177 research outputs found

    Wireless Power Transfer Technology for Electric Vehicle Charging

    Get PDF
    In the years 1884-1889, after Nicola Tesla invented "Tesla Coil", wireless power transfer (WPT) technology is in front of the world. WPT technologies can be categorized into three groups: inductive based WPT, magnetic resonate coupling (MRC) based WPT and electromagnetic radiation based WPT. MRC-WPT is advantageous with respect to its high safety and long transmission distance. Thus it plays an important role in the design of wireless electric vehicle (EV) charging systems. The most significant drawback of all WPT systems is the low efficiency of the energy transferred. Most losses happen during the transfer from coil to coil. This thesis proposes a novel coil design and adaptive hardware to improve power transfer efficiency (PTE) in magnetic resonant coupling WPT and mitigate coil misalignment, a crucial roadblock to the acceptance of WPT for EV. In addition, I do some analysis of multiple segmented transmitters design for dynamic wireless EVs charging and propose an adaptive renewable (wind) energy-powered dynamic wireless charging system for EV

    A review on wireless power transfer: Concepts, implementations, challenges, and mitigation scheme

    Get PDF
    This paper reviews the current strides in the wireless power transfer (WPT) system. The paper discusses the classification of wireless power transfer, its application, trend and impact on society, advantages as well as disadvantages. It also presents a comparative analysis of existing work done by researchers in the field of wireless power transfer showing the shortcomings in various topologies, communication, and optimization methods used to increase the overall performance efficiency and proffer direction for further studies. Keywords: wireless power transfer, application, advantages, disadvantages topologies, communication, optimization, efficienc

    Review on Key Factors of Wireless Power Transfer Technology for Electric Vehicles

    Get PDF
    Electric vehicles (EVs) have become an alternative option for a clean energy society. A new charging technology which is wireless charging has been developed to satisfy the limitations of EVs which are the electric drive range and battery storage. Companies like Tesla, BMW, and Nissan have already started to develop wireless charging for EVs. This paper presents a literature review on wireless charging of EVs. The existing technologies for Wireless Power Transfer (WPT) system are summarized for different power applications. Coil design plays the most vital role in the WPT system so the different coil design with the transferred efficiency is reviewed. The other important parameters and technical components like significant factors of WPT system, track layout of dynamic wireless charging, foreign object detection method, and position alignment method that are affecting the efficiency of the wireless charging system are also discussed. Lastly, health and safety concerns for human beings and living things are investigated

    Wireless Power Transfer

    Get PDF
    Wireless power transfer techniques have been gaining researchers' and industry attention due to the increasing number of battery-powered devices, such as mobile computers, mobile phones, smart devices, intelligent sensors, mainly as a way to replace the standard cable charging, but also for powering battery-less equipment. The storage capacity of batteries is an extremely important element of how a device can be used. If we talk about battery-powered electronic equipment, the autonomy is one factor that may be essential in choosing a device or another, making the solution of remote powering very attractive. A distinction has to be made between the two forms of wireless power transmission, as seen in terms of how the transmitted energy is used at the receiving point: - Transmission of information or data, when it is essential for an amount of energy to reach the receiver to restore the transmitted information; - Transmission of electric energy in the form of electromagnetic field, when the energy transfer efficiency is essential, the power being used to energize the receiving equipment. The second form of energy transfer is the subject of this book

    A Review of Dynamic Wireless Power Transfer for In‐Motion Electric Vehicles

    Get PDF
    Dynamic wireless power transfer system (DWPT) in urban area ensures an uninterrupted power supply for electric vehicles (EVs), extending or even providing an infinite driving range with significantly reduced battery capacity. The underground power supply network also saves more space and hence is important in urban areas. It must be noted that the railways have become an indispensable form of public transportation to reduce pollution and traffic congestion. In recent years, there has been a consistent increase in the number of high‐speed railways in major cities of China, thereby improving accessibility. Wireless power transfer for train is safer and more robust when compared with conductive power transfer through pantograph mounted on the trains. Direct contact is subject to wear and tear; in particular, the average speed of modern trains has been increasing. When the pressure of pantograph is not sufficient, arcs, variations of the current, and even interruption in power supply may occur. This chapter provides a review of the latest research and development of dynamic wireless power transfer for urban EV and electric train (ET). The following key technology issues have been discussed: (1) power rails and pickups, (2) segmentations and power supply schemes, (3) circuit topologies and dynamic impedance matching, (4) control strategies, and (5) electromagnetic interference

    Overview and Advancements in Electric Vehicle WPT Systems Architecture

    Get PDF
    Wireless Power Transfer (WPT) system is a rapidly evolving technology with vast potentials in consumer electronics, electric vehicles, biomedicals and smart grid applications such as Vehicle to Grid (V2G). Hence, this article is devoted to present an overview of recent progress in WPT with specific interest in magnetic resonance WPT and its system architectures such as compensation topologies, inputs and outputs, as well as coil structure. The strengths, drawbacks and applications of the basic compensations (SS, SP, PS, PP) and hybrid compensations (LCC and LCL) were presented and compared. Although primary parallel compensations perform well at low mutual inductance, they are rarely used due to large impedance and dependence of coefficient coupling on the load. Hence, the need for extra-compensations forming hybrid topologies, such as LCC, LCL, which usually choice topologies for dynamic WPT application or V2G application

    Inductive Wireless Power Transfer Charging for Electric vehicles - A Review

    Get PDF
    Considering a future scenario in which a driverless Electric Vehicle (EV) needs an automatic charging system without human intervention. In this regard, there is a requirement for a fully automatable, fast, safe, cost-effective, and reliable charging infrastructure that provides a profitable business model and fast adoption in the electrified transportation systems. These qualities can be comprehended through wireless charging systems. Wireless Power Transfer (WPT) is a futuristic technology with the advantage of flexibility, convenience, safety, and the capability of becoming fully automated. In WPT methods resonant inductive wireless charging has to gain more attention compared to other wireless power transfer methods due to high efficiency and easy maintenance. This literature presents a review of the status of Resonant Inductive Wireless Power Transfer Charging technology also highlighting the present status and its future of the wireless EV market. First, the paper delivers a brief history throw lights on wireless charging methods, highlighting the pros and cons. Then, the paper aids a comparative review of different type’s inductive pads, rails, and compensations technologies done so far. The static and dynamic charging techniques and their characteristics are also illustrated. The role and importance of power electronics and converter types used in various applications are discussed. The batteries and their management systems as well as various problems involved in WPT are also addressed. Different trades like cyber security economic effects, health and safety, foreign object detection, and the effect and impact on the distribution grid are explored. Prospects and challenges involved in wireless charging systems are also highlighting in this work. We believe that this work could help further the research and development of WPT systems.publishedVersio

    Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles

    Get PDF
    Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even though extensive study has been done on the features and traits of electric vehicles and the nature of their charging infrastructure, network modeling for electric vehicle manufacturing has been limited and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical framework for wireless power transmission systems for EV charging and performed a software-in-the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based on magnetic resonance. This study also covered power pad designs and created workable remedies for the following issues: (i) how power pad positioning affected the function of wireless charging systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover, safety features of wireless charging systems, owing to interruption from foreign objects and/or living objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely and optimally as possible
    corecore