222 research outputs found

    Spectral Efficiency Scaling Laws in Dense Random Wireless Networks with Multiple Receive Antennas

    Full text link
    This paper considers large random wireless networks where transmit-and-receive node pairs communicate within a certain range while sharing a common spectrum. By modeling the spatial locations of nodes based on stochastic geometry, analytical expressions for the ergodic spectral efficiency of a typical node pair are derived as a function of the channel state information available at a receiver (CSIR) in terms of relevant system parameters: the density of communication links, the number of receive antennas, the path loss exponent, and the operating signal-to-noise ratio. One key finding is that when the receiver only exploits CSIR for the direct link, the sum of spectral efficiencies linearly improves as the density increases, when the number of receive antennas increases as a certain super-linear function of the density. When each receiver exploits CSIR for a set of dominant interfering links in addition to the direct link, the sum of spectral efficiencies linearly increases with both the density and the path loss exponent if the number of antennas is a linear function of the density. This observation demonstrates that having CSIR for dominant interfering links provides a multiplicative gain in the scaling law. It is also shown that this linear scaling holds for direct CSIR when incorporating the effect of the receive antenna correlation, provided that the rank of the spatial correlation matrix scales super-linearly with the density. Simulation results back scaling laws derived from stochastic geometry.Comment: Submitte

    Energy Efficiency and Sum Rate when Massive MIMO meets Device-to-Device Communication

    Full text link
    This paper considers a scenario of short-range communication, known as device-to-device (D2D) communication, where D2D users reuse the downlink resources of a cellular network to transmit directly to their corresponding receivers. In addition, multiple antennas at the base station (BS) are used in order to simultaneously support multiple cellular users using multiuser or massive MIMO. The network model considers a fixed number of cellular users and that D2D users are distributed according to a homogeneous Poisson point process (PPP). Two metrics are studied, namely, average sum rate (ASR) and energy efficiency (EE). We derive tractable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas and density of D2D users for a given coverage area.Comment: 6 pages, 7 figures, to be presented at the IEEE International Conference on Communications (ICC) Workshop on Device-to-Device Communication for Cellular and Wireless Networks, London, UK, June 201

    Energy Efficiency and Sum Rate Tradeoffs for Massive MIMO Systems with Underlaid Device-to-Device Communications

    Get PDF
    In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.Comment: 30 pages, 10 figures, Submitte

    Modeling and Analysis of MPTCP Proxy-based LTE-WLAN Path Aggregation

    Full text link
    Long Term Evolution (LTE)-Wireless Local Area Network (WLAN) Path Aggregation (LWPA) based on Multi-path Transmission Control Protocol (MPTCP) has been under standardization procedure as a promising and cost-efficient solution to boost Downlink (DL) data rate and handle the rapidly increasing data traffic. This paper aims at providing tractable analysis for the DL performance evaluation of large-scale LWPA networks with the help of tools from stochastic geometry. We consider a simple yet practical model to determine under which conditions a native WLAN Access Point (AP) will work under LWPA mode to help increasing the received data rate. Using stochastic spatial models for the distribution of WLAN APs and LTE Base Stations (BSs), we analyze the density of active LWPA-mode WiFi APs in the considered network model, which further leads to closed-form expressions on the DL data rate and area spectral efficiency (ASE) improvement. Our numerical results illustrate the impact of different network parameters on the performance of LWPA networks, which can be useful for further performance optimization.Comment: IEEE GLOBECOM 201

    Spectral and Energy Efficiency of Uplink D2D Underlaid Massive MIMO Cellular Networks

    Get PDF
    CCBY One of key 5G scenarios is that device-to-device (D2D) and massive multiple-input multiple-output (MIMO) will be co-existed. However, interference in the uplink D2D underlaid massive MIMO cellular networks needs to be coordinated, due to the vast cellular and D2D transmissions. To this end, this paper introduces a spatially dynamic power control solution for mitigating the cellular-to-D2D and D2D-to-cellular interference. In particular, the proposed D2D power control policy is rather flexible including the special cases of no D2D links or using maximum transmit power. Under the considered power control, an analytical approach is developed to evaluate the spectral efficiency (SE) and energy efficiency (EE) in such networks. Thus, the exact expressions of SE for a cellular user or D2D transmitter are derived, which quantify the impacts of key system parameters such as massive MIMO antennas and D2D density. Moreover, the D2D scale properties are obtained, which provide the sufficient conditions for achieving the anticipated SE. Numerical results corroborate our analysis and show that the proposed power control solution can efficiently mitigate interference between the cellular and D2D tier. The results demonstrate that there exists the optimal D2D density for maximizing the area SE of D2D tier. In addition, the achievable EE of a cellular user can be comparable to that of a D2D user
    corecore