285,352 research outputs found

    Requirements engineering for computer integrated environments in construction

    Get PDF
    A Computer Integrated Environment (CIE) is the type of innovative integrated information system that helps to reduce fragmentation and enables the stakeholders to collaborate together in business. Researchers have observed that the concept of CIE has been the subject of research for many years but the uptake of this technology has been very limited because of the development of the technology and its effective implementation. Although CIE is very much valued by both industrialists and academics, the answers to the question of how to develop and how to implement it are still not clear. The industrialists and researchers conveyed that networking, collaboration, information sharing and communication will become popular and critical issues in the future, which can be managed through CIE systems. In order for successful development of the technology, successful delivery, and effective implementation of user and industry-oriented CIE systems, requirements engineering seems a key parameter. Therefore, through experiences and lessons learnt in various case studies of CIE systems developments, this book explains the development of a requirements engineering framework specific to the CIE system. The requirements engineering process that has been developed in the research is targeted at computer integrated environments with a particular interest in the construction industry as the implementation field. The key features of the requirements engineering framework are the following: (1) ready-to-use, (2) simple, (3) domain specific, (4) adaptable and (5) systematic, (6) integrated with the legacy systems. The method has three key constructs: i) techniques for requirements development, which includes the requirement elicitation, requirements analysis/modelling and requirements validation, ii) requirements documentation and iii) facilitating the requirements management. It focuses on system development methodologies for the human driven ICT solutions that provide communication, collaboration, information sharing and exchange through computer integrated environments for professionals situated in discrete locations but working in a multidisciplinary and interdisciplinary environment. The overview for each chapter of the book is as follows; Chapter 1 provides an overview by setting the scene and presents the issues involved in requirements engineering and CIE (Computer Integrated Environments). Furthermore, it makes an introduction to the necessity for requirements engineering for CIE system development, experiences and lessons learnt cumulatively from CIE systems developments that the authors have been involved in, and the process of the development of an ideal requirements engineering framework for CIE systems development, based on the experiences and lessons learnt from the multi-case studies. Chapter 2 aims at building up contextual knowledge to acquire a deeper understanding of the topic area. This includes a detailed definition of the requirements engineering discipline and the importance and principles of requirements engineering and its process. In addition, state of the art techniques and approaches, including contextual design approach, the use case modelling, and the agile requirements engineering processes, are explained to provide contextual knowledge and understanding about requirements engineering to the readers. After building contextual knowledge and understanding about requirements engineering in chapter 2, chapter 3 attempts to identify a scope and contextual knowledge and understanding about computer integrated environments and Building Information Modelling (BIM). In doing so, previous experiences of the authors about systems developments for computer integrated environments are explained in detail as the CIE/BIM case studies. In the light of contextual knowledge gained about requirements engineering in chapter 2, in order to realize the critical necessity of requirements engineering to combine technology, process and people issues in the right balance, chapter 4 will critically evaluate the requirements engineering activities of CIE systems developments that are explained in chapter 3. Furthermore, to support the necessity of requirements engineering for human centred CIE systems development, the findings from semi-structured interviews are shown in a concept map that is also explained in this chapter. In chapter 5, requirements engineering is investigated from different angles to pick up the key issues from discrete research studies and practice such as traceability through process and product modelling, goal-oriented requirements engineering, the essential and incidental complexities in requirements models, the measurability of quality requirements, the fundamentals of requirements engineering, identifying and involving the stakeholders, reconciling software requirements and system architectures and barriers to the industrial uptake of requirements engineering. In addition, a comprehensive research study measuring the success of requirements engineering processes through a set of evaluation criteria is introduced. Finally, the key issues and the criteria are comparatively analyzed and evaluated in order to match each other and confirm the validity of the criteria for the evaluation and assessment of the requirements engineering implementation in the CIE case study projects in chapter 7 and the key issues will be used in chapter 9 to support the CMM (Capability Maturity Model) for acceptance and wider implications of the requirements engineering framework to be proposed in chapter 8. Chapter 6 explains and particularly focuses on how the requirements engineering activities in the case study projects were handled by highlighting strengths and weaknesses. This will also include the experiences and lessons learnt from these system development practices. The findings from these developments will also be utilized to support the justification of the necessity of a requirements engineering framework for the CIE systems developments. In particular, the following are addressed. • common and shared understanding in requirements engineering efforts, • continuous improvement, • outputs of requirement engineering • reflections and the critical analysis of the requirements engineering approaches in these practices. The premise of chapter 7 is to evaluate and assess the requirements engineering approaches in the CIE case study developments from multiple viewpoints in order to find out the strengths and the weaknesses in these requirements engineering processes. This evaluation will be mainly based on the set of criteria developed by the researchers and developers in the requirements engineering community in order to measure the success rate of the requirements engineering techniques after their implementation in the various system development projects. This set of criteria has already been introduced in chapter 5. This critical assessment includes conducting a questionnaire based survey and descriptive statistical analysis. In chapter 8, the requirements engineering techniques tested in the CIE case study developments are composed and compiled into a requirements engineering process in the light of the strengths and the weaknesses identified in the previous chapter through benchmarking with a Capability Maturity Model (CMM) to ensure that it has the required level of maturity for implementation in the CIE systems developments. As a result of this chapter, a framework for a generic requirements engineering process for CIE systems development will be proposed. In chapter 9, the authors will discuss the acceptance and the wider implications of the proposed framework of requirements engineering process using the CMM from chapter 8 and the key issues from chapter 5. Chapter 10 is the concluding chapter and it summarizes the findings and brings the book to a close with recommendations for the implementation of the Proposed RE framework and also prescribes a guideline as a way forward for better implementation of requirements engineering for successful developments of the CIE systems in the future

    A Holistic Approach to Sustainability Analysis of Industrial Networks

    Get PDF
    The aim of this thesis is to support the evaluation of sustainable development strategies for industrial networks in the context of industrial ecology (IE). Industrial networks are a group of units which carry out, or contribute to, industrial activity, and are connected by material and energy flows, but also capital and information exchanges. The components of an industrial network encompass resource extraction, processing and refining, forming and assembly, use, disposal, as well as recycling and reprocessing. The motivation behind this research is the realisation that much of the current environmental system analysis focus within IE lacks a structured approach to considering: • system environment • dynamic nature of the system and its environment • economic and social impacts • the effect of uncertainty on analysis outcomes. It is argued in this thesis that current environmental analysis approaches used in IE can be improved in their capacity to capture the complexity of industrial systems, with the objective of promoting sustainable development. While IE emphasises the benefit of a systems approach to identifying environmental strategies in industry, analysis tools have to date not engaged extensively with important aspects such as the influence of system environment and dynamics on the viability of an environmental strategy, or with the economic or social impacts of industrial system development, which are equally important for sustainable development. Nor is the assessment of the effect of uncertainty on analysis outcomes an integral part of environmental analysis tools in IE. This is particularly significant when, in fact, the degree of uncertainty in assumptions and data used increases with the scope, and therefore the abstraction, of the system under consideration. IE will have to engage with the network and contextual complexities to a greater degree if it is to evolve from a concept to the application of its principles in practice. The main contribution of this thesis is therefore the development of a structured approach to analysing industrial networks for the purpose of identifying strategies to encourage sustainable development, while accounting for the complexity of the underlying system as well as the problem context. This analysis is intended to allow the identification of preferred network development pathways and to test the effectiveness of sustainable development strategies. A top-down, prescriptive approach is adopted for this purpose. This approach is chosen as the industrial network analysis is intended to identify how a network should develop, rather than focusing on how it could develop. Industrial networks are systems which are complex in both their structure and behaviour. This thesis also delivers a characterisation of these networks, which serves two purposes – quantifying key elements of structure and behaviour; and using this information to build a foundation for subsequent industrial network analysis. The value of such an approach can be seen in the following example. With a detailed understanding of individual network characteristics, both separately and collectively, it is possible to determine the source of issues, the means available to address them, any barriers that might exist, and the consequences of implementing any strategic interventions. The analysis approach proposed in this thesis is based on multi-criteria decisions analysis (MCDA), which, as a process, combines initial problem structuring and subsequent quantitative analysis stages. The tools employed within MCDA have been employed variously around considerations of sustainable development. Their value in this thesis is their integration within a rigorous analytical framework. Rigorous problem structuring is attractive as it helps elucidate the complexities of the system and its environment and is, by definition, designed to deal with multiple environmental social and economic criteria that would have to be considered to promote sustainable development. For the quantitative analysis, the industrial network analysis draws from existing analysis tools in IE, but predominately from other systems research disciplines, such as process systems engineering (PSE) and supply chain management (SCM). These fields, due to their maturity and practical focus, have invested a lot of research into system design and strategic planning, capturing system dynamics and uncertainty to ensure, within selected system constraints, that a proposed system or changes to a system are viable, and that the system is capable of achieving the stated objectives. Both PSE and SCM rely heavily on optimisation for system design and planning, and achieve good results with it as an analytical tool. The similarity between industrial networks and process systems / supply chains, suggests that an optimisation platform, specifically multi-objective dynamic optimisation, could be employed fruitfully for the analysis of industrial networks. This is the approach taken in this thesis. It is consistent with the “top down” approach advocated previously, which is deemed preferable for the identification and implementation analysis of strategic interventions. This enables the determination of a structure (design) that is “best” able to operate under future conditions (planning) with respect to the chosen sustainable development objectives. However, an analysis is only ever as good as its underlying data and assumptions. The complexity and scope of the industrial network and the challenge of articulating sustainable development target(s) give rise to significant uncertainties. For this reason a framework is developed within this thesis that integrates uncertainty analysis into the overall approach, to obtain insight into the robustness of the analysis results. Quantifying all the uncertainties in an industrial network model can be a daunting task for a modeller, and a decision-maker can be confused by modelling results. Means are therefore suggested to reduce the set of uncertainties that have to be engaged with, by identifying those which impact critically on model outcomes. However, even if uncertainty cannot be reduced, and the implementation of any strategy retains a degree of risk, the uncertainty analysis has the benefit that it forces an analyst to engage in more detail with the network in question, and to be more critical of the underlying assumptions. The analysis approach is applied to two case studies in this thesis: one deals with waste avoidance in an existing wood-products network in a large urban metropolis; the other with the potential for renewable energy generation in a developing economy. Together, these case studies provide a rich tableau within which to demonstrate the full features of the industrial network analysis. These case studies highlight how the context within which the relevant industrial network functions influences greatly the evolution of the network over time; how uncertainty is managed; and what strategies are preferred in each case in order to enhance the contribution of each network to sustainable development. This thesis makes an intellectual contribution in the following areas: • the characterisation of industrial networks to highlight sources of environmental issues, role the characteristics (could) play in the identification of (preferred) sustainable development strategies, and the need to explicitly consider these in a systems analysis. • the synthesis, adaptation and application of existing tools to fulfil the need for analysis tools in IE that can handle both contextual and system complexity, and address the above mentioned issues of lacking consideration of o system environment o dynamic nature of the system and its environment o economic and social impacts o the effect of uncertainty on analysis outcomes. • the development and demonstration of an industrial network analysis approach that o is flexible enough to model any industrial network at the inter-firm level, regardless of form and configuration of materials and products circulated, and depending on the existing network and the proposed strategies. o is able to encompass a wide range of environmental strategies, either individually or in combination depending on what best suits the situation, rather than focusing on any strategy in particular. o ensures long term viability of strategies, rather than short term solutions delivering incremental improvement. • the development of a comprehensive approach to capturing and assessing the effect of uncertainty on solution robustness for industrial network analysis, including the screening to determine the most important parameters, considering valuation and technical uncertainties, including future uncertainty. The industrial network analysis approach presented in this thesis looks more to how a network should develop (according to a set of sustainable development objectives), rather than how it may in actual fact develop. Consequently, the influence of agent interests and behaviour is not considered explicitly. This may be construed as a limitation of the industrial analysis approach. However, it is argued that the “top down” modelling approach favoured here is useful at a policy-making level. Here, for example, government instrumentalities, trade organisations and industry groupings, non-government organisations and community-based organisations are likely to be interested more in the performance of the network as a whole, rather than (necessarily) following the behaviour of individual agents within the network. Future work could well entertain the prospect of a mixed approach, in which the top-down approach of this thesis is complemented by a “bottom-up”, agent-based analysis. In this manner, it would be possible to give an indication of how attainable the identified industrial network development pathways are. Furthermore, the use of government incentives can be explored to assess if network development could approach the preferred development pathway which is identified using the methodology and results articulated in this thesis

    A Holistic Approach to Sustainability Analysis of Industrial Networks

    Get PDF
    The aim of this thesis is to support the evaluation of sustainable development strategies for industrial networks in the context of industrial ecology (IE). Industrial networks are a group of units which carry out, or contribute to, industrial activity, and are connected by material and energy flows, but also capital and information exchanges. The components of an industrial network encompass resource extraction, processing and refining, forming and assembly, use, disposal, as well as recycling and reprocessing. The motivation behind this research is the realisation that much of the current environmental system analysis focus within IE lacks a structured approach to considering: • system environment • dynamic nature of the system and its environment • economic and social impacts • the effect of uncertainty on analysis outcomes. It is argued in this thesis that current environmental analysis approaches used in IE can be improved in their capacity to capture the complexity of industrial systems, with the objective of promoting sustainable development. While IE emphasises the benefit of a systems approach to identifying environmental strategies in industry, analysis tools have to date not engaged extensively with important aspects such as the influence of system environment and dynamics on the viability of an environmental strategy, or with the economic or social impacts of industrial system development, which are equally important for sustainable development. Nor is the assessment of the effect of uncertainty on analysis outcomes an integral part of environmental analysis tools in IE. This is particularly significant when, in fact, the degree of uncertainty in assumptions and data used increases with the scope, and therefore the abstraction, of the system under consideration. IE will have to engage with the network and contextual complexities to a greater degree if it is to evolve from a concept to the application of its principles in practice. The main contribution of this thesis is therefore the development of a structured approach to analysing industrial networks for the purpose of identifying strategies to encourage sustainable development, while accounting for the complexity of the underlying system as well as the problem context. This analysis is intended to allow the identification of preferred network development pathways and to test the effectiveness of sustainable development strategies. A top-down, prescriptive approach is adopted for this purpose. This approach is chosen as the industrial network analysis is intended to identify how a network should develop, rather than focusing on how it could develop. Industrial networks are systems which are complex in both their structure and behaviour. This thesis also delivers a characterisation of these networks, which serves two purposes – quantifying key elements of structure and behaviour; and using this information to build a foundation for subsequent industrial network analysis. The value of such an approach can be seen in the following example. With a detailed understanding of individual network characteristics, both separately and collectively, it is possible to determine the source of issues, the means available to address them, any barriers that might exist, and the consequences of implementing any strategic interventions. The analysis approach proposed in this thesis is based on multi-criteria decisions analysis (MCDA), which, as a process, combines initial problem structuring and subsequent quantitative analysis stages. The tools employed within MCDA have been employed variously around considerations of sustainable development. Their value in this thesis is their integration within a rigorous analytical framework. Rigorous problem structuring is attractive as it helps elucidate the complexities of the system and its environment and is, by definition, designed to deal with multiple environmental social and economic criteria that would have to be considered to promote sustainable development. For the quantitative analysis, the industrial network analysis draws from existing analysis tools in IE, but predominately from other systems research disciplines, such as process systems engineering (PSE) and supply chain management (SCM). These fields, due to their maturity and practical focus, have invested a lot of research into system design and strategic planning, capturing system dynamics and uncertainty to ensure, within selected system constraints, that a proposed system or changes to a system are viable, and that the system is capable of achieving the stated objectives. Both PSE and SCM rely heavily on optimisation for system design and planning, and achieve good results with it as an analytical tool. The similarity between industrial networks and process systems / supply chains, suggests that an optimisation platform, specifically multi-objective dynamic optimisation, could be employed fruitfully for the analysis of industrial networks. This is the approach taken in this thesis. It is consistent with the “top down” approach advocated previously, which is deemed preferable for the identification and implementation analysis of strategic interventions. This enables the determination of a structure (design) that is “best” able to operate under future conditions (planning) with respect to the chosen sustainable development objectives. However, an analysis is only ever as good as its underlying data and assumptions. The complexity and scope of the industrial network and the challenge of articulating sustainable development target(s) give rise to significant uncertainties. For this reason a framework is developed within this thesis that integrates uncertainty analysis into the overall approach, to obtain insight into the robustness of the analysis results. Quantifying all the uncertainties in an industrial network model can be a daunting task for a modeller, and a decision-maker can be confused by modelling results. Means are therefore suggested to reduce the set of uncertainties that have to be engaged with, by identifying those which impact critically on model outcomes. However, even if uncertainty cannot be reduced, and the implementation of any strategy retains a degree of risk, the uncertainty analysis has the benefit that it forces an analyst to engage in more detail with the network in question, and to be more critical of the underlying assumptions. The analysis approach is applied to two case studies in this thesis: one deals with waste avoidance in an existing wood-products network in a large urban metropolis; the other with the potential for renewable energy generation in a developing economy. Together, these case studies provide a rich tableau within which to demonstrate the full features of the industrial network analysis. These case studies highlight how the context within which the relevant industrial network functions influences greatly the evolution of the network over time; how uncertainty is managed; and what strategies are preferred in each case in order to enhance the contribution of each network to sustainable development. This thesis makes an intellectual contribution in the following areas: • the characterisation of industrial networks to highlight sources of environmental issues, role the characteristics (could) play in the identification of (preferred) sustainable development strategies, and the need to explicitly consider these in a systems analysis. • the synthesis, adaptation and application of existing tools to fulfil the need for analysis tools in IE that can handle both contextual and system complexity, and address the above mentioned issues of lacking consideration of o system environment o dynamic nature of the system and its environment o economic and social impacts o the effect of uncertainty on analysis outcomes. • the development and demonstration of an industrial network analysis approach that o is flexible enough to model any industrial network at the inter-firm level, regardless of form and configuration of materials and products circulated, and depending on the existing network and the proposed strategies. o is able to encompass a wide range of environmental strategies, either individually or in combination depending on what best suits the situation, rather than focusing on any strategy in particular. o ensures long term viability of strategies, rather than short term solutions delivering incremental improvement. • the development of a comprehensive approach to capturing and assessing the effect of uncertainty on solution robustness for industrial network analysis, including the screening to determine the most important parameters, considering valuation and technical uncertainties, including future uncertainty. The industrial network analysis approach presented in this thesis looks more to how a network should develop (according to a set of sustainable development objectives), rather than how it may in actual fact develop. Consequently, the influence of agent interests and behaviour is not considered explicitly. This may be construed as a limitation of the industrial analysis approach. However, it is argued that the “top down” modelling approach favoured here is useful at a policy-making level. Here, for example, government instrumentalities, trade organisations and industry groupings, non-government organisations and community-based organisations are likely to be interested more in the performance of the network as a whole, rather than (necessarily) following the behaviour of individual agents within the network. Future work could well entertain the prospect of a mixed approach, in which the top-down approach of this thesis is complemented by a “bottom-up”, agent-based analysis. In this manner, it would be possible to give an indication of how attainable the identified industrial network development pathways are. Furthermore, the use of government incentives can be explored to assess if network development could approach the preferred development pathway which is identified using the methodology and results articulated in this thesis

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Ancient and historical systems

    Get PDF
    • …
    corecore