
introduced, and educators from disciplines such as computer
science, mathematics, ethnography and economics will likely
play a key role. Another important aspect overlooked in
medical training is EHRs, especially since they will assist
in the implementation of AI in healthcare. It is imperative
that less-developed countries share the same benefit from AI
education.

Current limitations of AI

An important concern regarding AI algorithms is their inter-
pretability [83]. Whilst artificial neural networks address
problems that may be missed by humans, its black box
structure gives us little knowledge on how or why such an
algorithm was developed. The accountability if a patient
experiences harm from an AI-driven clinical decision remains
unclear [84]. Liability may extend to the treating physician,
hospital or software creator.

Reliable uptake in data collection has been and is a chal-
lenge for surgical teams. The quality of the algorithm depends
upon the quality of data uploaded. Inherent systematic biases
that occur in data collection, such as missing data, underrep-
resentation of women and racial minorities, may lead to inac-
curate AI predictions [85]. Furthermore, current workflows
are still operator dependent. The limited availability of high-
quality data for training, correctly labelled with the outcome
of interest, is a recurrent issue in this field. For instance,
available data may be overrepresented with ‘interesting cases’
and not necessarily representative of the normal burn pop-
ulation, leading to a sample selection bias. This highlights
the need for professionals to establish how and what com-
mon performance metrics need to be amassed, preferably at
international level. With regards to missing data in the pre-
processing imputation phase, extensive research into the use
of statistical methods and machine learning imputation has
been made to safely identify how to estimate these missing
values in data processing and, where appropriate, disregard
these values [86–88].

Burns is a discipline with great potential to exploit AI
given the numerous multimedia comprising two- or three-
dimensional imaging. Standardisation of these images, which
includes angles and lighting, is not only difficult to achieve
between different centers but is often inconsistent.

Data sharing and confidentiality is an ethical and bureau-
cratic challenge. Retrospectively gaining authorisation and
making data anonymous will be difficult and open-source
datasets are uncommon. Moreover, analyses of datasets that
are fragmented will eventually lead to bias as described
above. Yet the burns community, in particular, has con-
tinuously demonstrated their openness and willingness to
embrace accumulative data through the development of the
UK National Burn Injury Database and the International
Burn Injury Database (IBID) [89].
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Despite advances in the recognition of subtle patterns, AI
is still limited by its inability to determine causal relationships
and to deduce a clinical interpretation of its data analyses
[90]. AI remains poor in appreciating the clinical context
in which the relevant algorithm should be applied. Thus,
clinicians must, as usual, critically evaluate AI predictions.
AI will require further validation in the form of prospec-
tive observational studies and randomised controlled trials
(RCTs) [18].

Even though the public has great enthusiasm for the con-
cept of AI, some clinicians still have some resistance towards
it. All explanations outlined above are valid points for such
resistance, although there are others. The lack of basic and
continuous education of clinicians regarding AI prevents a
mass focus on radically developing this phenomenon. There
is also the natural concern that AI will replace the role of
physicians [91], although the mainstream opinion in the liter-
ature suggests that AI will complement physician intelligence
[7]. Lastly, the lack of a legal framework, particularly in
healthcare-related AI, leaves the physician exposed to poten-
tial legal repercussions when outcomes are not favorable [92].
Hence the need for proper validation.

The economic impact of AI must also be addressed. A sys-
tematic review proved that there are methodological deficits
in the cost-effectiveness of AI in medicine and that future eco-
nomic evaluations require a more comprehensive assessment
to enable economic decisions for or against implementing AI
in health care [93].

Future considerations for the burn care provider

Clinicians will benefit from education in digital medicine to
deal with the growing prospect and introduction of AI. The
principles of AI engineering and digital health literacy should
be implemented in graduate healthcare-related disciplines.
Main burn organisations should encourage their members to
research this topic by providing financial backing in the form
of grants and by creating conferences with AI as the main
theme. Equally, journals should encourage the submission of
articles related to AI.

Despite the existing clinical data registries such as IBID,
international and national burns organisations should adapt
their existing databases to record relevant data that will be
useful for patient management. Creating a database that car-
ries the entirety of burns’ experience, which is representative
of the population with appropriate representation of gender,
age, ethnic and socio-economic background may lead to a
technology that allows real-time clinical decision support.
As stakeholders in the adoption of AI-technologies, burn
surgeons should partner with data scientists and statisticians
to ensure the right questions are answered. On this note,
establishing who has access to these datasets is key. Each
nation should address the issue of data protection and own-
ership ensuring that confidentiality is respected, not only
medicolegally but also to ensure that confidence is maintained
from the general public in the medical profession. There is a

consensus to move towards patient ownership of data as this
is likely to result in increased patient engagement [94].

To allow for the full benefit of AI, clinical validation
tools should be developed to authenticate firstly the core
concepts of AI and secondly the clinically relevant outcomes
so these can be safely applied in practice. Important steps
have been taken towards this with a report that proposes
a framework to develop transparent, replicable, ethical and
effective research in healthcare AI [95]. Clear and common
validation guidelines should be followed by authors to ensure
that their algorithms have been appropriately tested and are
thus comparable before being accepted for publishing by
journals. Also, it is important to consider the specificity and
sensitivity of these models, which will have a clinical impact
[96]. This has an important impact on prognostic modelling
and decision-making.

Conclusion

AI is an innovative and fast-moving field with remarkable
potential in burn care to improve (1) the accuracy of diag-
noses and treatment, (2) the efficiency of care, and (3) the
workflow of healthcare professionals. The burn patient must
be managed in a holistic manner when assessing and employ-
ing innovative technologies but there is an onus to ensure clin-
ical implementation should only be carried out with robust
clinical validation. A burn-specific framework reporting tool
should be developed to ensure transparent, reproducible and
ethical studies, including predictive accuracy in target setting.
Subsequent prospective feasibility tests and RCTs should be
used to produce high-quality evidence about their clinical and
economic impacts, ensuring its superior efficacy to traditional
working practices. Once adequate high levels of evidence
have been attained, survival and morbidity AI appears to
be the most advanced application in burn care at present,
which could potentially be used as an adjunct to clinical
practice. Further investigation should be carried out in the
ability to predict burn depth and the ability to heal using
imagery, as this domain presents the most promise to the
medical community, in particular with regard to resource allo-
cation. Patients and clinicians who are willing to take charge
using digital means and algorithms should be empowered. At
present, there are exaggerated claims about the superiority
of AI over clinicians, which poses a risk for patient safety,
population health and confidence in the medical profession.
Data sharing and ownership including that of multimedia
using clinical data registries should be made clear. This new
technology as envisioned will require extensive AI educa-
tion and training of the clinician workforce and the public
and the cultivation of a cross-disciplinary approach that
includes data scientists, computer scientists and engineers, in
addition to pharmacists, nurses, physiotherapists, psycholo-
gists and doctors, to generate meaningful interpretation of
data. With the large volume of burn data, AI can assist
clinicians in evaluating burn surface, diagnose burn depth, the
need for surgery or other therapies, guide fluid resuscitation,

D
ow

nloaded from
 https://academ

ic.oup.com
/burnstraum

a/article/doi/10.1093/burnst/tkab022/6354035 by guest on 20 O
ctober 2021



18 Burns & Trauma, 2021, Vol. 9, tkab022

and predict complications and prognosis with a high degree
of accuracy. Education and encouragement of AI technologies
are key to delivering burns care on a far more rational,
efficient and tailored basis. However, it cannot replace the art
of caring.

Supplementary material

Supplementary material is available at Burns & Trauma Journal
online.
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