5,442 research outputs found

    μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time

    Get PDF
    In this article, the model reduction problem for a class of discrete-time polytopic uncertain switched linear systems with average dwell time switching is investigated. The stability criterion for general discrete-time switched systems is first explored, and a μ-dependent approach is then introduced for the considered systems to the model reduction solution. A reduced-order model is constructed and its corresponding existence conditions are derived via LMI formulation. The admissible switching signals and the desired reduced model matrices are accordingly obtained from such conditions such that the resulting model error system is robustly exponentially stable and has an exponential H∞ performance. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results

    A general stability criterion for switched linear systems having stable and unstable subsystems

    Get PDF
    We report conditions on a switching signal that guarantee that solutions of a switched linear systems converge asymptotically to zero. These conditions are apply to continuous, discrete-time and hybrid switched linear systems, both those having stable subsystems and mixtures of stable and unstable subsystems

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Stability analysis of a general class of singularly perturbed linear hybrid systems

    Full text link
    Motivated by a real problem in steel production, we introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in which the variables preserve their nature over time. Secondly, we establish, through singular perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system's stability. Remarkably, this bound is the sum of two terms. The first term corresponds to an upper bound on the minimum dwell-time ensuring the stability of the reduced order linear hybrid system describing the slow dynamics. The order of magnitude of the second term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical illustrations complete our study

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi

    Stabilizing switching signals: a transition from point-wise to asymptotic conditions

    Full text link
    Characterization of classes of switching signals that ensure stability of switched systems occupies a significant portion of the switched systems literature. This article collects a multitude of stabilizing switching signals under an umbrella framework. We achieve this in two steps: Firstly, given a family of systems, possibly containing unstable dynamics, we propose a new and general class of stabilizing switching signals. Secondly, we demonstrate that prior results based on both point-wise and asymptotic characterizations follow our result. This is the first attempt in the switched systems literature where these switching signals are unified under one banner.Comment: 7 page
    corecore