2,602 research outputs found

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach

    Stability analysis and control of DC-DC converters using nonlinear methodologies

    Get PDF
    PhD ThesisSwitched mode DC-DC converters exhibit a variety of complex behaviours in power electronics systems, such as sudden changes in operating region, bifurcation and chaotic operation. These unexpected random-like behaviours lead the converter to function outside of the normal periodic operation, increasing the potential to generate electromagnetic interference degrading conversion efficiency and in the worst-case scenario a loss of control leading to catastrophic failure. The rapidly growing market for switched mode power DC-DC converters demands more functionality at lower cost. In order to achieve this, DC-DC converters must operate reliably at all load conditions including boundary conditions. Over the last decade researchers have focused on these boundary conditions as well as nonlinear phenomena in power switching converters, leading to different theoretical and analytical approaches. However, the most interesting results are based on abstract mathematical forms, which cannot be directly applied to the design of practical systems for industrial applications. In this thesis, an analytic methodology for DC-DC converters is used to fully determine the inherent nonlinear dynamics. System stability can be indicated by the derived Monodromy matrix which includes comprehensive information concerning converter parameters and the control loop. This methodology can be applied in further stability analysis, such as of the influence of parasitic parameters or the effect of constant power load, and can furthermore be extended to interleaved operating converters to study the interaction effect of switching operations. From this analysis, advanced control algorithms are also developed to guarantee the satisfactory performance of the converter, avoiding nonlinear behaviours such as fast- and slowscale bifurcations. The numerical and analytical results validate the theoretical analysis, and experimental results with an interleaved boost converter verify the effectiveness of the proposed approach.Engineering and Physical Sciences Research Council (EPSRC), China Scholarship Council (CSC), and school of Electrical and Electronic Engineerin

    Fast-scale instability of single-stage power-factor-correction power supplies

    Get PDF
    Author name used in this publication: Chi K. Tse2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Analysis and control of nonlinear phenomena in electrical drives

    Get PDF
    PhD ThesisElectrical motors are key to the growth of any modern society. In order to ensure optimal utilisation of the motors, the shaft speed and armature current must be controlled. Currently, the most efficient way of achieving both speed and current control in electrical motors is through power electronic switching, thus making the system both nonlinear and time varying. The combination of electric motors and control electronics is referred to as electric drives. Due to the inherent nonlinear nature of electrical drives, the system is prone to complex dynamical phenomena including bifurcations, chaos, co-existing attractors and fractal basin boundaries. The types of nonlinear phenomena that occur in some of the more common electrical drive systems, namely permanent magnet dc (PMDC) drives, series connected dc (SCDC) drives and switched reluctance motor (SRM) drives, are considered for analysis in this project. The nominal steady state behaviour of these drives is a periodic orbit with a mean value close to the reference value. But as some system parameters are being varied, the nominal orbit of the system referred to as the period-1 orbit, may lose its stability leading to the birth of new attracting orbit that is periodic, quasi-periodic or chaotic in nature. The most common technique for performing stability analysis of a periodic orbit is the Poincaré map approach, which has been successfully applied in DC-DC converters. This method involves reducing the continuous time dynamical system into a discrete time nonlinear iterative map and the periodic orbit into a fixed point. The stability of the periodic orbit then depends on the eigenvalue of the Jacobian matrix of the map evaluated at the fixed point. However, for some power electronic based system the nonlinear map cannot be derived in closed form due to the transcendental nature of the equation involved. In this project, the recently introduced Monodromy matrix approach is employed for the stability analysis of the periodic orbit in electrical drives. This method is based on Filippov’s method of differential inclusion and has been successfully applied in the stability analysis of periodic orbits in both low order and higher order DC-DC converters. This represents the first application of the technique in electrical drives. The Monodromy matrix approach involves computing the State Transition Matrix (STM) of the system around the nominal orbit including the STM at the switching manifold (sometimes referred to as the Saltation matrix). Also, by manipulating some of the parameters in the Saltation matrix, it is possible to control the instabilities and thus extend the system parameter range for nominal period-1 operation. The experimental validation of the nonlinear phenomena in a proportional integral (PI) controlled PMDC drive, which is absent in literature, is presented in this thesis. The system was implemented using dsPIC30F3010 which is a low cost and high performance digital signal controller.Petroleum Technology Development Fund (PTDF) of Nigeri

    Modeling, Control and Characterization of Aircraft Electric Power Systems

    Get PDF
    A study model of advanced aircraft electric power system (AAEPS) corresponding to B767 Aircraft is developed in the PSIM9 software environment. The performance characteristics of the system under consideration for large sharing of non-linear loads are studied. A comprehensive mathematical model describing system dynamics is derived where the GSSA technique is applied for reduced-order system approximation. The transient and steady-state performance of the hybrid PEM-FC/battery APU integrated to the aircraft electric network is analyzed while different loading scenarios are taken into account. In addition, dynamic bifurcation analysis is employed to characterize the systems stability performance under multi-parameters condition. Also, the power quality of the system is assessed under various loading configurations, and the effect of installing active/passive power filters (APF/PPF) on power quality of the system is investigated for a wide range of operating frequencies

    Fast-scale instability of single-stage power-factor-correction power supplies

    Full text link

    Analysis, simulation and control of chaotic behaviour and power electronic converters

    Get PDF
    The thesis describes theoretical and experimental studies on the chaotic behaviour of a peak current-mode controlled boost converter, a parallel two-module peak current-mode controlled DC-DC boost converter, and a peak current-mode controlled power factor correction (PFC) boost converter. The research concentrates on converters which do not have voltage control loops, since the main interest is in the intrinsic mechanism of chaotic behaviour. These converters produce sub-harmonics of the clock frequency at certain values of the reference current I[ref] and input voltage V[in], and may behave in a chaotic manner, whereby the frequency spectrum of the inductor becomes continuous. Non-linear maps for each of the converters are derived using discrete time modelling and numerical iteration of the maps produce bifurcation diagrams which indicate the presence of subharmonics and chaotic operation. In order to check the validity of the analysis, MATLAB/SIMULINK models for the converters are developed. A comparison is made between waveforms obtained from experimental converters, with those produced by the MATLAB/SIMULINK models of the converters. The experimental and theoretical results are also compared with the bifurcation points predicted by the bifurcation diagrams. The simulated waveforms show excellent agreement, with both the experimental waveforms and the transitions predicted by the bifurcation diagrams. The thesis presents the first application of a delayed feedback control scheme for eliminating chaotic behaviour in both the DC-DC boost converter and the PFC boost converter. Experimental results and FORTRAN simulations show the effectiveness and robustness of the scheme. FORTRAN simulations are found to be in close agreement with experimental results and the bifurcation diagrams. A theoretical comparison is made between the above converters controlled using delayed feedback control and the popular slope compensation method. It is shown that delayed feedback control is a simpler scheme and has a better performance than that for slope compensation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore