34 research outputs found

    Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

    Get PDF
    To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are particularly vulnerable to RF front-end non-idealities.This thesis addresses the modeling and digital mitigation of selected transmitter (TX) RF impairments in radio communication devices. The contributions can be divided into two areas. First, new modeling and digital mitigation techniques are proposed for two essential front-end impairments in direct-conversion architecture-based OFDM and OFDMA systems, namely inphase and quadrature phase (I/Q) imbalance and carrier frequency offset (CFO). Both joint and de-coupled estimation and compensation schemes for frequency-selective TX I/Q imbalance and channel distortions are proposed for OFDM systems, to be adopted on the receiver side. Then, in the context of uplink OFDMA and Single Carrier FDMA (SC-FDMA), which are the air interface technologies of the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced systems, joint estimation and equalization techniques of RF impairments and channel distortions are proposed. Here, the challenging multi-user uplink scenario with unequal received power levels is investigated where I/Q imbalance causes inter-user interference. A joint mirror subcarrier processing-based minimum mean-square error (MMSE) equalizer with an arbitrary number of receiver antennas is formulated to effectively handle the mirror sub-band users of different power levels. Furthermore, the joint channel and impairments filter responses are efficiently approximated with polynomial-based basis function models, and the parameters of basis functions are estimated with the reference signals conforming to the LTE uplink sub-frame structure. The resulting receiver concept adopting the proposed techniques enables improved link performance without modifying the design of RF transceivers.Second, digital baseband mitigation solutions are developed for the TX leakage signal-induced self-interference in frequency division duplex (FDD) transceivers. In FDD transceivers, a duplexer is used to connect the TX and receiver (RX) chains to a common antenna while also providing isolation to the receiver chain against the powerful transmit signal. In general, the continuous miniaturization of hardware and adoption of larger bandwidths through carrier aggregation type noncontiguous allocations complicates achieving sufficient TX-RX isolation. Here, two different effects of the transmitter leakage signal are investigated. The first is TX out-of-band (OOB) emissions and TX spurious emissions at own receiver band, due to the transmitter nonlinearity, and the second is nonlinearity of down-converter in the RX that generates second-order intermodulation distortion (IMD2) due to the TX in-band leakage signal. This work shows that the transmitter leakage signal-induced interference depends on an equivalent leakage channel that models the TX path non-idealities, duplexer filter responses, and the RX path non-idealities. The work proposes algorithms that operate in the digital baseband of the transceiver to estimate the TX-RX non-idealities and the duplexer filter responses, and subsequently regenerating and canceling the self-interference, thereby potentially relaxing the TX-RX isolation requirements as well as increasing the transceiver flexibility.Overall, this thesis provides useful signal models to understand the implications of different RF non-idealities and proposes compensation solutions to cope with certain RF impairments. This is complemented with extensive computer simulations and practical RF measurements to validate their application in real-world radio transceivers

    I/Q Imbalance in Multiantenna Systems: Modeling, Analysis and RF-Aware Digital Beamforming

    Get PDF
    Wireless communications has experienced an unprecedented increase in data rates, numbers of active devices and selection of applications during recent years. However, this is expected to be just a start for future developments where a wireless connection is seen as a fundamental resource for almost any electrical device, no matter where and when it is operating. Since current radio technologies cannot provide such services with reasonable costs or even at all, a multitude of technological developments will be needed. One of the most important subjects, in addition to higher bandwidths and flexible network functionalities, is the exploitation of multiple antennas in base stations (BSs) as well as in user equipment (UEs). That kind of multiantenna communications can boost the capacity of an individual UE-BS link through spatial antenna multiplexing and increase the quality as well as robustness of the link via antenna diversity. Multiantenna technologies provide improvements also on the network level through spatial UE multiplexing and sophisticated interference management. Additionally, multiple antennas can provide savings in terms of the dissipated power since transmission and reception can be steered more efficiently in space, and thus power leakage to other directions is decreased. However, several issues need to be considered in order to get multiantenna technologies widely spread. First, antennas and the associated transceiver chains are required to be simple and implementable with low costs. Second, size of the antennas and transceivers need to be minimized. Finally, power consumption of the system must be kept under control. The importance of these requirements is even emphasized when considering massive multiple-input multiple-output (MIMO) systems consisting of devices equipped with tens or even hundreds of antennas.In this thesis, we consider multiantenna devices where the associated transceiver chains are implemented in such a way that the requirements above can be met. In particular, we focus on the direct-conversion transceiver principle which is seen as a promising radio architecture for multiantenna systems due to its low costs, small size, low power consumption and good flexibility. Whereas these aspects are very promising, direct-conversion transceivers have also some disadvantages and are vulnerable to certain imperfections in the analog radio frequency (RF) electronics in particular. Since the effects of these imperfections usually get even worse when optimizing costs of the devices, the scope of the thesis is on the effects and mitigation of one of the most severe RF imperfection, namely in-phase/quadrature (I/Q) imbalance.Contributions of the thesis can be split into two main themes. First of them is multiantenna narrowband beamforming under transmitter (TX) and receiver (RX) I/Q imbalances. We start by creating a model for the signals at the TX and RX, both under I/Q imbalances. Based on these models we derive analytical expressions for the antenna array radiation patterns and notice that I/Q imbalance distorts not only the signals but also the radiation characteristics of the array. After that, stemming from the nature of the distortion, we utilize widely-linear (WL) processing, where the signals and their complex conjugates are processed jointly, for the beamforming task under I/Q imbalance. Such WL processing with different kind of statistical and adaptive beamforming algorithms is finally shown to provide a flexible operation as well as distortion-free signals and radiation patterns when being under various I/Q imbalance schemes.The second theme extends the work to wideband systems utilizing orthogonal frequency-division multiplexing (OFDM)-based waveforms. The focus is on uplink communications and BS RX processing in a multiuser MIMO (MU-MIMO) scheme where spatial UE multiplexing is applied and further UE multiplexing takes place in frequency domain through the orthogonal frequency-division multiple access (OFDMA) principle. Moreover, we include the effects of external co-channel interference into our analysis in order to model the challenges in heterogeneous networks. We formulate a flexible signal model for a generic uplink scheme where I/Q imbalance occurs on both TX and RX sides. Based on the model, we analyze the signal distortion in frequency domain and develop augmented RX processing methods which process signals at mirror subcarrier pairs jointly. Additionally, the proposed augmented methods are numerically shown to outperform corresponding per-subcarrier method in terms of the instantaneous signal-to-interference-and-noise ratio (SINR). Finally, we address some practical aspects and conclude that the augmented processing principle is a promising tool for RX processing in multiantenna wideband systems under I/Q imbalance.The thesis provides important insight for development of future radio networks. In particular, the results can be used as such for implementing digital signal processing (DSP)-based RF impairment mitigation in real world transceivers. Moreover, the results can be used as a starting point for future research concerning, e.g., joint effects of multiple RF impairments and their mitigation in multiantenna systems. Overall, this thesis and the associated publications can help the communications society to reach the ambitious aim of flexible, low-cost and high performance radio networks in the future

    A Semi-Blind Multiuser SIMO GFDM System in the Presence of CFOs and IQ Imbalances

    Get PDF

    Single carrier frequency domain equalization and energy efficiency optimization for MIMO cognitive radio.

    Get PDF
    This dissertation studies two separate topics in wireless communication systems. One topic focuses on the Single Carrier Frequency Domain Equalization (SC-FDE), which is a promising technique to mitigate the multipath effect in the broadband wireless communication. Another topic targets on the energy efficiency optimization in a multiple input multiple output (MIMO) cognitive radio network. For SC-FDE, the conventional linear receivers suffer from the noise amplification in deep fading channel. To overcome this, a fractional spaced frequency domain (FSFD) receiver based on frequency domain oversampling (FDO) is proposed for SC-FDE to improve the performance of the linear receiver under deep fading channels. By properly designing the guard interval, a larger sized Discrete Fourier Transform (DFT) is equipped to oversample the received signal in frequency domain. Thus, the effect of frequency-selective fading can still be eliminated by a one-tap frequency domain filter. Two types of FSFD receivers are proposed based on the least square (LS) and minimum mean square error (MMSE) criterion. Both the semi-analytical analysis and simulation results are given to evaluate the performance of the proposed receivers. Another challenge in SC-FDE is the in-phase/quadrature phase (IQ) imbalance caused by unideal radio frequency (RF) front-end at the transmitter or the receiver. Most existing works in single carrier transmission employ linear compensation methods, such as LS and MMSE, to combat the interference caused by IQ imbalance. Actually, for single carrier transmissions, it is possible for the receivers to adopt advanced nonlinear compensation methods to improve the system performance under IQ imbalance. For such purpose, an iterative decision feedback receiver is proposed to compensate the IQ imbalance caused by unideal RF front-end in SC-FDE. Numerical results show that the proposed iterative IQ imbalance compensation can significantly improve the performance of SC-FDE system under IQ imbalance compared with the conventional linear method. For the energy efficiency optimization in the MIMO cognitive radio network, multiple secondary users (SUs) coexisting with a primary user (PU) adjust their antenna radiation patterns and power allocations to achieve energy-efficient transmission. The optimization problems are formulated to maximize the energy efficiency of a cognitive radio network in both distributed and centralized point of views. Also, constraints on the transmission power and the interference to PU are introduced to protect the PU’s transmission. In order to solve the non-convex optimization problems, convex relaxations are used to transform them into equivalent problems with better tractability. Then three optimization algorithms are proposed to find the energy-efficient transmission strategies. Simulation results show that the proposed energy-efficiency optimization algorithms outperform the existing algorithms

    Digital Front-End Signal Processing with Widely-Linear Signal Models in Radio Devices

    Get PDF
    Necessitated by the demand for ever higher data rates, modern communications waveforms have increasingly wider bandwidths and higher signal dynamics. Furthermore, radio devices are expected to transmit and receive a growing number of different waveforms from cellular networks, wireless local area networks, wireless personal area networks, positioning and navigation systems, as well as broadcast systems. On the other hand, commercial wireless devices are expected to be cheap, be relatively small in size, and have a long battery life. The demands for flexibility and higher data rates on one hand, and the constraints on production cost, device size, and energy efficiency on the other, pose difficult challenges on the design and implementation of future radio transceivers. Under these diametric constraints, in order to keep the overall implementation cost and size feasible, the use of simplified radio architectures and relatively low-cost radio electronics are necessary. This notion is even more relevant for multiple antenna systems, where each antenna has a dedicated radio front-end. The combination of simplified radio front-ends and low-cost electronics implies that various nonidealities in the remaining analog radio frequency (RF) modules, stemming from unavoidable physical limitations and material variations of the used electronics, are expected to play a critical role in these devices. Instead of tightening the specifications and tolerances of the analog circuits themselves, a more cost-effective solution in many cases is to compensate for these nonidealities in the digital domain. This line of research has been gaining increasing interest in the last 10-15 years, and is also the main topic area of this work. The direct-conversion radio principle is the current and future choice for building low-cost but flexible, multi-standard radio transmitters and receivers. The direct-conversion radio, while simple in structure and integrable on a single chip, suffers from several performance degrading circuit impairments, which have historically prevented its use in wideband, high-rate, and multi-user systems. In the last 15 years, with advances in integrated circuit technologies and digital signal processing, the direct-conversion principle has started gaining popularity. Still, however, much work is needed to fully realize the potential of the direct-conversion principle. This thesis deals with the analysis and digital mitigation of the implementation nonidealities of direct-conversion transmitters and receivers. The contributions can be divided into three parts. First, techniques are proposed for the joint estimation and predistortion of in-phase/quadrature-phase (I/Q) imbalance, power amplifier (PA) nonlinearity, and local oscillator (LO) leakage in wideband direct-conversion transmitters. Second, methods are developed for estimation and compensation of I/Q imbalance in wideband direct-conversion receivers, based on second-order statistics of the received communication waveforms. Third, these second-order statistics are analyzed for second-order stationary and cyclostationary signals under several other system impairments related to circuit implementation and the radio channel. This analysis brings new insights on I/Q imbalances and their compensation using the proposed algorithms. The proposed algorithms utilize complex-valued signal processing throughout, and naturally assume a widely-linear form, where both the signal and its complex-conjugate are filtered and then summed. The compensation processing is situated in the digital front-end of the transceiver, as the last step before digital-to-analog conversion in transmitters, or in receivers, as the first step after analog-to-digital conversion. The compensation techniques proposed herein have several common, unique, attributes: they are designed for the compensation of frequency-dependent impairments, which is seen critical for future wideband systems; they require no dedicated training data for learning; the estimators are computationally efficient, relying on simple signal models, gradient-like learning rules, and solving sets of linear equations; they can be applied in any transceiver type that utilizes the direct-conversion principle, whether single-user or multi-user, or single-carrier or multi-carrier; they are modulation, waveform, and standard independent; they can also be applied in multi-antenna transceivers to each antenna subsystem separately. Therefore, the proposed techniques provide practical and effective solutions to real-life circuit implementation problems of modern communications transceivers. Altogether, considering the algorithm developments with the extensive experimental results performed to verify their functionality, this thesis builds strong confidence that low-complexity digital compensation of analog circuit impairments is indeed applicable and efficient

    Performance Analysis and Mitigation Techniques for I/Q-Corrupted OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a widely adopted modulation technique in modern communications systems due to its multipath resilience and low implementation complexity. The direct conversion architecture is a popular candidate for low-cost, low-power, fully integrated transceiver designs. One of the inevitable problems associated with analog signal processing in direct conversion involves the mismatches in the gain and phases of In-phase (I) and Quadrature-phase (Q) branches. Ideally, the I and Q branches of the quadrature mixer will have perfectly matched gains and are orthogonal in phase. Due to imperfect implementation of the electronics, so called I/Q imbalance emerges and creates interference between subcarriers which are symmetrically apart from the central subcarrier. With practical imbalance levels, basic transceivers fail to maintain the sufficient image rejection, which in turn can cause interference with the desired transmission. Such an I/Q distortion degrades the systems performance if left uncompensated. Moreover, the coexistence of I/Q imbalance and other analog RF imperfections with digital baseband and higher layer functionalities such as multiantenna transmission and radio resource management, reduce the probability of successful transmission. Therefore, mitigation of I/Q imbalance is an essential substance in designing and implementing modern communications systems, while meeting required performance targets and quality of service. This thesis considers techniques to compensate and mitigate I/Q imbalance, when combined with channel estimation, multiantenna transmission, transmission power control, adaptive modulation and multiuser scheduling. The awareness of the quantitative relationship between transceiver parameters and system parameters is crucial in designing and dimensioning of modern communications systems. For this purpose, analytical models to evaluate the performance of an I/Q distorted system are considered

    Performance Evaluation of Low Complexity Massive MIMO Techniques for SC-FDE Schemes

    Get PDF
    Massive-MIMO technology has emerged as a means to achieve 5G's ambitious goals; mainly to obtain higher capacities and excellent performances without requiring the use of more spectrum. In this thesis, focused on the uplink direction, we make a study of performance of low complexity equalization techniques as well as we also approach the impact of the non-linear elements located on the receivers of a system of this type. For that purpose, we consider a multi-user uplink scenario through the Single Carrier with Frequency Domain Equalization (SC-FDE) scheme. This seems to be the most appropriate due to the low energy consumption that it implies, as well as being less favorable to the detrimental effects of high envelope fluctuations, that is, by have a low Peak to Average Power Ratio (PAPR) comparing to other similar modulations, such as the Orthogonal Frequency Division Multiplexing (OFDM). Due to the greater number of antennas and consequent implementation complexity, the equalization processes for Massive- MIMO schemes are aspects that should be simplified, that is, they should avoid the inversion of matrices, contrary to common 4G, with the Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) techniques. To this end, we use low-complexity techniques, such as the Equal Gain Combining (EGC) and the Maximum Ratio Combining (MRC). Since these algorithms are not sufficiently capable of removing the entire Inter-Symbol Interference (ISI) and Inter-User Interference (IUI), we combine them with iterative techniques, namely with the Iterative Block with Decision Feedback Equalizer (IB-DFE) to completely remove the residual ISI and IUI. We also take into account the hardware used in the receivers, since the effects of non-linear distortion can impact negatively the performance of the system. It is expected a strong performance degradation associated to the high quantization noise levels when implementing low-resolution Analog to Digital Converters (ADCs). However, despite these elements with these configurations become harmful to the performance of the majority of the systems, they are considered a desirable solution for Massive-MIMO scenarios, because they make their implementation cheaper and more energy efficient. In this way, we made a study of the impact in the performance by the low-resolution ADCs. In this thesis we suggest that it is possible to bypass these negative effects by implementing a number of receiving antennas far superior to the number of transmitting antennas
    corecore