
On the Termination of Flooding
Walter Hussak
Computer Science, Loughborough University, UK
W.Hussak@lboro.ac.uk

Amitabh Trehan1

Computer Science, Loughborough University, UK
www.amitabhtrehan.net
A.Trehan@lboro.ac.uk

Abstract
Flooding is among the simplest and most fundamental of all graph/network algorithms. Consider a
(distributed network in the form of a) finite undirected graph G with a distinguished node v that
begins flooding by sending copies of the same message to all its neighbours and the neighbours, in
the next round, forward the message to all and only the neighbours they did not receive the message
from in that round and so on. We assume that nodes do not keep a record of the flooding event,
thus, raising the possibility that messages may circulate infinitely even on a finite graph. We call
this history-less process amnesiac flooding (to distinguish from a classic distributed implementation
of flooding that maintains a history of received messages to ensure a node never sends the same
message again). Flooding will terminate when no node in G sends a message in a round, and, thus,
subsequent rounds. As far as we know, the question of termination for amnesiac flooding has not
been settled – rather, non-termination is implicitly assumed.

In this paper, we show that surprisingly synchronous amnesiac flooding always terminates on
any arbitrary finite graph and derive exact termination times which differ sharply in bipartite and
non-bipartite graphs. In particular, synchronous flooding terminates in e rounds, where e is the
eccentricity of the source node, if and only if G is bipartite, and, otherwise, in j rounds where
e < j ≤ e + d + 1 and d is the diameter of G. Since e is bounded above by d, this implies termination
times of at most d and of at most 2d + 1 for bipartite and non-bipartite graphs respectively. This
suggests that if communication/broadcast to all nodes is the motivation, the history-less amnesiac
flooding is asymptotically time optimal and obviates the need for construction and maintenance of
spanning structures like spanning trees. Moreover, the clear separation in the termination times of
bipartite and non-bipartite graphs may suggest possible mechanisms for distributed discovery of the
topology/distances in an arbitrary graph.

For comparison, we also show that, for asynchronous networks, however, an adversary can force
the process to be non-terminating.
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17:2 On the Termination of Flooding

(a) The Hypercube graph (on 8 nodes). (b) The Petersen Graph.

(c) Flooding on Hypercube. (d) Flooding on the Petersen Graph.

Figure 1 Two well known graph topologies (Hypercube and the Petersen Graph) and execution
of Amnesiac flooding (from the red coloured node) on them. The arrows point to direction of the
transmission of the message with the label giving the round number. Double headed arrows indicate
the message crossing over in both directions on the edge. The flooding on the hypercube terminates
in only 3 = diameter rounds, whereas on the Petersen graph, it takes 5 = 2* diameter + 1 rounds.

Acknowledgements We would like to thank the anonymous reviewers for their comments, and Saket
Saurabh, Jonas Lefèvre, Chhaya Trehan, Gary Bennett, Valerie King, Shay Kutten, Paul Spirakis,
Abhinav Aggarwal for the useful discussions and insights and to all others in our network who
attempted to solve this rather easy to state puzzle.

1 Introduction

Consider the two well known graphs in Figure 1; the hypercube (cube in 3 dimensions) graph
and the Petersen graph. Now, consider distributed networks where nodes follow the following
simple flooding process as a communication primitive: A single node (origin) with a message
M begins the process by sending M to all its neighbours in the first round. These nodes, in
the second round, in parallel forward M to all the other neighbours except the origin and
so on. Nodes do this forwarding in a mechanical manner not retaining any memory, thus,
forwarding M again if they receive it again. Possibly, this process can go on indefinitely. We
call this process Amnesiac Flooding (AF) and define it more formally in later discussion. How
does Amnesiac flooding behave if the topology of the network is a hypercube or a Petersen
graph? What about other topologies?

Consider AF on the hypercube first (Figure 1(c)) - it is easy to see that it stops after
3 rounds when the node diagonally opposite the origin gets M from all of its neighbours
simultaneously in round 3 and hence, cannot forward the message further. On the Petersen
graph (Figure 1(d)), though the process terminates, it takes 5 rounds and stops at the origin
itself. If we consider the termination times in terms of graph diameter, it takes diameter
time on the hypergraph but much longer (2 times diameter plus 1) for the Petersen graph.
Thus, the following question: Will AF terminate on other network topologies, and if so, how
long will it take? Why does the time differ markedly on the Hypercube and the Petersen
graphs though they are of similar sizes (in fact, the Petersen graph has a smaller diameter)?

Flooding is among the most basic of distributed graph/network algorithms. To quote
Apnes [1]: Flooding is about the simplest of all distributed algorithms. It is dumb and
expensive, but easy to implement, and gives you both a broadcast mechanism and a way
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to build rooted spanning trees. At a high level, flooding can be simply described as: In a
network, a node begins flooding by sending a message to all its neighbours and subsequently,
every node, in parallel, forwards the same message to all their neighbours.

Flooding is the simplest strategy to achieve broadcast i.e. have a message reach every
node in the network, in quick time. Often flooding is implemented with a flag that is set when
the message is seen for the first time to ensure termination (see e.g. [2]) We are interested in
the variant of flooding which does not explicitly use such a flag or keep a record of having
seen the message before. The node selectively sends the message only to the complement of
its neighbours from whom it has just received the message and subsequently forgets about
that activity. The process terminates if there is no node that forwards M in a round (and,
therefore, subsequent rounds). We call this amnesiac flooding (AF for short) to account
for the very short term memory of the node. We analyse this very simple and theoretically
interesting deterministic process on graphs and derive a rather unexpected and surprising
result. We show that synchronous AF (i.e. in the synchronous message passing model where
nodes send messages in parallel in synchronised rounds) terminates on every finite graph in
time optimal O(d) rounds, where d is the diameter of the graph. We also show that, at least
in one asynchronous model, an adversary can force AF to be non-terminating.

Besides being theoretically interesting, our results also have practical implications. AF is
a natural variant minimising memory overhead with nodes simply forwarding messages in a
rather dumb manner. Note that if there were multiple messages being flooded in the network,
the memory requirement of keeping the historical flags (for every message being flooded)
could be significant, especially for low memory devices (e.g. sensor networks). Our results
show that if the objective of the flooding is broadcasting, this overhead maybe unnecessary.
Of course, a spanning substructure could be constructed from the initial regular flooding
and used for subsequent broadcast (as is often done). However, spanning substructures can
be difficult to maintain if the network is changing. This would not be required if AF was
being used for communication.

We speculate (though we have not studied this in detail) that AF may correspond to
certain natural and social phenomena to whose understanding our results may contribute.
Consider the following possibly contrived example as a thought experiment: There is an
aggressive social media user that forwards every message it receives to all its contacts but
is polite enough to not forward to those who had just forwarded it the message. Naturally,
such users lose track of the messages they have been forwarding. A natural question is that
will a message cease getting circulated.

These need to be investigated further.

1.1 Model, Problem Definition and Results
Let G(V, E) be an undirected graph (with n vertices and m edges) representing a network
where the vertices represent the nodes of the network and edges represent the connections
between the nodes. We consider the process in a synchronous message passing network:
computation proceeds in synchronous rounds where each round consists of every node
receiving messages from all its neighbours, doing local computation and sending messages to
all (or some of) its neighbours. No messages are lost in transit. We consider only flooding
from a single source for now.

I Definition 1. Synchronous Amnesiac Flooding (Synchronous AF): A distinguished
node, say `, sends a message (say, M) to all its neighbours in round 1. In subsequent rounds,
every node receiving M forwards a copy of M to every, and only those, nodes it did not receive
the message from in the previous round. Algorithm 1.1 presents the algorithm formally.

STACS 2020



17:4 On the Termination of Flooding

Algorithm 1.1 Synchronous Amnesiac Flooding: A message M from a source node s is “flooded”
over graph G.
1: procedure Flooding(G, s) {Flooding over graph G from source node s}
2: Let N(v)← Neighbours of v ∈ G

3: Node s sends message M to all its neighbours in G {Round 1: s “floods” a message M}
4: for Rounds i = 1, 2, . . . do
5: for For all nodes v in parallel do
6: Let I(v, M)← set of neighbours of v that sent M to v in round i−1 {I(v, M) ⊆ N(v)}

7: Send M to N(v)\I(v, M) {Send to all neighbours except those who sent the message
to v in the previous round}

Note that this is an “amnesiac” process i.e. nodes do not retain memory of having received
or sent the message in the previous (but one) rounds. We say that flooding terminates when
no message (i.e. a copy of M) is being sent over any edge in the network. We address the
following questions:

For every finite graph G, beginning from any arbitrary vertex, will amnesiac
flooding always terminate? If so, how many rounds does it take?

In Section 2, we answer the first part of the above question in the affirmative i.e. this
flooding process will terminate for every G. For the second part of the question, in Section 3,
we notice a sharp distinction between bipartite and non-bipartite graphs. Recall the standard
definitions of eccentricity and diameter : eccentricity of a node is defined as the length of
the longest of the shortest paths to other nodes in the graph, and diameter is the largest
eccentricity of any node in the graph i.e. the longest distance between any two nodes in the
graph. We show that flooding terminates in e rounds (i.e. at most d rounds), where e is the
eccentricity of the source node and d the diameter of G, if and only if G is bipartite. Note
that this is time optimal for broadcast. If the graph is non-bipartite, synchronous flooding
takes longer: from a single source, flooding terminates in j rounds where e < j ≤ e + d + 1.

Note that in this work, we only look at global termination i.e. the state when M stops
circulating in the system. We do not discuss the related problem of individual nodes detecting
that either global termination has happened or if they should stop participation in flooding.
In some sense, this is even unnecessary since nodes do not need to maintain any additional
state or history. There is no persistent overhead to keeping the simple amnesiac flooding
process as a rule in the background.

1.1.1 Asynchronous Message Passing
For comparison, we also consider an asynchronous message passing model and show in
Section 4 that an

adversary in this model can cause flooding to be non-terminating. We consider what
we call as the round-asynchronous model where the computation still proceeds in global
synchronous rounds but the adversary can decide the delay of message delivery on any link.
The message cannot be lost and will be eventually delivered but the adversary can decide
which round to deliver the message in. The adversary can decide on individual link delays
for a round based on the state of the network for the present and previous rounds (i.e. node
states, messages in transit and message history). Now, the flooding algorithm (Asynchronous
Amnesiac Flooding) will exactly be same as Algorithm 1.1 except that the adversary decides
which round a message transmitted on an edge reaches the other end. In Section 4, we show



W. Hussak and A. Trehan 17:5

(a) Round 1. (b) Round 2. (c) Round 3.

Figure 2 Amnesiac Flooding over a line network beginning with node b in 2 ( < diameter = 3)
rounds. Circled nodes are sending M in that round.

(a) Round 1. (b) Round 2. (c) Round 3. (d) Round 4.

Figure 3 AF over a Triangle (Odd Cycle/Clique) network beginning with node b. Both node a

and c send M to each other in round 2 and to b in round 3. Also, this is an odd (# nodes) cycle
and termination takes 2d + 1 time (d= diameter = 1).

that the adversary can force Asynchronous AF to be non-terminating by choosing link delays.
Note that since the process is deterministic, the adversary can choose the link delays in
advance (rather than needing to choose them adaptively).

We leave discussion of other asynchronous settings for future work.

1.2 Some illustrative examples
Figure 2 shows flooding over a line graph. The process begins with the node b and terminates
at the ends of the graph and takes only 2 rounds, which is equal to the eccentricity of node b

in the graph (which has diameter of 3). Note that a line is an example of a bipartite graph.
The triangle graph is another interesting illustrative example (Figure 3) – here, termination
takes 3 rounds, whereas, the diameter is only 1. Note that the triangle is also the smallest
clique and the smallest non-trivial cycle with an odd number of nodes (an important topology
for us). The even cycle is another interesting topology but here termination will happen in d

rounds (as expected according to our bipartite graphs result). Of course, a graph can have
far more complicated topology with cyclic and acyclic subgraphs.

1.3 Related work
A brief announcement of this work has appeared as [10]. The applications of flooding as a
distributed algorithm are too numerous to be mentioned. It is one of the first algorithms
to be introduced in distributed computing textbooks, often as the basic algorithm to solve
leader election [12, 13] and set up graph substructures such as spanning trees [14, 2, 16, 19].
Flooding based algorithms (or flooding protocols) appear in areas ranging rom GPUs, High
performance, shared memory and parallel computing to Mobile ad hoc networks(MANETs),
Mesh Networks, Complex Networks etc [18]. In [17], Rahman et al show that flooding can
even be adopted as a reliable and efficient routing scheme, comparable to sophisticated
point-to-point forwarding schemes, in some ad-hoc wireless mobile network applications.

Termination is one of the most important properties a distributed algorithm requires.
Since it is imperative to not have unnecessary messages circulating and clogging the network,
explicit termination is desired and often enforced by using a flag to record if the node has
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already participated in the flooding [1, 14, 2, 16, 19]. Otherwise, algorithms using broadcast
for communication e.g. [9] (for high speed networks) use other explicit solutions to enforce
termination. However, in some models such as population protocols, the low memory makes
termination very difficult to achieve leading to research that tries to provide termination
e.g. [15]. Our flooding algorithm has the advantage of being simple, using low memory, and
being efficiently terminating as shown by our analysis. The idea of avoiding the most recently
chosen node(s) has been used before in distributed protocols e.g. in social networks [6] and
broadcasting [7] but we are not aware of this fundamental variant of flooding having been
studied before. Lastly, processes such as random walks [4, 5, 8, 12, 13] and its deterministic
variant Rotor-Router (or Propp) machine [11, 3] can be seen as restricted variants of flooding
which possibly our work can provide some insight into.

2 Termination in a synchronous network

I Definition 2. Let G be a graph. The round-sets R0, R1, . . . are defined as:

R0 is the singleton containing an initial node,
Ri is the set of nodes which receive a message at round i (i ≥ 1).

Clearly, if Rj = ∅ for some j ≥ 0, then Ri = ∅ for all i ≥ j. We shall refer to rounds Ri,
where Ri 6= ∅, as active rounds.

I Theorem 3. Any node g ∈ G is contained in at most two distinct round-sets.

Proof. Define R to be the set of finite sequences of consecutive round-sets of the form:

R = Rs, . . . , Rs+d where s ≥ 0, d > 0, and Rs ∩Rs+d 6= ∅ . (1)

In (1), s is the start-point s(R) and d is the duration d(R) of R. Note that, a node g ∈ G

belonging to Rs and Rs+d may also belong to other Ri in (1). If a node g ∈ G occurs in
three different round-sets Ri1 , Ri2 and Ri3 , then the duration between Ri1 and Ri2 , the
duration between Ri2 and Ri3 , or the duration between Ri1 and Ri3 will be even. Consider
the subset REV of R of sequences of the form (1) where d is even. To prove that no node is
in three round-sets, it suffices to prove that REV is empty.

We assume that REV is non-empty and derive a contradiction.
Let REV

d̂
be the subset of REV comprising sequences of minimum (even) duration d̂, i.e.

REV
d̂

= {R ∈ REV | ∀ R′ ∈ REV . d(R′) ≥ d(R) = d̂} (2)

Clearly, if REV is non-empty then so is REV
d̂

. Let R∗ ∈ REV
d̂

be the sequence with earliest
start-point ŝ, i.e.

R∗ = Rŝ, . . . , Rŝ+d̂ (3)

where

∀ R′ ∈ REV
d̂

. s(R′) ≥ s(R∗) = ŝ (4)

By (1), there exists g ∈ Rŝ ∩Rŝ+d̂. Choose node g′ which sends a message to g in round
ŝ + d̂. As g′ is a neighbour of g, either g′ sends a message to g in round ŝ or g sends a
message to g′ in round ŝ + 1. We show that each of these cases leads to a contradiction.
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Figure 4 Node g′ sends a message to node g in round ŝ: the first round of the minimum even
length sequence (of length d̂) in which g repeats.

Case (i): g′ sends a message to g in round ŝ

Refer to Figure 4. In this case, there must be a round ŝ− 1 which is either round 0 and
g′ is the initial node, or g′ received a message in round ŝ− 1. Thus, the sequence

R∗
′

= Rŝ−1, Rŝ, . . . , Rŝ+d̂−1 where g′ ∈ Rŝ−1 ∩Rŝ+d̂−1 (5)

has d(R∗
′
) = (ŝ + d̂− 1)− (ŝ− 1) = d̂ which is even and so R∗

′
∈ REV

d̂
. As R∗

′
∈ REV

d̂
,

by (4)

s(R∗
′
) ≥ s(R∗) (6)

But, from (5), s(R∗
′
) = ŝ− 1 and, from (4), s(R∗) = ŝ. Thus, by (6),

ŝ− 1 = s(R∗
′
) ≥ s(R∗) = ŝ

which is a contradiction.

Case (ii): g sends a message to g′ in round ŝ + 1

Refer to Figure 5. By the definition of REV , the smallest possible value of d̂ is 2.

Figure 5 Node g sends a message to node g′ in round ŝ + 1: round ŝ is the first round of the
minimum even length sequence (of length d̂) in which g repeats.

However, it is not possible to have d̂ = 2 in this case as then

R∗ = Rŝ, Rŝ+1, Rŝ+2

This would mean that g sends a message to g′ in round ŝ + 1. But, we chose g′ to be such
that g′ sends a message to g in round ŝ + d̂ = ŝ + 2. This cannot happen as g cannot
send a message to g′ and g′ to g in consecutive rounds by the definition of rounds.

R∗ = Rŝ, Rŝ+1, . . . , Rŝ+d̂−1, Rŝ+d̂

where ŝ + 1 < ŝ + d̂− 1. Consider the sequence

R∗
′′

= Rŝ+1, . . . , Rŝ+d̂−1 (7)

As g′ receives a message from g in round ŝ + 1 and g′ sends a message to g in round
ŝ + d̂, it is clear that g′ ∈ Rŝ+1 ∩ Rŝ+d̂−1. Thus, R∗

′′
∈ R. As d̂ is even, so is

STACS 2020
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(a) Even Cycle Graph. (b) Odd Cycle Graph.

Figure 6 Even cycle (6 nodes) and Odd cycle (5 nodes) graphs: Graphs show markedly different
termination times. Consider AF from node b in both cases - In the 6-cycle it terminates in 3 rounds,
but in the 5-cycle in 5 rounds.

(ŝ + d̂ − 1) − (ŝ + 1) = d̂ − 2 and therefore R∗
′′
∈ REV . Now, R∗ ∈ REV

d̂
and so, as

R∗
′′
∈ REV , we have, by (2),

d(R∗
′′
) ≥ d(R∗) (8)

As d(R∗
′′
) = d̂− 2 from (7) and d(R∗) = d̂ from (3), we have, by (8),

d̂− 2 = d(R∗
′′
) ≥ d(R∗) = d̂

This contradiction completes the proof. J

I Definition 4. Given g ∈ G, we use a superscript 1 to indicate that g belongs to a round-set
for the first time, and a superscript 2 to indicate that it belongs to a round-set for the second
time, i.e.

g1 ∈ Rj

means that

g ∈ Rj and g /∈ Ri for all i with 0 ≤ i < j.

and

g2 ∈ Rj

means that

g ∈ Rj and g ∈ Ri for some i with 0 ≤ i < j.

Theorem 3 implies that Ri = ∅ for i ≥ 2n, where n is the number of vertices of G, and
therefore network flooding always terminates.

I Corollary 5. Synchronous network flooding always terminates in fewer than 2n + 1 rounds.

In the next section we give a greatly improved sharp upper bound for the number of rounds
to termination, in terms of the eccentricity of the initial node and the diameter of G.

3 Time to termination

The question of termination of network flooding is non-trivial when cycles are present in G.
The simple cases when G is an even cycle, as in Figure 6a and when G is an odd cycle, as
in Figure 6b display quite different termination behaviours. The even cycle in Figure 6a
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terminates after round e where e is the eccentricity of the initial node in G. On the other
hand, flooding on the odd cycle in Figure 6b, returns a message to the initial node and
terminates after round 2e + 1 resulting in a longer flooding process than the even cycle in
Figure 6a despite having fewer nodes and a smaller value of e. In this section, we show that
these observations can be largely generalized to arbitrary graphs. Specifically, we show that
flooding on a graph G terminates after e rounds if and only if G is bipartite. If G is not
bipartite, we show that flooding terminates after some round i where e < i ≤ e + d + 1 and d

is the diameter of G.

I Definition 6. Let (G, E) be a graph with vertex set G and edge set E, and g0 ∈ G be an
initial node. We will use the following definitions.
(i) For each j ∈ N, the distance set Dj will denote the set of points which are a distance j

from g0. i.e.

Dj = {g ∈ G : d(g0, g) = j},

where d is the usual distance function in graph G.
(ii) A node g ∈ G is an equidistantly-connected node, abbreviated ec node, iff there there

exists g′ ∈ G− {g0, g} such that d(g0, g) = d(g0, g′) and {g, g′} ∈ E

We have the following basic properties of distance sets Dj and ec nodes.

I Lemma 7. Let G be a graph and g0 ∈ G be an initial node.
(i) For all j ∈ N and i > j, Dj ⊆ Rj and Rj ∩Di = ∅.
(ii) For all j ∈ N, g ∈ Dj and g′ ∈ Dj+1 such that g and g′ are neighbours, g sends a

message to g′ in round j + 1, i.e. all nodes at a distance j from g0 send to all their
neighbours which are a distance j + 1 in round j + 1.

(iii) If j ≥ 1 and g ∈ Dj is an ec point, then g2 ∈ Rj+1.

Proof. For (i), clearly every node at a distance j from g0 receives a message in round j and
so Dj ⊆ Rj . Furthermore, every message received in round j will have travelled along j

edges from g0 and so could not have reached a node which is at a distance i > j from g0.
Thus, Rj ∩Di = ∅.

For (ii), we note that the only circumstance in which a node g in Dj (⊆ Rj by (i)) does
not send to a neighbour g′ in Dj+1 in round j + 1 is if g sent a message to g′ in round j.
This would need g to be in the round-set Rj−1, i.e. g ∈ Rj−1 ∩Dj+1 which contradicts (i)
which has Rj−1 ∩Dj+1 = ∅ as j + 1 > j − 1.

For (iii), if j ≥ 1 and g ∈ Dj is an ec point, then by Definition 6(ii) there is a point g′

equidistant from the initial node g0, i.e. g′ ∈ Dj such that g and g′ are neighbours. By
(i) of this lemma Dj ⊆ Rj , and so both g and g′ receive messages in round j. Also by (i),
neither sends a message in round j as Rj−1 ∩Dj = ∅. Thus, g and g′ send messages to each
other in round j + 1. As this will be the second time they receive messages we have that
g2 ∈ Rj+1. J

All nodes in a graph without ec nodes, belong to at most one round-set.

I Lemma 8. Let G be a graph and let g0 ∈ G be an initial node. Then G has an ec node if
and only if G has a node that is in two round-sets.

Proof. Suppose that G has no ec nodes. Assume, on the contrary, that G has nodes that
appear in two round-sets. Let Rj (j ≥ 1) be the earliest round which contains a node g

such that g2 ∈ Rj and h ∈ Rj−1 be a neighbour of g which sends to g in round j, so that
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h1 ∈ Rj−1. Then, h ∈ Di for some i ≥ 1 and h1 ∈ Ri by Lemma i(i). Thus, i = j − 1 and
so g2 ∈ Ri+1. As g is a neighbour of h, g ∈ Di, Di+1, or Di−1. If g ∈ Di then g and h are
ec nodes contrary to our supposition that G has no ec nodes. If g ∈ Di+1 then g1 ∈ Ri+1
by Lemma i(i), which is contrary to the assertion that g2 ∈ Rj = Ri+1. If g ∈ Di−1 then
g ∈ Ri−1, by Lemma i(i), and so g1 ∈ Ri−1 as g2 ∈ Ri+1. By Lemma ii(ii), g sends to h in
round i = j − 1. This is contrary to h sending to g in round j. Thus, our assumption that G

has nodes that appear in two round-sets is false.
Conversely, suppose that G has an ec node g ∈ Dj where j ≥ 1. Then g2 ∈ Rj+1 by

Lemma iii(iii). J

We note that bipartite graphs do not have any ec nodes.

I Lemma 9. Let G be a graph and g0 ∈ G be an initial node. Then, G is bipartite iff it has
no ec nodes.

Proof. G is not bipartite iff there is a path from g0 to an odd cycle in G. This is the case iff
an edge of G connects two points equidistant from g0, i.e G has an ec point. J

From Lemmas 8 and 9, we see that, in bipartite graphs, nodes only appear in one round-set.
Thus, the time to termination can be determined by finding a bound on when each node
belongs to a round-set.

I Theorem 10. Let G be a graph and g0 ∈ G be an initial node with eccentricity e. Then,
flooding will have terminated after round e if and only if G is bipartite.

Proof.

G is bipartite iff G has no ec nodes (by Lemma 9)
iff no node appears in 2 round-sets (by Lemma 8)
iff Re is the last non-empty round-set

(as nodes a distance j from g0
are only in Rj by Lemma i(i))

J

To find the time to termination in general graphs we need to find a bound on when nodes
can belong to a round-set for the second time. As nodes can only belong to at most two
round-sets, by Theorem 3, this will give a bound for termination of flooding in general graphs.
The following lemma relates the round-sets of second occurrences of neighbouring nodes.

I Lemma 11. Let G be a graph and g0 ∈ G an initial node. If h2 ∈ Rj for some j ∈ N, and
if g is a neighbour of h, then

g2 ∈ Rj−1 or g2 ∈ Rj or g2 ∈ Rj+1

Proof. Let i be the distance of h from g0, i.e. h ∈ Di. Then, as h2 ∈ Rj , j > i by Lemma i(i).
As g is a neighbour of h, g ∈ Di or g ∈ Di−1 or g ∈ Di+1.

Case g ∈ Di: As h, g ∈ Di are neighbours they are both ec nodes. Thus, by Lemma iii(iii),
h2 ∈ Ri+1 and g2 ∈ Ri+1. Therefore, j = i + 1 and g2 ∈ Rj .
Case g ∈ Di−1: If g ∈ Rj ( 6= Ri−1 as j > i) then, as g1 ∈ Di−1 ⊆ Ri−1 by Lemma i(i),
it must be the case that g2 ∈ Rj . If g /∈ Rj and g ∈ Rj−1 ( 6= Ri−1 as j > i) then, as
g1 ∈ Ri−1 by Lemma i(i), it must be the case that g2 ∈ Rj−1. If g /∈ Rj and g /∈ Rj−1
then, as h ∈ Rj , h sends to g in round j + 1 and so g ∈ Rj+1 ( 6= Ri−1 as j > i). As
g1 ∈ Ri−1, it must be the case that g2 ∈ Rj+1.
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Case g ∈ Di+1, g does not send to h in round j: In this case, as h ∈ Rj , h sends to g in
round j + 1. Thus, g ∈ Rj+1 ( 6= Ri+1 as j > i) and therefore, as g1 ∈ Di+1 ⊆ Ri+1 by
Lemma i(i), it must be the case that g2 ∈ Rj+1.
Case g ∈ Di+1, g sends to h in round j: In this case, g ∈ Rj−1. If g1 ∈ Rj−1, then,
by Lemma i(i) , g1 ∈ Di+1 ⊆ Ri+1 and thus j − 1 = i + 1. Hence, by Lemma i(i),
h1 ∈ Di ⊆ Ri = Rj−2. Also, g /∈ Rj−3 as g1 ∈ Rj−1.
To summarize:

g /∈ Rj−3, h1 ∈ Rj−2, g1 ∈ Rj−1, h2 ∈ Rj

So, h sends to g in round j − 1 and g sends to h in round j by the case assumption. This
is a contradiction. Thus, g1 /∈ Rj−1 and, as g ∈ Rj−1, it follows that g2 ∈ Rj−1.

This completes the proof. J

I Theorem 12. Let G be a non-bipartite graph with diameter d and let g0 ∈ G be an initial
node of eccentricity e. Then, flooding terminates after j rounds where j is in the range
e < j ≤ e + d + 1.

Proof. If G is not bipartite it has an ec node g, by Lemma 9. By Lemma iii(iii), g2 ∈ Rk

where k = d(g0, g) + 1. Let h be an arbitrary node in G other than g. Then, there is a path

h0 = g −→ h1 −→ . . . −→ hl = h

where l ≤ d. By repeated use of Lemma 11,

h2
1 ∈ Rj1 where k − 1 ≤ j1 ≤ k + 1,

h2
2 ∈ Rj2 where j1 − 1 ≤ j2 ≤ j1 + 1,

. . .

h2
l ∈ Rjl

where jl−1 − 1 ≤ jl ≤ jl−1 + 1 (l ≥ 1).

Thus,

h2
l ∈ Rjl

where k − l ≤ jl ≤ k + l (9)

Put j = jl. From (19), as k = d(go, g) + 1 ≤ e + 1 and as l ≤ d,

h2
l ∈ Rj where j ≤ e + d + 1.

Thus, j ≤ e + d + 1.

As G is not bipartite, j > e by Theorem 10 and the proof is complete. J

Figure 7 Flooding in the graph in the above figure starting from node c takes e + d + 1 rounds
(the maximum as per our analysis), where e is eccentricity and d the diameter.

The upper bound in Theorem 12 is easily seen to be sharp - the flooding in the graph in
Figure 7 starting from node c terminates after round 7 = 2 + 4 + 1 = e + d + 1. Similar
termination times hold for all nodes in the Petersen graph (Figure 1).

STACS 2020
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(a) Round 1 (b) Round 2 (c) Round 3 (d) Round 4 (e) Round 5

Figure 8 Asynchronous AF over a Triangle. Both node a and c send M to each other in round
2. In round 3, a sends M to b but the adversary makes c holds the message for one round (shaded
node). In the next round, we have a round analogous to round 2 and so on.

4 Asynchronous Amnesiac Flooding

Non-termination in an adversarial asynchronous setting: Consider the round-asynchro-
nous setting (as described in the model section). The scheduling adversary can choose the
delay on every message edge i.e. which round to forward a message on.

An example suffices to prove non-termination. Consider round 3 in the triangle in Figure 8.
The adversary delays M at node c but a continues and sends to b. In round 4, node b and
c both send M so that the beginning of the next round is now identical to round 2 with
nodes a and b interchanged. This process can now continue ad infinitum with the adversarial
intervention.

5 Conclusion and Future Work

We studied a natural variant of the flooding algorithm where nodes do not retain any memory
of the flooding beyond the previous round. We call this Amnesiac flooding (AF ) and discussed
the question of termination i.e. no copies of the initial message are being circulated anymore.
We showed the surprising result that not only does this process terminate on all finite graphs
but also accomplishes broadcast in almost optimal time and message overhead. There is a
clear separation in complexity between bipartite and non-bipartite topologies. An interesting
question is whether this separation can be exploited to devise distributed procedures to
detect the topology of a graph given distance measures or vice versa. There is the question
of multiple sources: what happens when multiple nodes start the flooding process with the
same message M? We expect our method of proof can be extended to prove termination
and obtain bounds in the case of multiple sources.

What about dynamic settings where nodes and edges change? It is easy to see that due
to its simplicity, AF can be re-executed immediately after the graph has changed. However,
what if the graph changes while messages are in circulation - under what conditions is
termination/non-termination guaranteed?

Another important question is to look at flooding in asynchronous settings in more
detail. We show one model where an adversary can force AF to be non-terminating. Since a
completely asynchronous setting is event driven, this would also involve deciding what it
means to receive messages simultaneously. Finally, one can see processes such as random
walks, coalescing random walks and diffusion as probabilistic extremal variants of flooding.
Are there any implications or connections of our result on these or intermediate probabilistic
models? What about randomised variants of AF?
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