212 research outputs found

    Sliding-Mode control for high-precision motion control systems

    Get PDF
    In many of today's mechanical systems, high precision motion has become a necessity. As performance requirements become more stringent, classical industrial controllers such as PID can no longer provide satisfactory results. Although many control approaches have been proposed in the literature, control problems related to plant parameter uncertainties, disturbances and high-order dynamics remain as big challenges for control engineers. Theory of Sliding Mode Control provides a systematic approach to controller design while allowing stability in the presence of parametric uncertainties and external disturbances. In this thesis a brief study of the concepts behind Sliding Mode Control will be shown. Description of Sliding Mode Control in discrete-time systems and the continuous Sliding Mode Control will be shown. The description will be supported with the design and robustness analysis of Sliding Mode Control for discrete-time systems. In this thesis a simplified methodology based on discrete-time Sliding Mode Control will be presented. The main issues that this thesis aims to solve are friction and internal nonlinearities. The thesis can be outlined as follows: -Implementation of discrete-time Sliding Mode Control to systems with nonlinearities and friction. Systems include; piezoelectric actuators that are known to suffer from nonlinear hysteresis behavior and ball-screw drives that suffer from high friction. Finally, the controller will be implemented on a 6-dof Stewart platform which is a system of higher complexity. -It will also be shown that performance can be enhanced with the aid of disturbance compensation based on a nominal plant disturbance observer

    Model reference control for ultra-high precision positioning systems

    Get PDF
    Due to the increasing demands of high-density semiconductors, molecular biology, optoelectronics, and MEMS/NEMS in the past decades, control of ultra-high precision positioning using piezoelectricity has become an important area because of its high displacement resolution, wide bandwidth, low power consumption, and potential low cost. However, the relatively small displacement range limits its application. This work proposed a practical ultra-high precision piezoelectric positioning system with a complementary high displacement range actuation technology. Solenoids are low cost, high speed electromagnetic actuators which are commonly used in on-off mode only because of the inherent high nonlinear force-stroke characteristics and unipolar forces (push/pull) generated by the magnetic fields. In this work, an integrated positioning system based on a monolithic piezoelectric positioner and a set of push-pull dual solenoid actuators is designed for high speed and high precision positioning applications. The overall resolution can be sub-nanometer while the moving range is in millimeters, a three order of magnitude increase from using piezoelectric positioner alone. The dynamic models of the dual solenoid actuator and piezoelectric nanopositioner are derived. The main challenge of designing such positioning systems is to maintain the accuracy and stability in the presence of un-modeled dynamics, plant variations, and parasitic nonlinearities, specifically in this work, the friction and forcestroke nonlinearities of the dual solenoid actuator, and the friction, hysteresis and coupling effects of piezoelectric actuator, which are impossible to be modeled accurately and even time-varying. A model reference design approach is presented to attenuate linear as well as nonlinear uncertainties, with a fixed order controller augmenting a reference model that embeds the nominal dynamics of the plant. To improve transient characteristics, a Variable Model Reference Zero Vibration (VMRZV) control is also proposed to stabilize the system and attenuate the adverse effect of parasitic nonlinearities of micro-/nano- positioning actuators and command-induced vibrations. The speed of the ultra-high precision system with VMRZV control can also be quantitatively adjusted by systematically varying the reference model. This novel control method improves the robustness and performance significantly. Preliminary experimental data on dual solenoid system confirm the feasibility of the proposed method

    THE DEVELOPMENT OF A NOVEL SUSPENSION ARM WITH 2-DIMENSIONAL ACTUATION, FOR USE IN ADVANCED HARD DISK DRIVES

    Get PDF
    As magnetic computer disks are developed to ever-greater data storage densities, the accuracy required for head positioning is moving beyond the accuracy provided by present technology using single-stage voice-coil motors in hard disk drives. This thesis details work to develop a novel active suspension arm with 2-dimensional actuation for use in advanced hard disk drives. The arm developed is capable of high-bandwidth data tracking as well as precision head flying height control motion. High-bandwidth data tracking is facilitated by the use of piezoelectric stack actuator, positioned closer to the head. The suspension arm is also capable of motion in the orthogonal axis. This motion represents active flying height control to maintain the correct altitude during drive operation. To characterise the suspension arm's structural dynamics, a high-resolution measurement system based on the optical beam deflection technique has been developed. This has enabled the accurate measurement of minute end-deflections of the suspension arm in 2-dimensions, to sub-nanometre resolution above noise. The design process of the suspension arm has led into the development of novel piezoelectric-actuated arms. In the work involving lead zirconate titanate (PZT) thick films as actuators, work in this thesis shows that reinforcing the films with fibre improves the overall actuation characteristics of the thick films. This discovery benefits applications such as structural health monitoring. The final suspension arm design has been adopted because it is simple in design, easier to integrate within current hard disk drive environment and easier to fabricate in mass. Closed-loop control algorithms based on proportional, integral and derivative (PID) controller techniques have been developed and implemented to demonstrate high bandwidths that have been achieved. The suspension arm developed presents an important solution in head-positioning technology in that it offers much higher bandwidths for data tracking and flying height control; both very essential in achieving even higher data storage densities on magnetic disks at much reduced head flying heights, compared to those in existing hard disk drives

    DEVELOPMENT OF A VERSATILE HIGH SPEED NANOMETER LEVEL SCANNING MULTI-PROBE MICROSCOPE

    Get PDF
    The motivation for development of a multi-probe scanning microscope, presented in this dissertation, is to provide a versatile measurement tool mainly targeted for biological studies, especially on the mechanical and structural properties of an intracellular system. This instrument provides a real-time, three-dimensional (3D) scanning capability. It is capable of operating on feedback from multiple probes, and has an interface for confocal photo-detection of fluorescence-based and single molecule imaging sensitivity. The instrument platform is called a Scanning Multi-Probe Microscope (SMPM) and enables 45 microm by 45 microm by 10 microm navigation of specimen with simultaneous optical and mechanical probing with each probe location being adjustable for collocation or for probing with known probe separations. The 3D positioning stage where the specimen locates was designed to have nanometer resolution and repeatability at 10 Hz scan speed with either open loop or closed loop operating modes. The fine motion of the stage is comprises three orthogonal flexures driven by piezoelectric actuators via a lever linkage. The flexures design is able to scan in larger range especially in z axis and serial connection of the stages helps to minimize the coupling between x, y and z axes. Closed-loop control was realized by the capacitance gauges attached to a rectangular block mounted to the underside of the fine stage upon which the specimen is mounted. The stage's performance was studied theoretically and verified by experimental test. In a step response test and using a simple proportional and integral (PI) controller, standard deviations of 1.9 nm 1.8 nm and 0.41 nm in the x, y and z axes were observed after settling times of 5 ms and 20 ms for the x and y axes. Scanning and imaging of biological specimen and artifact grating are presented to demonstrate the system operation. For faster, short range scanning, novel ultra-fast fiber scanning system was integrated into the xyz fine stage to achieve a super precision dual scanning system. The initial design enables nanometer positioning resolution and runs at 100 Hz scan speed. Both scanning systems are capable of characterization using dimensional metrology tools. Additionally, because the high-bandwidth, ultra-fast scanning system operates through a novel optical attenuating lever, it is physically separate from the longer range scanner and thereby does not introduce additional positioning noise. The dual scanner provides a fine scanning mechanism at relatively low speed and large imaging area using the xyz stage, and focus on a smaller area of interested in a high speed by the ultra-fast scanner easily. Such functionality is beneficial for researchers to study intracellular dynamic motion which requires high speed imaging. Finally, two high end displacement sensor systems, a knife edge sensor and fiber interferometer, were demonstrated as sensing solutions for potential feedback tools to boost the precision and resolution performance of the SMPM

    Micromanipulation-force feedback pushing

    Get PDF
    In micromanipulation applications, it is often desirable to position and orient polygonal micro-objects lying on a planar surface. Pushing micro-objects using point contact provides more flexibility and less complexity compared to pick and place operation. Due to the fact that in micro-world surface forces are much more dominant than inertial forces and these forces are distributed unevenly, pushing through the center of mass of the micro-object will not yield a pure translational motion. In order to translate a micro-object, the line of pushing should pass through the center of friction. Moreover, due to unexpected nature of the frictional forces between the micro-object and substrate, the maximum force applied to the micro-object needs to be limited to prevent any damage either to the probe or micro-object. In this dissertation, a semi-autonomous manipulation scheme is proposed to push microobjects with human assistance using a custom built tele-micromanipulation setup to achieve pure translational motion. The pushing operation can be divided into two concurrent processes: In one process human operator who acts as an impedance controller to switch between force-position controllers and alters the velocity of the pusher while in contact with the micro-object through scaled bilateral teleoperation with force feedback. In the other process, the desired line of pushing for the micro-object is determined continuously so that it always passes through the varying center of friction. Visual feedback procedures are adopted to align the resultant velocity vector at the contact point to pass through the center of friction in order to achieve pure translational motion of the micro-object. Experimental results are demonstrated to prove the effectiveness of the proposed controller along with nanometer scale position control, nano-Newton range force sensing, scaled bilateral teleoperation with force feedback

    Dynamics and Controls of Fluidic Pressure-Fed Mechanism (FPFM) of Nanopositioning System

    Get PDF
    Flexure or compliant mechanisms are employed in many precisions engineered devices due to their compactness, linearity, resolution, etc. Yet, critical issues remain in motion errors, thermal instability, limited bandwidth, and vibration of dynamic systems. Those issues cannot be negligible to maintain high precision and accuracy for precision engineering applications. In this thesis, a novel fluidic pressure-fed mechanism (FPFM) is proposed and investigated. The proposed method is designing internal fluidic channels inside the spring structure of the flexure mechanism using the additive manufacturing (AM) process to overcome addressed challenges. By applying pneumatic/hydraulic pressure and filling media into fluidic channels, dynamic characteristics of each spring structure of the flexure mechanism can be altered or adjusted to correct motion errors, increase operating speed, and suppress vibration. Additionally, FPFM can enhance thermal stability by flowing fluids without affecting the motion quality of the dynamic system. Lastly, the motion of the nanopositioning system driven by FPFM can provide sub-nanometer resolution motion, and this enables the nanopositioning system to have two linear motion in a monolithic structure. The main objective of this thesis is to propose and validate the feasibility of FPFM that can ultimately be used for a monolithic FPFM dual-mode stage for providing high positioning performance without motion errors while reducing vibration and increasing thermal stability and bandwidth

    Disturbance attenuation with multi-sensing servo systems for high density storage devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Analysis and control of monolithic piezoelectric nano-actuator

    Get PDF
    The study of the monolithic piezoelectric actuator, the dominant type of micropositioner is an attractive and challenging area, where realtime control theory and digital signal processing are effectively applied. The actuator can be applied in precision instruments and precision control, such as microscopes, medical and optics instruments because of the piezoelectric ceramic\u27s high resolution, fast transient response, and potential low cost. However, hysteresis nonlinearity and lightly damped vibration exist in the system, which limit the actuator applications. This work focuses on the hysteresis characteristics in time and frequency domains along with experimental and simulated results to verify the effectiveness of the model in describing the hysteresis phenomena. The analytic expressions of the hysteresis harmonics are further applied in hysteresis parameter estimation. A reduced order nonlinear hysteresis observer compensator is proposed, and the stability of the compensated system is discussed. The compensator reduces the hysteresis effect significantly under simulated and experimental conditions. Furthermore, an adaptive hysteresis observer compensator is further presented to compensate the slowly changed hysteresis parameters. Time division multi-control strategy is proposed to implement fast transient response, low vibration and high resolution. Extensive numerical simulation and real-time experiment are carried out to verify the control strategies. GUI is developed to implement the communication between the code in DSP memory and Labview, which improves the efficiency in system test

    Precision cutting in CNC turning machines

    Get PDF
    Precision cutting, considering the time, cost and flexib ility of the production, has been one of the major goals in manufacturing. Especially using new technological tools such as linear motors, laser and piezoelectric actuators in cutting operations to increase the accuracy of the workpieces produced, is becoming more popular day by day.In this thesis, a new precision cutting system is developed to decrease the basic workpiece errors (straightness, roundness, diameter error, etc.) for commercial CNC lathes in a cheaper way. In order to characterise the CNC lathe, a laser displacement sensor is used. A mechanical design with piezo stack actuator and tool tip, i.e. piezo based cutting device (PBCD), is inserted on the turret of CNC lathe to give both static and dynamic finish cutting operation of PBCD. FEA (Finite Element Analysis) tool is used at the design stage of PBCD. The controller of PBCD is PID (Proportional Integrate Derivative) control that is running in the dSPACE software. In dynamic operation of PBCD, instantaneous angular position of CNC lathe spindle is specified by means of the rotary encoder. And it is used in the control loop for active elimination of roundness errors of cylindrical workpieces during cutting operation. The results after assessment of the measurements of cylindrical workpieces are encouraging. In static operation of PBCD, the finish cutting decreases the roundness error at an amount of at least 30% with respect to the operation without control of PBCD. In most CNC turning machines, if cutting conditions such as cutting speed and feed, tool geometry and vibration are not changed, the workpiece geometric errors are mostly repeatable. So it may not be needed to measure the geometric errors of the same workpiece produced at the same cutting conditions after each cutting operation. Especially in mass production, all cutting conditions and workpiece produced are same. So, the PBCD would be very useful tool in mass production regarding the repeatability of workpiece geometric errors
    corecore