252 research outputs found

    On the termination of flooding

    Get PDF
    Flooding is among the simplest and most fundamental of all graph/network algorithms. Consider a (distributed network in the form of a) finite undirected graph G with a distinguished node v that begins flooding by sending copies of the same message to all its neighbours and the neighbours, in the next round, forward the message to all and only the neighbours they did not receive the message from in that round and so on. We assume that nodes do not keep a record of the flooding event, thus, raising the possibility that messages may circulate infinitely even on a finite graph. We call this history-less process amnesiac flooding (to distinguish from a classic distributed implementation of flooding that maintains a history of received messages to ensure a node never sends the same message again). Flooding will terminate when no node in G sends a message in a round, and, thus, subsequent rounds. As far as we know, the question of termination for amnesiac flooding has not been settled - rather, non-termination is implicitly assumed.In this paper, we show that surprisingly synchronous amnesiac flooding always terminates on any arbitrary finite graph and derive exact termination times which differ sharply in bipartite and non-bipartite graphs. In particular, synchronous flooding terminates in e rounds, where e is the eccentricity of the source node, if and only if G is bipartite, and, otherwise, in j rounds where e For comparison, we also show that, for asynchronous networks, however, an adaptive adversary can force the process to be non-terminating.</div

    Linking the oceans to public health: current efforts and future directions

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this recordWe review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.Funding was provided in part by the NSF-NIEHS Oceans Centers at Woods Hole, University of Hawaii, University of Miami, and University of Washington, and the NOAA Oceans and Human Health Initiative Centers of Excellent in Charleston, Seattle and Milwaukee, the National Center for Environmental Health (NCEH) of the Centers for Disease Control and Prevention (CDC), and the WHOI Marine Policy Center. Grant numbers are: NIEHS P50 ES012742 and NSF OCE-043072 (HLKP, RJG, PH); NSF OCE-0432368 and NIEHS P50 ES12736 (LEF); NIEHS P50 ES012762 and NSF OCE-0434087 (EMF, AT, LRY); NSF OCE04-32479 and NIEHS P50 ES012740 (BAW

    Linking the oceans to public health : current efforts and future directions

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License The definitive version was published in Environmental Health 7 (2008): S6, doi:10.1186/1476-069X-7-S2-S6.We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research. We find that: • There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health." • The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases. • The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.Funding was provided in part by the NSF-NIEHS Oceans Centers at Woods Hole, University of Hawaii, University of Miami, and University of Washington, and the NOAA Oceans and Human Health Initiative Centers of Excellent in Charleston, Seattle and Milwaukee, the National Center for Environmental Health (NCEH) of the Centers for Disease Control and Prevention (CDC), and the WHOI Marine Policy Center. Grant numbers are: NIEHS P50 ES012742 and NSF OCE-043072 (HLKP, RJG, PH); NSF OCE 0432368 and NIEHS P50 ES12736 (LEF); NIEHS P50 ES012762 and NSF OCE-0434087 (EMF, AT, LRY); NSF OCE04-32479 and NIEHS P50 ES012740 (BAW

    Amnesiac A stage play - and - Playwriting migration: Silence, memory and repetition. An exegesis

    Get PDF
    In response to the surging migration phenomenon and growing hostility and restrictions on the movement of people, the stage play, Amnesiac, and exegesis, Playwriting migration: Silence, memory and repetition, explore a different approach to this global dilemma. Rather than focussing on the plight of refugees and asylum seekers, the approach and focus of the thesis centre on Western migration, from slavery and colonialism to corporation migration in the current globalised capitalist system. The research underpinning the approach of the play and essay examines the process of voluntary or obligatory participation in and/or resistance of political, social and economic systems which contribute to the circumstances that cause people to migrate. The play depicts the workplace and home environments of fictional characters from historical and present-day migrations. Interactions between characters reveal the cumulative effects and fluctuating features of the relationship between oppressor and oppressed. These effects and features manifest in the playwriting, with the blending of repetition, stream of consciousness and memory as a way of understanding character objectives, conflicts, alliances and potential transformations. The results reveal the shifting nature of disempowered peoples and expose the shared experiences of oppressor and oppressed - in particular, the contributing factors of socialisation, domination and greed that are infused in the relationships which ultimately lead to conflict or alliance. The exegesis examines historical and current events and people that inspired the form and content of the play. The factors that inspired the genre, the world of the play, the characters and incidents are discussed in relation to how social, political and economic systems reflect and reveal ongoing root causes of violence, instability and poverty in developing countries and, indeed, the increase of the same problems in developed countries

    Adaptive Collective Responses to Local Stimuli in Anonymous Dynamic Networks

    Get PDF
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response
    • …
    corecore